To detect BLAST matches within target region or outside - output

There,
I will take a piece of DNA sequence from a target sequence site, use it to blast against a genome. Then from blast result output, I want to know if there is any match sequence from other region in addition to match the target site. How to know from the BLAST output? Are there any indicators for the genome site? Thanks

You can inspect the blast output for regions with 100% match (or another cut-off).
Then check if the matched regions are close to the total length of the query sequence.
If you have more than one hit passing these parameters then you can figure out if they match different regions of your genome by inspecting the matching scaffold and start and end coordinates of the matched regions.

Related

CUDA: Scatter communication pattern

I am learning CUDA from the Udacity's course on parallel programming. In a quiz, they have a given a problem of sorting a pre-ranked variable(player's height). Since, it is a one-one correspondence between input and output array, should it not be a Map communication pattern instead of a Scatter?
CUDA makes no canonical definition of these terms, that I know of. Therefore my answer is merely a suggestion of how it might be or have been interpreted.
"Since, it is a one-one correspondence between input and output array"
This statement doesn't appear to be supported by the diagram, which shows gaps in the output array, which have no corresponding input point associated with them.
If a smaller set of values are distributed into a larger array (with resultant gaps in the output array, therefore, in which no input value corresponds to the gap location(s)), then a scatter might be used to describe that operation. Both scatters and maps have maps which describe where the input values go, but it might be that the instructor has defined scatter and map in such a way as to differentiate between these two cases, such as the following plausible definitions:
Scatter: one-to-one relationship from input to output (ie. unidirectional relationship). Every input location has a corresponding output location, but not every output location has a corresponding input location.
Map: one-to-one relationship between input and output (ie. bidirectional relationship). Every input location has a corresponding output location, and every output location has a corresponding input location.
Gather: one-to-one relationship from output to input (ie. unidirection relationship). Every output location has a corresponding input location, but not every input location has a corresponding output location.
The definition of each communication pattern (map, scatter, gather, etc.) varies slightly from one language/environment/context to another, but since I have followed that same Udacity course I'll try to explain that term as I understand it in the context of the course:
The Map operation calculates each output element as a function of its corresponding input element, i.e.:
output[tid] = foo(input[tid]);
The Gather pattern calculates each output element as a function of one or more (usually more) input elements, not necessarily the corresponding one (typically these are elements from a neighborhood). For example:
output[tid] = (input[tid-1] + input[tid+1]) / 2;
Lastly, the Scatter operation has each input element contribute to one or more (again, usually more) output elements. For instance,
atomicAdd( &(output[tid-1]), input[tid]);
atomicAdd( &(output[tid]), input[tid]);
atomicAdd( &(output[tid+1]), input[tid]);
The example given in the question is clearly not a Map, because each output is calculated from an input at a different location.
Also, it is hard to see how the same example can be a scatter, because each input element only causes one write to the output, but it is indeed a scatter because each input causes a write to an output whose location is determined by the input.
In other words, each CUDA thread processes an input element at the location associated with its tid(thread ID number), and calculates where to write the result. More usually a scatter would write on several places instead of only one, so this is a particular case that might as well be named differently.
Each player has 3 properties (name, height, rank).
So I think scatter is correct, because we should consider these three things to make output.
If player has only one property like rank,
then Map is correct I think.
reference: Parallel Communication Patterns Recap in this lecture
reference: map/reduce/gather/scatter with image

Algorithm to find a node with particular properties in a tree given a starting node and the approximate path

I am looking for a logic which predicts where a particular element lies in the DOM of a specific page, given that we know some general properties of the element, and the approximate path from a few fixed nodes in the template to the element (obtained by analyzing a few pages of the similar type).
Specific Example:
There are a few Wikipedia pages to be analyzed:
http://en.wikipedia.org/wiki/Econometrics
http://en.wikipedia.org/wiki/History_of_economic_thought
etc
.
.
.
The algorithm must get the right navigation box (class="vertical-navbox nowraplinks plainlist") in these pages, given the following conditions:
The class name of the element might not be same in all the pages
The path to the navbox from the header (id="firstHeading"), and some other fixed nodes, in a few pages(test cases) is available
The header(and the other fixed nodes) always has the same id in each page
Some pages might have a few extra nodes in the path (class="hatnote" in the second link)
A few properties of the box(it is in blue color, it is a table etc..) are known
Is there an algorithm for this purpose?
So, let's make some assumption and see if they are compatible with your situation.
Let's say you have a test page and in that test page you can do complete dom tree visits.
In this case we could do a series of reversal path walks, from every leaf to the root, assuming a node has a score of 0 at the beginning and adding +1 if the branch from where we came up contained the wanted node.
After we have done this for all possible paths from leafs to root, we do another full visit and we divide the previously calculated score by the number of children (sub-trees or leaves) each node has.
This means that for every node now you have a percentage telling you the probability of a random sub-tree of that node containing the desired nodes.
Now, for the prediction part, you need some way to match a node in another page to one of the nodes for which you have probabilities (and for this I'm afraid I don't have any idea how it could be done).
Once you have such a match, and assuming the test page is really predictive, you have automatically a probability factor for each node of the new page that should be meaningful, notwithstanding any possible intermediate additional node.
Note that with the matching algorithm you could do the same calculation for multiple test pages and at the end of each process calculate an overall probability for each node that, hopefully, is more precise than your original one.
Hope this is what you needed.

