Mysql table with no primary key but a foreign key - mysql

I have read somewhere here that having primary key in each every table is a good thing to do... Let me say I have two tables "student" and "student_details" and i am using INNODB
"student" has a few columns like - student_id(Primary Key), student_name
"student_details" has a few columns like - student_id(Foreign Key), Address, Phone, Mobile, etc..
Do "student_details" still need a primary key?

Whether you know it or not, what you are doing is column partitioning the table. You can have studentdetails.studentid be both a primary key and a foreign key. No problem with that. So, you can have a primary key in the table.
There are several reasons to do column partitioning, usually related to performance on commonly used columns or to create rows with more than the maximum number of columns. I doubt either of these apply in your case.
In fact, given the nature of the data, the studentdetails table is actually storing a "slowly-changing dimension". In simpler language, students move, so their address changes. Students change their telephone number. And so on. What you should really have is an effective and end date for each student details record. Then you can add an auto-incrementing primary key (which is what I would do) or you could declare studentdetails(studentid, effdate) as the primary key.

Related

In MySQL, if has many-to-many table, should i create auto-incr column as PK or use multi-column unique as PK? and Why?

for exmaple, has course relationship table, student id and course id is multi-unique, if i create this relationship table, should i use auto-incr column as PK, or use student id and course id as multi-PK ?
Some people add auto-increment column as PK to just every table.
But I believe it is good to have a multi-column-PK in the case where the table is a relationship table between two or more tables.
On the other hand, it is more effort to delete a multi-column-PK table entry, because you need to give all columns in the multi-column-PK.
Also, check whether your technology stack (programming language) has problems with multi-column-PK.
This is something of a matter of opinion, but I put a synthetic primary key (auto-incremented id) in almost every table I create, including association/junction tables.
Why? Here are some reasons:
If I need to delete or update rows, then the primary key simplifies the process and reduces the change for error.
The primary key captures the insertion order of the rows.
If the row needs to be referred to by another table, then you can refer to it by a primary key.
In some databases, the primary key is used to cluster the data (that is, sort the data on the data pages). An auto-incremented primary key ensures that data goes "at the end". A natural primary key can result in fragmented data.
As an example of the third point, you might have an attendance table that records -- by day -- whether a student attended a class s/he is enrolled in. This could refer to the enrollment table.

Primary / Foreign Key example

I am trying to figure out relationships between my tables and the notion of how it all inter-relates is not clear.
Lets say I have a Person table (first name, last name, etc) where the Primary key is social security number.
I also have a Fireman table that has just 2 columns -- date when joined the fire company, and a unique fireman number. The 3rd column would be a link back to the Person table.
Initially, I made SSN in the Fireman table to be a foreign key linking to SSN in the Person table. But doesnt it imply that every time I create a new Fireman, I can re-use the same SSN over and over? The foreign key constraint would not be violated -- so its "all good" -- but its not what I want. Does it make sense? I dont want to allow for different unique Fireman numbers all sharing the same SSN number. So how do I set this up -- whats Primary, whats foreign, whats one to one and whats one to many.
A key can be primary and foreign all at the same time in a one-to-one relationship.
You can scrap your primary key from the Fireman table, and just use SSN as the unique key. Since it's one-to-one, there's no need for a separate identifier.
Alternatively, you could create a unique index on the column SSN in your fireman table. That would prevent duplicate entry.
Note that data validation, relationships and indexes are all separate things. You can use indexes and relationships to validate data, but you can also use different concepts, like constraints.

sql management studio [duplicate]

