Figure 10.4 provides an algorithm for converting ASCII strings to binary values. Suppose the decimal number is arbitrarily long. Rather than store a table of 10 values for the thousands-place digit, another table for the 10 ten-thousands-place digit, and so on, design an algorithm to do the conversion without resorting to any tables whatsoever.
I have attached pictures of figure 10.4. I am not looking for an answer to the problem, but rather can someone please explain this problem and perhaps give some direction on how to go about creating the algorithm?
Figure 10.4
Figure 10.4 second image
I am unsure as to what it means by tables and do not know where to start really.
The tables are those global, initialized arrays: one called Lookup10 holding 10, 20, 30, 40, ..., and another called Lookup100 holding 100, 200, 300, 400...
You can ignore the tables: as per the assignment instructions you're supposed to find a different way to accomplish this anyway. Or, you can run that code in simulator or mentally to understand how it works.
The bottom line is that LC-3, while it can do anything (it is turning complete), it can't do much in any one instruction. For arithmetic & logic, it can do add, not, and. That's pretty much it! But that's enough — let's note that modern hardware does everything with only one logic gate, namely NAND, which is a binary operator (so NAND directly available; NOT by providing NAND with the same operand for both inputs; AND by doing NOT after NAND; OR using NOT on both inputs first and then NAND; etc..)
For example, LC-3 cannot multiply or divide or modulus or right shift directly — each of those operations is many instructions and in the general case, some looping construct. Multiplication can be done by repetitive addition, and division/modulus by repetitive subtraction. These are super inefficient for larger operands, and there are much more efficient algorithms that are also substantially more complex, so those greatly increase program complexity beyond that already with the repetitive operation approach.
That subroutine goes backwards through the use input string. It takes a string length count in R1 as parameter supplied by caller (not shown). It looks at the last character in the input and converts it from an ASCII character to a binary number.
(We would commonly do that conversion from ascii character to numeric value using subtraction: moving the character values from the ascii character range of 0x30..0x39 to numeric values in the range 0..9, but they do it with masking, which also works. The subtraction approach integrates better with error detection (checking if not a valid digit character, which is not done here), whereas the masking approach is simpler for LC-3.)
The subroutine then obtains the 2nd last digit (moving backwards through the user's input string), converting that to binary using the mask approach. That yields a number between 0 and 9, which is used as an index into the first table Lookup10. The value obtained from the table at that index position is basically the index × 10. So this table is a × 10 table. The same approach is used for the third (and first or, last-going-backwards) digit, except it uses the 2nd table which is a × 100 table.
The standard approach for string to binary is called atoi (search it) standing for ascii to integer. It moves forwards through the string, and for every new digit, it multiples the existing value, computed so far, by 10 before adding in the next digit's numeric value.
So, if the string is 456, the first it obtains 4, then because there is another digit, 4 × 10 = 40, then + 5 for 45, then × 10 for 450, then + 6 for 456, and so on.
The advantage of this approach is that it can handle any number of digits (up to overflow). The disadvantage, of course, is that it requires multiplication, which is a complication for LC-3.
Multiplication where one operand is the constant 10 is fairly easy even in LC-3's limited capabilities, and can be done with simple addition without looping. Basically:
n × 10 = n + n + n + n + n + n + n + n + n + n
and LC-3 can do those 9 additions in just 9 instructions. Still, we can also observe that:
n × 10 = n × 8 + n × 2
and also that:
n × 10 = (n × 4 + n) × 2 (which is n × 5 × 2)
which can be done in just 4 instructions on LC-3 (and none of these needs looping)!
So, if you want to do this approach, you'll have to figure out how to go forwards through the string instead of backwards as the given table version does, and, how to multiply by 10 (use any one of the above suggestions).
There are other approaches as well if you study atoi. You could keep the backwards approach, but now will have to multiply by 10, by 100, by 1000, a different factor for each successive digit . That might be done by repetitive addition. Or a count of how many times to multiply by 10 — e.g. n × 1000 = n × 10 × 10 × 10.
