How to generate sin wave in AS3 without clicks? - actionscript-3

I have started using sound to synthesis audio, I don't know why I get those noisy clicks sounds within the sounds?
My loops is:
for(i in 0...2048)
{
var phase:Float = position / 44100.0 * Math.PI * 2;
position+=1;
sample = Math.sin(phase * v); // where v varies between 200 to 400
event.data.writeFloat(sample); // left
event.data.writeFloat(sample); // right
}
Any idea?
EDIT
What I need to do is to interpolate frequency within the loop:
var phaserad:Float= 2*Math.PI/44100;
var delta:Float = current_v - new_v;
var p:Int= 2048;
for(i in 0...2048)
{
p--;
v = new_v + delta * (p / 2048); // v will interpolate from current_v to new_v
position += v * phaserad;
sample = Math.sin(position);
event.data.writeFloat(sample); // left
event.data.writeFloat(sample); // right
}
current_v = new_v;
but, I couldn't hear anything, I tried another approach:
var delta:Float = current_v - new_v;
var p:Int= 2048;
for(i in 0...2048)
{
var phase:Float = position / 44100.0 * Math.PI * 2;
position+=1;
p--;
v = new_v + delta * (p / 2048); // v will interpolate from current_v to new_v
sample = Math.sin(phase * v); // where v varies between 200 to 400
event.data.writeFloat(sample); // left
event.data.writeFloat(sample); // right
}
but, the frequency will keep going up, and it won't stop at expected new_v

You have your wave generator set about right, but the approach with saved position requires your v to be constant and position unaltered. Given your description of v, you change it during your playback somehow, but changing v results in sine form to be disrupted. So, instead of recalculating position from scratch, you should accumulate phase and add current shift based on v to receive an uninterrupted waveform.
const phaserad:Number=2*Math.PI/44100;
for(var i:int=0;i<2048;i++)
{
position+=v*phaserad; // requires this var to be "Number" type
sample = Math.sin(position); // where v varies between 200 to 400
event.data.writeFloat(sample); // left
event.data.writeFloat(sample); // right
}

If you want a continuous sine wave your phase needs to from 0 -> 360 -> 0 -> 360 degrees etc.

Related

Centering on a canvas object within an HTML5 canvas

I have an Html5 canvas which i am drawing squares to.
The canvas itself is roughly the size of the window.
When i detect a click on a square i would like to translate the canvas so that the square is roughly in the center of the window. Any insights, hints, or straight-forward replies are welcome.
Here is what i tried so far:
If a square is at point (1000, 1000) I would simply translate the canvas (-1000, -1000). I know i need to add an offset so that it is centered in the window. However, the canvas always ends up off of the visible window (too far in the upper-left corner somewhere).
A more complex scenario:
Ultimately i would like to be able to center on a clicked object on a canvas that is transformed (rotated & skewed). I'm going for an isometric effect which seems to work really well. I'm wondering if this transformation affects the centering logic/math at all?
Transforming from screen to world and back
When working with non standard axis (or projections) such as isometrix it is always best to use a transformation matrix. It will cover every possible 2D projection with the same simple functions.
The coordinates of the iso world are called world coordinates. All you objects are stored as world coordinates. When you render them you project those coordinates to the screen coordinates using a transformation matrix.
The matrix, not a movie.
The matrix represents the direction and size in screen coordinates of the world
x and y axis and the screen location of the world origin (0,0)
For iso that is
x axis across 1 down 0.5
y axis across -1 down 0.5
z axis up 1 (-1 as up is the reverse of down) but this example does not use z
So the matrix as an array
const isoMat = [1,0.5,-1,0.5,0,0]; // ISO (pixel art) dimorphic projection
The first two are the x axis, the next two the y axis and the last two values are the screen coordinates of the origin.
Use the matrix to transform points
You apply a matrix to a point, this transforms the point from one coordinate system to another. You can also convert back via a inverse transform.