SublimeText 2: What does the number on the left side mean in command palette?

When you search for a file name- on the left it gives you numbers ranging from 0-999. What do these numbers represent? It seems like a search ranking but I'm not sure.
They are a measure of the likelihood that the result will match your search query. This algorithm happens under the hood on most predictive or autocomplete searches (like Google's or Mac's Spotlight search) but the ST2 team decided it would be neat to show you the numeric result.
It takes a few items into consideration. Each one of these criteria adds more value to that result:
of matching characters
How frequently the file has been used
Proximity to the top folder
Whether the letters are in sequence or dispersed through the filename
Whether the filename starts with the matched letters, or the matched letters are somewhere in between.
In the example below, you can see the values go up as "index.html" gradually becomes more accurate. As expected, buried files, or files that are used less frequently get a lower value.

How to find the Shortest Path between all the nodes in a graph without having a pre-defined start or end points?

What I want to get is: the path which connect all the points in my graph, but without having to tell the algorithm where to start and where to finish.
It need to use the driving direction in google-maps api but without setting a start or end point.
It is not the TSP problem because I don't have a "start city" and I don't have to get back to the "start city" neither.
As expressed in this question: Find the shortest path in a graph which visits certain nodes,
I could just use permutation because I have a few nodes, but the problem is that I need to analyze several groups of this few nodes So I would like the function to be the less time consuming posible.
NOTE: Im not looking for a Minimum Spaning Tree as this one neither: https://math.stackexchange.com/questions/130863/connecting-all-points-on-a-plane-with-shortest-path-possible
I want a path which tell me you will save gas if you go first here, then overthere, then overthere, and finally there.
Question: is there any library which can help me with that? Or is it a know problem that has already an exact answer? How could I solve it?
It sounds like you want an all pairs shortest path algorithm. This is the class of shortest path algorithms that attempt to compute the shortest path (or the length of the shortest path) between every pair of vertices in the graph.
These is a well-known problem, and solutions exist. Here's some reading material that describes other possible algorithms. There might be implementations of Johnson's algorithm for your chosen language and development environment.
Keep in mind, this is an expensive problem, computationally speaking.
If I understand you correctly, you want 1 route to visit all the nodes, without a predefined start/end and you want that to be minimal. A possible solution could be to modify your graph a bit to allow a travelling salesman algorithm to get a complete tour.
You start with your graph and add 1 extra node E. You connect that node to all other nodes in your graph and set the cost of all those edges to a very high constant M. You then unleash a travelling salesman algorithm on that graph which will give you a path P starting at E, passing all nodes and returning to E. If you remove the 2 edges in P that connected E to the rest of your path you will have what you were looking for.
A quick intuitive proof that it is indeed what you were looking for: Suppose it's not the cheapest way to connect all nodes. Let's call the supposedly better path Q. Q and P both connect all nodes in your original graph. The end points of Q would be A and B. Both of these would be connected to node E with an edge of cost M. If you would add those 2 edges to Q, you would get a better TSP solution than P, which is not possible as P was the best.
As you are using google map, your particular instance of TSP might satisfy the Triangle inequality.
Are you really speaking of distances or travel time ?
In the case of distances:
try Googling: "triangle traveling salesman problem"
IMPORTANT: The result is a very good approximation of the best result with guaranteed uper bound, not always the best.
One way to go would be using (self-organized) kohonen networks.
Assume you have n cities on a map (works the same in any dimension).
Take a chain of n connected "neurons" and place it randomly on the map.
Then you do several iterations, one iteration contains:
choose any city. (e.g. go through them in a ordered fashion)
determine the "closest" neuron, call it x. (e.g. euclidian distance)
Move this x closer to the city (e.g. take the direction vector from the neuron to the city and multiply it with a learning rate 0
Move neighbors of this neuron also towards this city (but less than in 3., dependend of distance from the neighbors to the "current closest" neuron x)
One can choose various functions in step 2, 3 and 4.
Notice also that this might not give the globally shortest path since it depends on where the start chain is located and different other things. For this on may consider doing several runs with different starting conditions or (depending of the problem) one can help a bit with pre-knowlege.
I hope this helps to complete this question for further readers...