How to implement bitOR and bitAND operation (on two variable-sized ints, but at least as small as 8 bits) using just basic arithmetics? I don't care about execution speed, the most important is the simplicity and size of code. I've managed to get negation, xor and shifts implemented.
If you already have xor, then I propose the following:
bitAnd(a,b) = ((a+b) - bitXor(a,b)) / 2
where / 2 is (truncated) integer quotient of division by 2 (or bit shift 1 place to the right).
Beware, integers must be sufficiently wide to not overflow!
If we loose highest bit in (a+b) operation, then the operation will not work.
Then you can reconstruct bitOr with one of:
bitOr(a,b) = bitXor(a,b) + bitAnd(a,b)
bitOr(a,b) = (a+b) - bitAnd(a,b)
Is there any standard math function for this operation:
f(x)=max(x,0)
I was wondering maybe there is a well-known function for this operation in mathematics literature.
Any idea?
This is usually denoted as (x)+, sometimes also x⊔0 or x∨0, where the symbol alludes to the shape of the kinks in the maximum of two functions, for instance in |x|=max(x,-x).
In Lebesgue integration theory, for example, a function is first split into its positive and negative part, so that the integration theory can be reduced to non-negative functions.
Another application is splines, the cubic B-spline has the representation
B3(x)=1/6 * ( (x+2)+3 - 4 * (x+1)+3 + 6 * (x)+3 - 4 * (x-1)+3 + (x-2)+3 )
I guess, you are looking for:
(abs(x)+x)/2
https://www.wolframalpha.com/input/?i=%28%7Cx%7C%2Bx%29%2F2
Another way it might be characterised is as
x H(x)
where H(x) is the Heaviside unit step function.
H(x) = ( x >= 0 ? 1 : 0 )
i.e. 1 for positive x, 0 for negative x and either 0, 1, or 1/2 at x=0. This is used in control theory, signal processing and Fourier analysis. Its quite common to use f(x) H(x) for functions which start at a particular time, say switching some electronics on. So in this area of study x H(x) might be the best way to answer your question.
My Calculus teacher gave us a program on to calculate the definite integrals of a given interval using the trapezoidal rule. I know that programmed functions take an input and produce an output as arithmetic functions would but I don't know how to do the inverse: find the input given the output.
The problem states:
"Use the trapezoidal rule with varying numbers, n, of increments to estimate the distance traveled from t=0 to t=9. Find a number D for which the trapezoidal sum is within 0.01 unit of this limit (468) when n > D."
I've estimated the limit through "plug and chug" with the calculator and I know that with a regular algebraic function, I could easily do:
limit (468) = algebraic expression with variable x
(then solve for x)
However, how would I do this for a programmed function? How would I determine the input of a programmed function given output?
I am calculating the definite integral for the polynomial, (x^2+11x+28)/(x+4), between the interval 0 and 9. The trapezoidal rule function in my calculator calculates the definite integral between the interval 0 and 9 using a given number of trapezoids, n.
Overall, I want to know how to do this:
Solve for n:
468 = trapezoidal_rule(a = 0, b = 9, n);
The code for trapezoidal_rule(a, b, n) on my TI-83:
Prompt A
Prompt B
Prompt N
(B-A)/N->D
0->S
A->X
Y1/2->S
For(K,1,N-1,1)
X+D->X
Y1+S->S
End
B->X
Y1/2+S->S
SD->I
Disp "INTEGRAL"
Disp I
Because I'm not familiar with this syntax nor am I familiar with computer algorithms, I was hoping someone could help me turn this code into an algebraic equation or point me in the direction to do so.
Edit: This is not part of my homework—just intellectual curiosity
the polynomial, (x^2+11x+28)/(x+4)
This is equal to x+7. The trapezoidal rule should give exactly correct results for this function! I'm guessing that this isn't actually the function you're working with...
There is no general way to determine, given the output of a function, what its input was. (For one thing, many functions can map multiple different inputs to the same output.)