World to screen
You will need to convert from world coordinates to screen coordinates.
function worldToScreen(pos,retPos){
retPos.x = pos.x * isoMat[0] + pos.y * isoMat[2] + isoMat[4];
retPos.y = pos.x * isoMat[1] + pos.y * isoMat[3] + isoMat[5];
}
In the demo I ignore the origin as I set that at the center of the canvas at all times. Thus remove the origin from that function
function worldToScreen(pos,retPos){
retPos.x = pos.x * isoMat[0] + pos.y * isoMat[2];
retPos.y = pos.x * isoMat[1] + pos.y * isoMat[3];
}
Screen to world.
You will also need to convert from the screen coordinates to the world. For this you need to use the inverse transform. It's a bit like the inverse of multiply a * 2 = b is the inverse of b / 2 = a
There is a standard method for calculating the inverse matrix as follows
const invMatrix = []; // inverse matrix
// I call the next line cross, most call it the determinant which I
// think is stupid as it is effectively a cross product and is used
// like you would use a cross product. Anyways I digress
const cross = isoMat[0] * isoMat[3] - isoMat[1] * isoMat[2];
invMatrix[0] = isoMat[3] / cross;
invMatrix[1] = -isoMat[1] / cross;
invMatrix[2] = -isoMat[2] / cross;
invMatrix[3] = isoMat[0] / cross;
Then we have a function that converts from the screen x,y to the world position
function screenToWorld(pos,retPos){
const x = pos.x - isoMat[4];
const y = pos.y - isoMat[5];
retPos.x = x * invMatrix[0] + y * invMatrix[2];
retPos.y = x * invMatrix[1] + y * invMatrix[3];
}
So you get the mouse coords as screen pixels, use the above function to convert to world coords. Then you can use the world coords to find the object you are looking for.
To move a world object to the screen center you convert its coords to screen coords, add the position on the screen (the canvas center) and set the transform matrix origin to that location.
The demo
The demo creates a set of boxes in world coordinates. It sets the 2D context transform to the isoMat (isometric projection) via ctx.setTransform(
Every frame I convert the mouse screen coords to world coords then use that to check which box the mouse is over.
If the mouse button is down I then convert that box from world coords to screen and add the screen center. To smooth the step the new screen center is chased (smoothed)..
Well you should be able to work it out in the code, any problems ask in the comments.
const ctx = canvas.getContext("2d");
const moveSpeed = 0.4;
const boxMin = 20;
const boxMax = 50;
const boxCount = 100;
const boxArea = 2000;
// some canvas vals
var w = canvas.width;
var h = canvas.height;
var cw = w / 2; // center
var ch = h / 2;
var globalTime;
const U = undefined;
// Helper function
const doFor = (count, cb) => { var i = 0; while (i < count && cb(i++) !== true); };
const eachOf = (array, cb) => { var i = 0; const len = array.length; while (i < len && cb(array[i], i++, len) !== true ); };
const setOf = (count, cb) => {var a = [],i = 0; while (i < count) { a.push(cb(i ++)) } return a };
const randI = (min, max = min + (min = 0)) => (Math.random() * (max - min) + min) | 0;
const rand = (min, max = min + (min = 0)) => Math.random() * (max - min) + min;
// mouse function and object
const mouse = {x : 0, y : 0, button : false, world : {x : 0, y : 0}}
function mouseEvents(e){
mouse.x = e.pageX;
mouse.y = e.pageY;
mouse.button = e.type === "mousedown" ? true : e.type === "mouseup" ? false : mouse.button;
}
["down","up","move"].forEach(name => document.addEventListener("mouse"+name,mouseEvents));
// boxes in world coordinates.
const boxes = [];
function draw(){
if(this.dead){
ctx.fillStyle = "rgba(0,0,0,0.5)";
ctx.fillRect(this.x,this.y,this.w,this.h);
}
ctx.strokeStyle = this.col;
ctx.globalAlpha = 1;
ctx.strokeRect(this.x,this.y,this.w,this.h);
// the rest is just overkill
if(this.col === "red"){
this.mr = 10;
}else{
this.mr = 1;
}
this.mc += (this.mr-this.m) * 0.45;
this.mc *= 0.05;
this.m += this.mc;
for(var i = 0; i < this.m; i ++){
const m = this.m * (i + 1);
ctx.globalAlpha = 1-(m / 100);
ctx.strokeRect(this.x-m,this.y-m,this.w,this.h);
}
}
// make random boxes.