At work we have a big database with unique indexes instead of primary keys and all works fine.
I'm designing new database for a new project and I have a dilemma:
In DB theory, primary key is fundamental element, that's OK, but in REAL projects what are advantages and disadvantages of both?
What do you use in projects?
EDIT: ...and what about primary keys and replication on MS SQL server?
What is a unique index?
A unique index on a column is an index on that column that also enforces the constraint that you cannot have two equal values in that column in two different rows. Example:
CREATE TABLE table1 (foo int, bar int);
CREATE UNIQUE INDEX ux_table1_foo ON table1(foo); -- Create unique index on foo.
INSERT INTO table1 (foo, bar) VALUES (1, 2); -- OK
INSERT INTO table1 (foo, bar) VALUES (2, 2); -- OK
INSERT INTO table1 (foo, bar) VALUES (3, 1); -- OK
INSERT INTO table1 (foo, bar) VALUES (1, 4); -- Fails!
Duplicate entry '1' for key 'ux_table1_foo'
The last insert fails because it violates the unique index on column foo when it tries to insert the value 1 into this column for a second time.
In MySQL a unique constraint allows multiple NULLs.
It is possible to make a unique index on mutiple columns.
Primary key versus unique index
Things that are the same:
A primary key implies a unique index.
Things that are different:
A primary key also implies NOT NULL, but a unique index can be nullable.
There can be only one primary key, but there can be multiple unique indexes.
If there is no clustered index defined then the primary key will be the clustered index.
You can see it like this:
A Primary Key IS Unique
A Unique value doesn't have to be the Representaion of the Element
Meaning?; Well a primary key is used to identify the element, if you have a "Person" you would like to have a Personal Identification Number ( SSN or such ) which is Primary to your Person.
On the other hand, the person might have an e-mail which is unique, but doensn't identify the person.
I always have Primary Keys, even in relationship tables ( the mid-table / connection table ) I might have them. Why? Well I like to follow a standard when coding, if the "Person" has an identifier, the Car has an identifier, well, then the Person -> Car should have an identifier as well!
Foreign keys work with unique constraints as well as primary keys. From Books Online:
A FOREIGN KEY constraint does not have
to be linked only to a PRIMARY KEY
constraint in another table; it can
also be defined to reference the
columns of a UNIQUE constraint in
another table
For transactional replication, you need the primary key. From Books Online:
Tables published for transactional
replication must have a primary key.
If a table is in a transactional
replication publication, you cannot
disable any indexes that are
associated with primary key columns.
These indexes are required by
replication. To disable an index, you
must first drop the table from the
publication.
Both answers are for SQL Server 2005.
The choice of when to use a surrogate primary key as opposed to a natural key is tricky. Answers such as, always or never, are rarely useful. I find that it depends on the situation.
As an example, I have the following tables:
CREATE TABLE toll_booths (
id INTEGER NOT NULL PRIMARY KEY,
name VARCHAR(255) NOT NULL,
...
UNIQUE(name)
)
CREATE TABLE cars (
vin VARCHAR(17) NOT NULL PRIMARY KEY,
license_plate VARCHAR(10) NOT NULL,
...
UNIQUE(license_plate)
)
CREATE TABLE drive_through (
id INTEGER NOT NULL PRIMARY KEY,
toll_booth_id INTEGER NOT NULL REFERENCES toll_booths(id),
vin VARCHAR(17) NOT NULL REFERENCES cars(vin),
at TIMESTAMP DEFAULT CURRENT_TIMESTAMP NOT NULL,
amount NUMERIC(10,4) NOT NULL,
...
UNIQUE(toll_booth_id, vin)
)
We have two entity tables (toll_booths and cars) and a transaction table (drive_through). The toll_booth table uses a surrogate key because it has no natural attribute that is not guaranteed to change (the name can easily be changed). The cars table uses a natural primary key because it has a non-changing unique identifier (vin). The drive_through transaction table uses a surrogate key for easy identification, but also has a unique constraint on the attributes that are guaranteed to be unique at the time the record is inserted.
http://database-programmer.blogspot.com has some great articles on this particular subject.
There are no disadvantages of primary keys.
To add just some information to #MrWiggles and #Peter Parker answers, when table doesn't have primary key for example you won't be able to edit data in some applications (they will end up saying sth like cannot edit / delete data without primary key). Postgresql allows multiple NULL values to be in UNIQUE column, PRIMARY KEY doesn't allow NULLs. Also some ORM that generate code may have some problems with tables without primary keys.
UPDATE:
As far as I know it is not possible to replicate tables without primary keys in MSSQL, at least without problems (details).
If something is a primary key, depending on your DB engine, the entire table gets sorted by the primary key. This means that lookups are much faster on the primary key because it doesn't have to do any dereferencing as it has to do with any other kind of index. Besides that, it's just theory.