Generating unique codes that are different in two digits

I want to generate unique code numbers (composed of 7 digits exactly). The code number is generated randomly and saved in MySQL table.
I have another requirement. All generated codes should differ in at least two digits. This is useful to prevent errors while typing the user code. Hopefully, it will prevent referring to another user code while doing some operations as it is more unlikely to miss two digits and match another existing user code.
The generate algorithm works simply like:
Retrieve all previous codes if any from MySQL table.
Generate one code at a time.
Subtract the generated code with all previous codes.
Check the number of non-zero digits in the subtraction result.
If it is > 1, accept the generated code and add it to previous codes.
Otherwise, jump to 2.
Repeat steps from 2 to 6 for the number of requested codes.
Save the generated codes in the DB table.
The algorithm works fine, but the problem is related to performance. It takes a very long to finish generating the codes when requesting to generate a large number of codes like: 10,000.
The question: Is there any way to improve the performance of this algorithm?
I am using perl + MySQL on Ubuntu server if that matters.
Have you considered a variant of the Luhn algorithm? Luhn is used to generate a check digit for strings of numbers in lots of applications, including credit card account numbers. It's part of the ISO-7812-1 standard for generating identifiers. It will catch any number that is entered with one incorrect digit, which implies any two valid numbers differ in a least two digits.
Check out Algorithm::LUHN in CPAN for a perl implementation.
Don't retrieve the existing codes, just generate a potential new code and see if there are any conflicting ones in the database:
SELECT code FROM table WHERE abs(code-?) regexp '^[1-9]?0*$';
(where the placeholder is the newly generated code).
Ah, I missed the generating lots of codes at once part. Do it like this (completely untested):
my #codes = existing_codes();
my $frontwards_index = {};
my $backwards_index = {};
for my $code (#codes) {
index_code($code, $frontwards_index);
index_code(reverse($code), $backwards_index);
}
my #new_codes = map generate_code($frontwards_index, $backwards_index), 1..10000;
sub index_code {
my ($code, $index) = #_;
push #{ $index{ substr($code, 0, length($code)/2) } }, $code;
return;
}
sub check_index {
my ($code, $index) = #_;
my $found = grep { ($_ ^ $code) =~ y/\0//c <= 1 } #{ $index{ substr($code, 0, length($code)/2 } };
return $found;
}
sub generate_code {
my ($frontwards_index, $backwards_index) = #_;
my $new_code;
do {
$new_code = sprintf("%07d", rand(10000000));
} while check_index($new_code, $frontwards_index)
|| check_index(reverse($new_code), $backwards_index);
index_code($new_code, $frontwards_index);
index_code(reverse($new_code), $backwards_index);
return $new_code;
}
Put the numbers 0 through 9,999,999 in an augmented binary search tree. The augmentation is to keep track of the number of sub-nodes to the left and to the right. So for example when your algorithm begins, the top node should have value 5,000,000, and it should know that it has 5,000,000 nodes to the left, and 4,999,999 nodes to the right. Now create a hashtable. For each value you've used already, remove its node from the augmented binary search tree and add the value to the hashtable. Make sure to maintain the augmentation.
To get a single value, follow these steps.
Use the top node to determine how many nodes are left in the tree. Let's say you have n nodes left. Pick a random number between 0 and n. Using the augmentation, you can find the nth node in your tree in log(n) time.
Once you've found that node, compute all the values that would make the value at that node invalid. Let's say your node has value 1,111,111. If you already have 2,111,111 or 3,111,111 or... then you can't use 1,111,111. Since there are 8 other options per digit and 7 digits, you only need to check 56 possible values. Check to see if any of those values are in your hashtable. If you haven't used any of those values yet, you can use your random node. If you have used any of them, then you can't.
Remove your node from the augmented tree. Make sure that you maintain the augmented information.
If you can't use that value, return to step 1.
If you can use that value, you have a new random code. Add it to the hashtable.
Now, checking to see if a value is available takes O(1) time instead of O(n) time. Also, finding another available random value to check takes O(log n) time instead of... ah... I'm not sure how to analyze your algorithm.
Long story short, if you start from scratch and use this algorithm, you will generate a complete list of valid codes in O(n log n). Since n is 10,000,000, it will take a few seconds or something.
Did I do the math right there everybody? Let me know if that doesn't check out or if I need to clarify anything.
Use a hash.
After generating a successful code (not conflicting with any existing code), but that code in the hash table, and also put the 63 other codes that differ by exactly one digit into the hash.
To see if a randomly generated code will conflict with an existing code, just check if that code exists in the hash.
Howabout:
Generate a 6 digit code by autoincrementing the previous one.
Generate a 1 digit code by incrementing the previous one mod 10.
Concatenate the two.
Presto, guaranteed to differ in two digits. :D
(Yes, being slightly facetious. I'm assuming that 'random' or at least quasi-random is necessary. In which case, generate a 6 digit random key, repeat until its not a duplicate (i.e. make the column unique, repeat until the insert doesn't fail the constraint), then generate a check digit, as someone already said.)