function createBoxes(){
boxes.length = 0;
boxes.push(...setOf(boxCount,()=>{
return {
x : randI(cw- boxArea/ 2, cw + boxArea/2),
y : randI(ch- boxArea/ 2, ch + boxArea/2),
w : randI(boxMin,boxMax),
h : randI(boxMin,boxMax),
m : 5,
mc : 0,
mr : 5,
col : "black",
dead : false,
draw : draw,
isOver : isOver,
}
}));
}
// use mouse world coordinates to find box under mouse
function isOver(x,y){
return x > this.x && x < this.x + this.w && y > this.y && y < this.y + this.h;
}
var overBox;
function findBox(x,y){
if(overBox){
overBox.col = "black";
}
overBox = undefined;
eachOf(boxes,box=>{
if(box.isOver(x,y)){
overBox = box;
box.col = "red";
return true;
}
})
}
function drawBoxes(){
boxes.forEach(box=>box.draw());
}
// next 3 values control the movement of the origin
// rather than move instantly the currentPos chases the new pos.
const currentPos = {x :0, y : 0};
const newPos = {x :0, y : 0};
const chasePos = {x :0, y : 0};
// this function does the chasing
function updatePos(){
chasePos.x += (newPos.x - currentPos.x) * moveSpeed;
chasePos.y += (newPos.y - currentPos.y) * moveSpeed;
chasePos.x *= moveSpeed;
chasePos.y *= moveSpeed;
currentPos.x += chasePos.x;
currentPos.y += chasePos.y;
}
// ISO matrix and inverse matrix plus 2world and 2 screen
const isoMat = [1,0.5,-1,0.5,0,0];
const invMatrix = [];
const cross = isoMat[0] * isoMat[3] - isoMat[1] * isoMat[2];
invMatrix[0] = isoMat[3] / cross;
invMatrix[1] = -isoMat[1] / cross;
invMatrix[2] = -isoMat[2] / cross;
invMatrix[3] = isoMat[0] / cross;
function screenToWorld(pos,retPos){
const x = pos.x - isoMat[4];
const y = pos.y - isoMat[5];
retPos.x = x * invMatrix[0] + y * invMatrix[2];
retPos.y = x * invMatrix[1] + y * invMatrix[3];
}
function worldToScreen(pos,retPos){
retPos.x = pos.x * isoMat[0] + pos.y * isoMat[2];// + isoMat[4];
retPos.y = pos.x * isoMat[1] + pos.y * isoMat[3];// + isoMat[5];
}
// main update function
function update(timer){
// standard frame setup
globalTime = timer;
ctx.setTransform(1,0,0,1,0,0); // reset transform
ctx.globalAlpha = 1; // reset alpha
if(w !== innerWidth || h !== innerHeight){
cw = (w = canvas.width = innerWidth) / 2;
ch = (h = canvas.height = innerHeight) / 2;
createBoxes();
}else{
ctx.clearRect(0,0,w,h);
}
ctx.fillStyle = "black";
ctx.font = "28px arial";
ctx.textAlign = "center";
ctx.fillText("Click on a box to center it.",cw,28);
// update position
updatePos();
isoMat[4] = currentPos.x;
isoMat[5] = currentPos.y;
// set the screen transform to the iso matrix
// all drawing can now be done in world coordinates.
ctx.setTransform(isoMat[0], isoMat[1], isoMat[2], isoMat[3], isoMat[4], isoMat[5]);
// convert the mouse to world coordinates
screenToWorld(mouse,mouse.world);
// find box under mouse
findBox(mouse.world.x, mouse.world.y);
// if mouse down and over a box
if(mouse.button && overBox){
mouse.button = false;
overBox.dead = true; // make it gray
// get the screen coordinates of the box
worldToScreen({
x:-(overBox.x + overBox.w/2),
y:-(overBox.y + overBox.h/2),
},newPos
);
// move it to the screen center
newPos.x += cw;
newPos.y += ch;
}
// forget what the following function does, think it does something like draw boxes, but I am guessing.. :P
drawBoxes();
requestAnimationFrame(update);
}
requestAnimationFrame(update);
canvas { position : absolute; top : 0px; left : 0px; }
<canvas id="canvas"></canvas>

Check if image A exists in image B

I need to check if an image exists in another image using JavaScript, I need to know what are the best approaches (algorithm) and solutions (ex: librarie) to do this operations
I explained what I need to do in this image:
Using the GPU to help in image processing.