So, there is a formula for the error when you apply the trapezoidal rule with a given number of steps to a given function, and you could use that here to work out the value of n you need ... but (1) it's not terribly beautiful, and (2) it doesn't seem like a very reasonable thing to expect you to do when you're just starting to look at the trapezoidal rule. I'd guess that your teacher actually just wanted you to "plug and chug".
I don't know (see above) what function you're actually integrating, but let's pretend it's just x^2+11x+28. I'll call this f(x) below. The integral of this from 0 to 9 is actually 940.5. Suppose you divide the interval [0,9] into n pieces. Then the trapezoidal rule gives you: [f(0)/2 + f(1*9/n) + f(2*9/n) + ... + f((n-1)*9/n) + f(9)/2] * 9/n.
Let's separate this out into the contributions from x^2, from 11x, and from 28. It turns out that the trapezoidal approximation gives exactly the right result for the latter two. (Exercise: Work out why.) So the error you get from the trapezoidal rule is exactly the same as the error you'd have got from f(x) = x^2.
The actual integral of x^2 from 0 to 9 is (9^3-0^3)/3 = 243. The trapezoidal approximation is [0/2 + 1^2+2^2+...+(n-1)^2 + n^2/2] * (9/n)^2 * (9/n). (Exercise: work out why.) There's a standard formula for sums of consecutive squares: 1^2 + ... + n^2 = n(n+1/2)(n+1)/3. So our trapezoidal approximation to the integral of x^2 is (9/n)^3 times [(n-1)(n-1/2)n/3 + n^2/2] = (9/n)^3 times [n^3/3+1/6] = 243 + (9/n)^3/6.
In other words, the error in this case is exactly (9/n)^3/6 = (243/2) / n^3.
So, for instance, the error will be less than 0.01 when (243/2) / n^3 < 0.01, which is the same as n^3 > 100*243/2 = 12150, which is true when n >= 23.
[EDITED to add: I haven't checked any of my algebra or arithmetic carefully; there may be small errors. I take it what you're interested is the ideas rather than the specific numbers.]
I need an algorithm to perform a 2D bisection method for solving a 2x2 non-linear problem. Example: two equations f(x,y)=0 and g(x,y)=0 which I want to solve simultaneously. I am very familiar with the 1D bisection ( as well as other numerical methods ). Assume I already know the solution lies between the bounds x1 < x < x2 and y1 < y < y2.
In a grid the starting bounds are:
^
| C D
y2 -+ o-------o
| | |
| | |
| | |
y1 -+ o-------o
| A B
o--+------+---->
x1 x2
and I know the values f(A), f(B), f(C) and f(D) as well as g(A), g(B), g(C) and g(D). To start the bisection I guess we need to divide the points out along the edges as well as the middle.
^
| C F D
y2 -+ o---o---o
| | |
|G o o M o H
| | |
y1 -+ o---o---o
| A E B
o--+------+---->
x1 x2
Now considering the possibilities of combinations such as checking if f(G)*f(M)<0 AND g(G)*g(M)<0 seems overwhelming. Maybe I am making this a little too complicated, but I think there should be a multidimensional version of the Bisection, just as Newton-Raphson can be easily be multidimed using gradient operators.
Any clues, comments, or links are welcomed.
Sorry, while bisection works in 1-d, it fails in higher dimensions. You simply cannot break a 2-d region into subregions using only information about the function at the corners of the region and a point in the interior. In the words of Mick Jagger, "You can't always get what you want".
I just stumbled upon the answer to this from geometrictools.com and C++ code.
edit: the code is now on github.
I would split the area along a single dimension only, alternating dimensions. The condition you have for existence of zero of a single function would be "you have two points of different sign on the boundary of the region", so I'd just check that fro the two functions. However, I don't think it would work well, since zeros of both functions in a particular region don't guarantee a common zero (this might even exist in a different region that doesn't meet the criterion).
For example, look at this image:
There is no way you can distinguish the squares ABED and EFIH given only f() and g()'s behaviour on their boundary. However, ABED doesn't contain a common zero and EFIH does.