In addition to what the other answers have said, some databases and systems may require a primary to be present. One situation comes to mind; when using enterprise replication with Informix a PK must be present for a table to participate in replication.
As long as you do not allow NULL for a value, they should be handled the same, but the value NULL is handled differently on databases(AFAIK MS-SQL do not allow more than one(1) NULL value, mySQL and Oracle allow this, if a column is UNIQUE)
So you must define this column NOT NULL UNIQUE INDEX
There is no such thing as a primary key in relational data theory, so your question has to be answered on the practical level.
Unique indexes are not part of the SQL standard. The particular implementation of a DBMS will determine what are the consequences of declaring a unique index.
In Oracle, declaring a primary key will result in a unique index being created on your behalf, so the question is almost moot. I can't tell you about other DBMS products.
I favor declaring a primary key. This has the effect of forbidding NULLs in the key column(s) as well as forbidding duplicates. I also favor declaring REFERENCES constraints to enforce entity integrity. In many cases, declaring an index on the coulmn(s) of a foreign key will speed up joins. This kind of index should in general not be unique.
There are some disadvantages of CLUSTERED INDEXES vs UNIQUE INDEXES.
As already stated, a CLUSTERED INDEX physically orders the data in the table.
This mean that when you have a lot if inserts or deletes on a table containing a clustered index, everytime (well, almost, depending on your fill factor) you change the data, the physical table needs to be updated to stay sorted.
In relative small tables, this is fine, but when getting to tables that have GB's worth of data, and insertrs/deletes affect the sorting, you will run into problems.
I almost never create a table without a numeric primary key. If there is also a natural key that should be unique, I also put a unique index on it. Joins are faster on integers than multicolumn natural keys, data only needs to change in one place (natural keys tend to need to be updated which is a bad thing when it is in primary key - foreign key relationships). If you are going to need replication use a GUID instead of an integer, but for the most part I prefer a key that is user readable especially if they need to see it to distinguish between John Smith and John Smith.
The few times I don't create a surrogate key are when I have a joining table that is involved in a many-to-many relationship. In this case I declare both fields as the primary key.
My understanding is that a primary key and a unique index with a not‑null constraint, are the same (*); and I suppose one choose one or the other depending on what the specification explicitly states or implies (a matter of what you want to express and explicitly enforce). If it requires uniqueness and not‑null, then make it a primary key. If it just happens all parts of a unique index are not‑null without any requirement for that, then just make it a unique index.
The sole remaining difference is, you may have multiple not‑null unique indexes, while you can't have multiple primary keys.
(*) Excepting a practical difference: a primary key can be the default unique key for some operations, like defining a foreign key. Ex. if one define a foreign key referencing a table and does not provide the column name, if the referenced table has a primary key, then the primary key will be the referenced column. Otherwise, the the referenced column will have to be named explicitly.
Others here have mentioned DB replication, but I don't know about it.
Unique Index can have one NULL value. It creates NON-CLUSTERED INDEX.
Primary Key cannot contain NULL value. It creates CLUSTERED INDEX.
In MSSQL, Primary keys should be monotonically increasing for best performance on the clustered index. Therefore an integer with identity insert is better than any natural key that might not be monotonically increasing.
If it were up to me...
You need to satisfy the requirements of the database and of your applications.
Adding an auto-incrementing integer or long id column to every table to serve as the primary key takes care of the database requirements.
You would then add at least one other unique index to the table for use by your application. This would be the index on employee_id, or account_id, or customer_id, etc. If possible, this index should not be a composite index.
I would favor indices on several fields individually over composite indices. The database will use the single field indices whenever the where clause includes those fields, but it will only use a composite when you provide the fields in exactly the correct order - meaning it can't use the second field in a composite index unless you provide both the first and second in your where clause.
I am all for using calculated or Function type indices - and would recommend using them over composite indices. It makes it very easy to use the function index by using the same function in your where clause.
This takes care of your application requirements.
It is highly likely that other non-primary indices are actually mappings of that indexes key value to a primary key value, not rowid()'s. This allows for physical sorting operations and deletes to occur without having to recreate these indices.