Using the 2D API and some simple tricks you can exploit the GPUs power to speed up Javascript.
Difference
To find an image you need to compare the pixels you are looking for (A) against the pixels in the image (B). If the difference between the Math.abs(A-B) === 0 then the pixels are the same.
A function to do this may look like the following
function findDif(imageDataSource, imageDataDest, xx,yy)
const ds = imageDataSource.data;
const dd = imageDataDest.data;
const w = imageDataSource.width;
const h = imageDataSource.height;
var x,y;
var dif = 0;
for(y = 0; y < h; y += 1){
for(x = 0; x < w; x += 1){
var indexS = (x + y * w) * 4;
var indexD = (x + xx + (y + yy) * imageDataDest.width) * 4;
dif += Math.abs(ds[indexS]-dd[indexD]);
dif += Math.abs(ds[indexS + 1]-dd[indexD + 1]);
dif += Math.abs(ds[indexS + 2]-dd[indexD + 2]);
}
}
return dif;
}
var source = sourceCanvas.getContext("2d").getImageData(0,0,sourceCanvas.width,sourceCanvas.height);
var dest = destinationCanvas.getContext("2d").getImageData(0,0,destinationCanvas.width,destinationCanvas.height);
if(findDif(source,dest,100,100)){ // is the image at 100,100?
// Yes image is very similar
}
Where the source is the image we are looking for and the dest is the image we want to find it in. We run the function for every location that the image may be and if the result is under a level then its a good chance we have found it.
But this is very very slow in JS. This is where the GPU can help.
Using the ctx.globalCompositeOperation = "difference"; operation we can speed up the process as it will do the difference calculation for us
When you render with the comp operation "difference" the resulting pixels are the difference between the pixels you are drawing and those that are already on the canvas. Thus if you draw on something that is the same the result is all pixels are black (no difference)
To find a similar image in the image you render the image you are testing for at each location on the canvas that you want to test for. Then you get the sum of all the pixels you just rendered on, if the result is under a threshold that you have set then the image under that area is very similar to the image you are testing for.
But we still need to count all the pixels one by one.
A GPU mean function
The comp op "difference" already does the pixel difference calculation for you, but to get the sum you can use the inbuilt image smoothing.
After you have rendered to find the difference you take that area and render it at a smaller scale with ctx.imageSmoothingEnabled = true the default setting. The GPU will do something similar to an average and can reduce the amount of work JS has to do by several orders of magnitude.
Now instead of 100s or 1000s of pixels you can reduce it down to as little at 4 or 16 depending on the accuracy you need.
An example.
Using these methods you can get a near realtime image in image search with just the basic numerical analysis.
Click to start a test. Results are shown plus the time it took. The image that is being searched for is in the top right.