This would be similar to region queries using eg. kD-trees, if you could positively identify that a region doesn't contain zero of eg. f. Still, this can be slow under some circumstances.
If you can assume (per your comment to woodchips) that f(x,y)=0 defines a continuous monotone function y=f2(x), i.e. for each x1<=x<=x2 there is a unique solution for y (you just can't express it analytically due to the messy form of f), and similarly y=g2(x) is a continuous monotone function, then there is a way to find the joint solution.
If you could calculate f2 and g2, then you could use a 1-d bisection method on [x1,x2] to solve f2(x)-g2(x)=0. And you can do that by using 1-d bisection on [y1,y2] again for solving f(x,y)=0 for y for any given fixed x that you need to consider (x1, x2, (x1+x2)/2, etc) - that's where the continuous monotonicity is helpful -and similarly for g. You have to make sure to update x1-x2 and y1-y2 after each step.
This approach might not be efficient, but should work. Of course, lots of two-variable functions don't intersect the z-plane as continuous monotone functions.
I'm not much experient on optimization, but I built a solution to this problem with a bisection algorithm like the question describes. I think is necessary to fix a bug in my solution because it compute tow times a root in some cases, but i think it's simple and will try it later.
EDIT: I seem the comment of jpalecek, and now I anderstand that some premises I assumed are wrong, but the methods still works on most cases. More especificaly, the zero is garanteed only if the two functions variate the signals at oposite direction, but is need to handle the cases of zero at the vertices. I think is possible to build a justificated and satisfatory heuristic to that, but it is a little complicated and now I consider more promising get the function given by f_abs = abs(f, g) and build a heuristic to find the local minimuns, looking to the gradient direction on the points of the middle of edges.
Introduction
Consider the configuration in the question:
^
| C D
y2 -+ o-------o
| | |
| | |
| | |
y1 -+ o-------o
| A B
o--+------+---->
x1 x2
There are many ways to do that, but I chose to use only the corner points (A, B, C, D) and not middle or center points liky the question sugests. Assume I have tow function f(x,y) and g(x,y) as you describe. In truth it's generaly a function (x,y) -> (f(x,y), g(x,y)).
The steps are the following, and there is a resume (with a Python code) at the end.
Step by step explanation
Calculate the product each scalar function (f and g) by them self at adjacent points. Compute the minimum product for each one for each direction of variation (axis, x and y).
Fx = min(f(C)*f(B), f(D)*f(A))
Fy = min(f(A)*f(B), f(D)*f(C))
Gx = min(g(C)*g(B), g(D)*g(A))
Gy = min(g(A)*g(B), g(D)*g(C))
It looks to the product through tow oposite sides of the rectangle and computes the minimum of them, whats represents the existence of a changing of signal if its negative. It's a bit of redundance but work's well. Alternativaly you can try other configuration like use the points (E, F, G and H show in the question), but I think make sense to use the corner points because it consider better the whole area of the rectangle, but it is only a impression.
Compute the minimum of the tow axis for each function.
F = min(Fx, Fy)
G = min(Gx, Gy)
It of this values represents the existence of a zero for each function, f and g, within the rectangle.
Compute the maximum of them:
max(F, G)
If max(F, G) < 0, then there is a root inside the rectangle. Additionaly, if f(C) = 0 and g(C) = 0, there is a root too and we do the same, but if the root is in other corner we ignore him, because other rectangle will compute it (I want to avoid double computation of roots). The statement bellow resumes:
guaranteed_contain_zeros = max(F, G) < 0 or (f(C) == 0 and g(C) == 0)
In this case we have to proceed breaking the region recursively ultil the rectangles are as small as we want.
Else, may still exist a root inside the rectangle. Because of that, we have to use some criterion to break this regions ultil the we have a minimum granularity. The criterion I used is to assert the largest dimension of the current rectangle is smaller than the smallest dimension of the original rectangle (delta in the code sample bellow).