//------------------------------------------------------------------------
// Some helper functions
var imageTools = (function () {
var tools = {
canvas(width, height) { // create a blank image (canvas)
var c = document.createElement("canvas");
c.width = width;
c.height = height;
return c;
},
createImage : function (width, height) {
var i = this.canvas(width, height);
i.ctx = i.getContext("2d");
return i;
},
image2Canvas(img) {
var i = this.canvas(img.width, img.height);
i.ctx = i.getContext("2d");
i.ctx.drawImage(img, 0, 0);
return i;
},
copyImage(img){ // just a named stub
return this.image2Canvas(img);
},
};
return tools;
})();
const U = undefined;
const doFor = (count, callback) => {var i = 0; while (i < count && callback(i ++) !== true ); };
const setOf = (count, callback) => {var a = [],i = 0; while (i < count) { a.push(callback(i ++)) } return a };
const randI = (min, max = min + (min = 0)) => (Math.random() * (max - min) + min) | 0;
const rand = (min, max = min + (min = 0)) => Math.random() * (max - min) + min;
const randA = (array) => array[(Math.random() * array.length) | 0];
const randG = (min, max = min + (min = 0)) => Math.random() * Math.random() * Math.random() * Math.random() * (max - min) + min;
// end of helper functions
//------------------------------------------------------------------------
function doit(){
document.body.innerHTML = ""; // clear the page;
var canvas = document.createElement("canvas");
document.body.appendChild(canvas);
var ctx = canvas.getContext("2d");
// a grid of 36 images
canvas.width = 6 * 64;
canvas.height = 6 * 64;
console.log("test");
// get a random character to look for
const digit = String.fromCharCode("A".charCodeAt(0) + randI(26));
// get some characters we dont want
const randomDigits = setOf(6,i=>{
return String.fromCharCode("A".charCodeAt(0) + randI(26));
})
randomDigits.push(digit); // add the image we are looking for
var w = canvas.width;
var h = canvas.height;
// create a canvas for the image we are looking for
const imageToFind = imageTools.createImage(64,64);
// and a larger one to cover pixels on the sides
const imageToFindExtend = imageTools.createImage(128,128);
// Draw the character onto the image with a white background and scaled to fit
imageToFindExtend.ctx.fillStyle = imageToFind.ctx.fillStyle = "White";
imageToFind.ctx.fillRect(0,0,64,64);
imageToFindExtend.ctx.fillRect(0,0,128,128);
ctx.font = imageToFind.ctx.font = "64px arial black";
ctx.textAlign = imageToFind.ctx.textAlign = "center";
ctx.textBaseline = imageToFind.ctx.textBaseline = "middle";
const digWidth = imageToFind.ctx.measureText(digit).width+8;
const scale = Math.min(1,64/digWidth);
imageToFind.ctx.fillStyle = "black";
imageToFind.ctx.setTransform(scale,0,0,scale,32,32);
imageToFind.ctx.fillText(digit,0,0);
imageToFind.ctx.setTransform(1,0,0,1,0,0);
imageToFindExtend.ctx.drawImage(imageToFind,32,32);
imageToFind.extendedImage = imageToFindExtend;
// Now fill the canvas with images of other characters
ctx.fillStyle = "white";
ctx.setTransform(1,0,0,1,0,0);
ctx.fillRect(0,0,w,h);
ctx.fillStyle = "black";
ctx.strokeStyle = "white";
ctx.lineJoin = "round";
ctx.lineWidth = 12;
// some characters will be rotated 90,180,-90 deg
const dirs = [
[1,0,0,1,0,0],
[0,1,-1,0,1,0],
[-1,0,0,-1,1,1],
[0,-1,1,0,0,1],
]
// draw random characters at random directions
doFor(h / 64, y => {
doFor(w / 64, x => {
const dir = randA(dirs)
ctx.setTransform(dir[0] * scale,dir[1] * scale,dir[2] * scale,dir[3] * scale,x * 64 + 32, y * 64 + 32);
const d = randA(randomDigits);
ctx.strokeText(d,0,0);
ctx.fillText(d,0,0);
});
});
ctx.setTransform(1,0,0,1,0,0);
// get a copy of the canvas
const saveCan = imageTools.copyImage(ctx.canvas);
// function that finds the images
// image is the image to find
// dir is the matrix direction to find
// smapleSize is the mean sampling size samller numbers are quicker
function checkFor(image,dir,sampleSize){
const can = imageTools.copyImage(saveCan);
const c = can.ctx;
const stepx = 64;
const stepy = 64;
// the image that will contain the reduced means of the differences
const results = imageTools.createImage(Math.ceil(w / stepx) * sampleSize,Math.ceil(h / stepy) * sampleSize);
const e = image.extendedImage;
// for each potencial image location
// set a clip area and draw the source image on it with
// comp mode "difference";
for(var y = 0 ; y < h; y += stepy ){
for(var x = 0 ; x < w; x += stepx ){
c.save();
c.beginPath();
c.rect(x,y,stepx,stepy);
c.clip();
c.globalCompositeOperation = "difference";
c.setTransform(dir[0],dir[1],dir[2],dir[3],x +32 ,y +32 );
c.drawImage(e,-64,-64);
c.restore();
}
}
// Apply the mean (reducing nnumber of pixels to check
results.ctx.drawImage(can,0,0,results.width,results.height);
// get the pixel data
var dat = new Uint32Array(results.ctx.getImageData(0,0,results.width,results.height).data.buffer);
// for each area get the sum of the difference
for(var y = 0; y < results.height; y += sampleSize){
for(var x = 0; x < results.width; x += sampleSize){
var val = 0;
for(var yy = 0; yy < sampleSize && y+yy < results.height; yy += 1){
var i = x + (y+yy)*results.width;
for(var xx = 0; xx < sampleSize && x + xx < results.width ; xx += 1){
val += dat[i++] & 0xFF;
}
}
// if the sum is under the threshold we have found an image
// and we mark it
if(val < sampleSize * sampleSize * 5){
ctx.strokeStyle = "red";
ctx.fillStyle = "rgba(255,0,0,0.5)";
ctx.lineWidth = 2;
ctx.strokeRect(x * (64/sampleSize),y * (64/sampleSize),64,64);
ctx.fillRect(x * (64/sampleSize),y * (64/sampleSize),64,64);
foundCount += 1;
}
}
}
}
var foundCount = 0;
// find the images at different orientations
var now = performance.now();
checkFor(imageToFind,dirs[0],4);
checkFor(imageToFind,dirs[1],6); // rotated images need larger sample size
checkFor(imageToFind,dirs[2],6);
checkFor(imageToFind,dirs[3],6);
var time = performance.now() - now;
var result = document.createElement("div");
result.textContent = "Found "+foundCount +" matching images in "+time.toFixed(3)+"ms. Click to try again.";
document.body.appendChild(result);
// show the image we are looking for
imageToFind.style.left = (64*6 + 16) + "px";
imageToFind.id = "lookingFor";
document.body.appendChild(imageToFind);
}
document.addEventListener("click",doit);
canvas {
border : 2px solid black;
position : absolute;
top : 28px;
left : 2px;
}
#lookingFor {
border : 4px solid red;
}
div {
border : 2px solid black;
position : absolute;
top : 2px;
left : 2px;
}
Click to start test.
Not perfect
The example is not perfect and will sometimes make mistakes. There is a huge amount of room for improving both the accuracy and the speed. This is just something I threw together as an example to show how to use the GPU via the 2D API. Some further maths will be needed to find the statistically good results.
This method can also work for different scales, and rotations, you can even use some of the other comp modes to remove colour and normalize contrast. I have used a very similar approch to stabilize webcam by tracking points from one frame to the next, and a veriaty of other image tracking uses.

How to have an object hover back and forth constrained within a specific radius?

I have a sprite in a movie symbol that I would like to hover back and forth within a 360 radius. I was hoping to make it smooth and random. Never really venturing from its original xy cordinates.
I've tried to create some stipulations with if statements and a starting momentum. Like this:
var num = 2;
stage.addEventListener(Event.ENTER_FRAME, hover);
function hover(evt:Event):void{
//start it moving
cloudWhite.y += num;
cloudWhite.x += num;
//declare these variables
var cX = cloudWhite.x;
var cY = cloudWhite.y;
// object travels 10 pixels
var cXP = cX + 10;
var cXN = cX - 10;
var cYP = cY + 10;
var cYN = cY - 10;
// if object goes 10 pixels reverse direction of momentum (maybe)
if (cX >= cXP) {
num = -2;
}
if (cX <= cXN){
num = 2;
}
if (cY >= cYP) {
num = 2;
}
if (cY <= cYN){
num = 2;
}
Clearly this is super wrong because when it runs the object just either goes to 0,0 or to some place that only the math gods know of.
I am clearly a noob at this kind of math so i apologize but I am very excited to learn the trig behind this.
Thank you for your help and thank you for reading.
You are setting all your variables inside the ENTER_FRAME loop, so none of your conditions ever evaluates to true. On every single frame you are doing this:
cloudWhite.x += 2;
cX = cloudWhite.x;
cXP = cX + 10; // Must == cloudWhite's previous x + 10 + 2;
cXN = cX - 10; // Must == cloudWite's previous x -10 + 2;
if(cX > cXP)... // Can never be true.
if(cX < cXN)... // Can never be true.