Resume
This Python code resume:
def balance_points(x_min, x_max, y_min, y_max, delta, eps=2e-32):
width = x_max - x_min
height = y_max - y_min
x_middle = (x_min + x_max)/2
y_middle = (y_min + y_max)/2
Fx = min(f(C)*f(B), f(D)*f(A))
Fy = min(f(A)*f(B), f(D)*f(C))
Gx = min(g(C)*g(B), g(D)*g(A))
Gy = min(g(A)*g(B), g(D)*g(C))
F = min(Fx, Fy)
G = min(Gx, Gy)
largest_dim = max(width, height)
guaranteed_contain_zeros = max(F, G) < 0 or (f(C) == 0 and g(C) == 0)
if guaranteed_contain_zeros and largest_dim <= eps:
return [(x_middle, y_middle)]
elif guaranteed_contain_zeros or largest_dim > delta:
if width >= height:
return balance_points(x_min, x_middle, y_min, y_max, delta) + balance_points(x_middle, x_max, y_min, y_max, delta)
else:
return balance_points(x_min, x_max, y_min, y_middle, delta) + balance_points(x_min, x_max, y_middle, y_max, delta)
else:
return []
Results
I have used a similar code similar in a personal project (GitHub here) and it draw the rectangles of the algorithm and the root (the system have a balance point at the origin):
Rectangles
It works well.
Improvements
In some cases the algorithm compute tow times the same zero. I thinh it can have tow reasons:
I the case the functions gives exatly zero at neighbour rectangles (because of an numerical truncation). In this case the remedy is to incrise eps (increase the rectangles). I chose eps=2e-32, because 32 bits is a half of the precision (on 64 bits archtecture), then is problable that the function don't gives a zero... but it was more like a guess, I don't now if is the better. But, if we decrease much the eps, it extrapolates the recursion limit of Python interpreter.
The case in witch the f(A), f(B), etc, are near to zero and the product is truncated to zero. I think it can be reduced if we use the product of the signals of f and g in place of the product of the functions.
I think is possible improve the criterion to discard a rectangle. It can be made considering how much the functions are variating in the region of the rectangle and how distante the function is of zero. Perhaps a simple relation between the average and variance of the function values on the corners. In another way (and more complicated) we can use a stack to store the values on each recursion instance and garantee that this values are convergent to stop recursion.
This is a similar problem to finding critical points in vector fields (see http://alglobus.net/NASAwork/topology/Papers/alsVugraphs93.ps).
If you have the values of f(x,y) and g(x,y) at the vertexes of your quadrilateral and you are in a discrete problem (such that you don't have an analytical expression for f(x,y) and g(x,y) nor the values at other locations inside the quadrilateral), then you can use bilinear interpolation to get two equations (for f and g). For the 2D case the analytical solution will be a quadratic equation which, according to the solution (1 root, 2 real roots, 2 imaginary roots) you may have 1 solution, 2 solutions, no solutions, solutions inside or outside your quadrilateral.
If instead you have analytic functions of f(x,y) and g(x,y) and want to use them, this is not useful. Instead you could divide your quadrilateral recursively, however as it was already pointed out by jpalecek (2nd post), you would need a way to stop your divisions by figuring out a test that would assure you would have no zeros inside a quadrilateral.
Let f_1(x,y), f_2(x,y) be two functions which are continuous and monotonic with respect to x and y. The problem is to solve the system f_1(x,y) = 0, f_2(x,y) = 0.
The alternating-direction algorithm is illustrated below. Here, the lines depict sets {f_1 = 0} and {f_2 = 0}. It is easy to see that the direction of movement of the algorithm (right-down or left-up) depends on the order of solving the equations f_i(x,y) = 0 (e.g., solve f_1(x,y) = 0 w.r.t. x then solve f_2(x,y) = 0 w.r.t. y OR first solve f_1(x,y) = 0 w.r.t. y and then solve f_2(x,y) = 0 w.r.t. x).
Given the initial guess, we don't know where the root is. So, in order to find all roots of the system, we have to move in both directions.