What you need to do is:
1) Store the original position of cloudWhite somewhere outside the loop, and store it before the loop begins.
2) Define your bounds relative to the original position of cloudWhite, again before your loop begins. Also define the amount you are going to change the position with each iteration.
3) Start your loop.
4) Increment the current position of cloudWhite on each iteration. Add a little random in here if you want the shape to move in a random manner.
5) Check if the new position of cW is outside your bounds and adjust the direction if it is.
The sample below is crude and jerky but I don't know exactly what effect you're looking for. If you want smoother, longer movements in each direction, consider using the Tween class or a Tween library such as the popular Greensock one, instead of incrementing / decrementing the position manually. There's a useful discussion of this here: http://www.actionscript.org/forums/archive/index.php3/t-163836.html
import flash.display.MovieClip;
import flash.events.Event;
// Set up your variables
var original_x:Number = 100; // Original x
var original_y:Number = 100; // Original y
var x_inc:Number = 5; // X Movement
var y_inc:Number = 5; // Y Movenent
var bounds:Number = 50; // Distance from origin allowed
// Doesn't take into account width of object so is distance to nearest point.
// Create an MC to show the bounds:
var display:MovieClip = addChild(new MovieClip()) as MovieClip;
display.graphics.lineStyle(1, 0x0000FF);
display.graphics.beginFill(0x0000FF, 0.5);
display.graphics.drawRect(0-bounds, 0-bounds, bounds * 2, bounds *2);
display.x = original_x;
display.y = original_y;
addChild(display);
// Create our moving mc:
var mc:MovieClip = addChild(new MovieClip()) as MovieClip;
mc.graphics.beginFill(0xFF0000, 1);
mc.graphics.drawCircle(-10, -10, 20);
// Position it:
mc.x = original_x;
mc.y = original_y;
addChild(mc);
// Loop:
function iterate($e:Event = null):void
{
// Move the mc by a random amount related to x/y inc
mc.x += (Math.random() * (2 * x_inc))/2;
mc.y += (Math.random() * (2 * y_inc))/2;
// If the distance from the origin is greater than bounds:
if((Math.abs(mc.x - original_x)) > bounds)
{
// Reverse the direction of travel:
x_inc == 5 ? x_inc = -5 : x_inc = 5;
}
// Ditto on the y axis:
if((Math.abs(mc.y - original_y)) > bounds)
{
y_inc == 5 ? y_inc = -5 : y_inc = 5;
}
}
// Start the loop:
addEventListener(Event.ENTER_FRAME, iterate);
This should get you started. I'm sure there are any number of other ways to do this with formal trig, but this has the benefit of being very simple, and just an extension of your existing method.

Trouble creating a spectrogram

I know it was asked a thousand times before, but I still can't find a solution.
Searching SO, I indeed found the algorithm for it, but lacking the mathematical knowledge required to truly understand it, I am helplessly lost!
To start with the beginning, my goal is to compute an entire spectrogram and save it to an image in order to use it for a visualizer.
I tried using Sound.computeSpectrum, but this requires to play the sound and wait for it to end, I want to compute the spectrogram in a way shorter time than that will require to listen all the song. And I have 2 hours long mp3s.
What I am doing now is to read the bytes from a Sound object, the separate into two Vectors(.); Then using a timer, at each 100 ms I call a function (step1) where I have the implementation of the algorithm, as follows:
for each vector (each for a channel) I apply the hann function to the elements;
for each vector I nullify the imaginary part (I have a secondary vector for that)
for each vector I apply FFT
for each vector I find the magnitude for the first N / 2 elements
for each vector I convert squared magnitude to dB scale
end.
But I get only negative values, and only 30 percent of the results might be useful (in the way that the rest are identical)
I will post the code for only one channel to get rid off the "for each vector" part.
private var N:Number = 512;
private function step1() : void
{
var xReLeft:Vector.<Number> = new Vector.<Number>(N);
var xImLeft:Vector.<Number> = new Vector.<Number>(N);
var leftA:Vector.<Number> = new Vector.<Number>(N);
// getting sample range
leftA = this.channels.left.slice(step * N, step * (N) + (N));
if (leftA.length < N)
{
stepper.removeEventListener(TimerEvent.TIMER, getFreq100ms);
return;
}
else if (leftA.length == 0)
{
stepper.removeEventListener(TimerEvent.TIMER, getFreq100ms);
return;
}
var i:int;
// hann window function init
m_win = new Vector.<Number>(N);
for ( var i:int = 0; i < N; i++ )
m_win[i] = (4.0 / N) * 0.5 * (1 - Math.cos(2 * Math.PI * i / N));
// applying hann window function
for ( i = 0; i < N; i++ )
{
xReLeft[i] = m_win[i]*leftA[i];
//xReRight[i] = m_win[i]*rightA[i];
}
// nullify the imaginary part
for ( i = 0; i < N; i++ )
{
xImLeft[i] = 0.0;
//xImRight[i] = 0.0;
}
var magnitutel:Vector.<Number> = new Vector.<Number>(N);
fftl.run( xReLeft, xImLeft );
current = xReLeft;
currf = xImLeft;
for ( i = 0; i < N / 2; i++ )
{
var re:Number = xReLeft[i];
var im:Number = xImLeft[i];
magnitutel[i] = Math.sqrt(re * re + im * im);
}
const SCALE:Number = 20 / Math.LN10;
var l:uint = this.total.length;
for ( i = 0; i < N / 2; i++ )
{
magnitutel[i] = SCALE * Math.log( magnitutel[i] + Number.MIN_VALUE );
}
var bufferl:Vector.<Number> = new Vector.<Number>();
for (i = 0; i < N / 2 ; i++)
{
bufferl[i] = magnitutel[i];
}
var complete:Vector.<Vector.<Number>> = new Vector.<Vector.<Number>>();
complete[0] = bufferl;
this.total[step] = complete;
this.step++;
}
This function is executed in the event dispatched by the timer (stepper).
Obviously I do something wrong, as I said I have only negative values and further more values range between 1 and 7000 (at least).
I want to thank you in advance for any help.
With respect,
Paul
Negative dB values are OK. Just add a constant (representing your volume control) until the number of points you want to color become positive. The remaining values that stay negative are usually just displayed or colored as black in a spectrogram. No matter how negative (as they might just be the FFT's numerical noise, which can be a huge negative dB number or even NaN or -Inf for log(0)).

Google Map API: How to center dynamicly markers in AS3?

I have several markers on my map and want to center dynamily each time I click on a selected point which show a bunch of markers group.
Does anyone know how to do that in As3?
You could try to use the a formula to get the centroid of the polygon drawn by your markers, assuming it's a polygon. If not, and they're a bunch of scattered points, you need to get the ones on that form the outer bounding segments first.Also, the code assumes the polygon is closed(loops), so the last point is your first point again.
function centreOfMass(polyPoints:Array):Point{
var cx:Number = 0;
var cy:Number = 0;
var area:Number = area(polyPoints);
var result:Point = new Point();
var i:Number,j:Number,n:Number = polyPoints.length;
var factor:Number = 0;
for(i = 0; i < n ; i++){
j = (i+1) % n;
factor = polyPoints[i].x * polyPoints[j].y - polyPoints[j].x * polyPoints[i].y;
cx += polyPoints[i].x + polyPoints[j].x * factor;
cy += polyPoints[i].y + polyPoints[j].y * factor;
}
area *= 6.0;
factor = 1 / area;
cx *= factor;
cy *= factor;
result.offset(cx,cy);//sets x and y to cx and cy
return result;
}
function area(polyPoints:Array):Number{
var i:int,j:int,n:int = polyPoints.length;
var area:Number = 0;
for(i = 0; i < n; i++){
j = (i+1) % n;
area += polyPoints[i].x * polyPoints[j].y;
area -= polyPoints[j].x * polyPoints[i].y;
}
area *= 0.5;
return area;
}
You create an array of points and you use the lat/lon coords as x,y coords. If you're using flash player 10, feel free to change the array into a Vector. and don't forget to do the import.flash.geom.Point.
I didn't come up with the code, I just ported what was on the amazing Paul Bourke website. Tons of handy stuff there.