KEY `ix_deleted` (`deleted`) create table [duplicate]

When should I use KEY, PRIMARY KEY, UNIQUE KEY and INDEX?
KEY and INDEX are synonyms in MySQL. They mean the same thing. In databases you would use indexes to improve the speed of data retrieval. An index is typically created on columns used in JOIN, WHERE, and ORDER BY clauses.
Imagine you have a table called users and you want to search for all the users which have the last name 'Smith'. Without an index, the database would have to go through all the records of the table: this is slow, because the more records you have in your database, the more work it has to do to find the result. On the other hand, an index will help the database skip quickly to the relevant pages where the 'Smith' records are held. This is very similar to how we, humans, go through a phone book directory to find someone by the last name: We don't start searching through the directory from cover to cover, as long we inserted the information in some order that we can use to skip quickly to the 'S' pages.
Primary keys and unique keys are similar. A primary key is a column, or a combination of columns, that can uniquely identify a row. It is a special case of unique key. A table can have at most one primary key, but more than one unique key. When you specify a unique key on a column, no two distinct rows in a table can have the same value.
Also note that columns defined as primary keys or unique keys are automatically indexed in MySQL.
KEY and INDEX are synonyms.
You should add an index when performance measurements and EXPLAIN shows you that the query is inefficient because of a missing index. Adding an index can improve the performance of queries (but it can slow down modifications to the table).
You should use UNIQUE when you want to contrain the values in that column (or columns) to be unique, so that attempts to insert duplicate values result in an error.
A PRIMARY KEY is both a unique constraint and it also implies that the column is NOT NULL. It is used to give an identity to each row. This can be useful for joining with another table via a foreign key constraint. While it is not required for a table to have a PRIMARY KEY it is usually a good idea.
Primary key does not allow NULL values, but unique key allows NULL values.
We can declare only one primary key in a table, but a table can have multiple unique keys (column assign).
PRIMARY KEY AND UNIQUE KEY are similar except it has different functions. Primary key makes the table row unique (i.e, there cannot be 2 row with the exact same key). You can only have 1 primary key in a database table.
Unique key makes the table column in a table row unique (i.e., no 2 table row may have the same exact value). You can have more than 1 unique key table column (unlike primary key which means only 1 table column in the table is unique).
INDEX also creates uniqueness. MySQL (example) will create a indexing table for the column that is indexed. This way, it's easier to retrieve the table row value when the query is queried on that indexed table column. The disadvantage is that if you do many updating/deleting/create, MySQL has to manage the indexing tables (and that can be a performance bottleneck).
Hope this helps.
Unique Keys: The columns in which no two rows are similar
Primary Key: Collection of minimum number of columns which can uniquely identify every row in a table (i.e. no two rows are similar in all the columns constituting primary key). There can be more than one primary key in a table. If there exists a unique-key then it is primary key (not "the" primary key) in the table. If there does not exist a unique key then more than one column values will be required to identify a row like (first_name, last_name, father_name, mother_name) can in some tables constitute primary key.
Index: used to optimize the queries. If you are going to search or sort the results on basis of some column many times (eg. mostly people are going to search the students by name and not by their roll no.) then it can be optimized if the column values are all "indexed" for example with a binary tree algorithm.
The primary key is used to work with different tables. This is the foundation of relational databases. If you have a book database it's better to create 2 tables - 1) books and 2) authors with INT primary key "id". Then you use id in books instead of authors name.
The unique key is used if you don't want to have repeated entries. For example you may have title in your book table and want to be sure there is only one entry for each title.
Primary key - we can put only one primary key on a table into a table and we can not left that column blank when we are entering the values into the table.
Unique Key - we can put more than one unique key on a table and we may left that column blank when we are entering the values into the table.
column take unique values (not same) when we applied primary & unique key.
Unique Key :
More than one value can be null.
No two tuples can have same values in unique key.
One or more unique keys can be combined to form a primary key, but not vice versa.
Primary Key
Can contain more than one unique keys.
Uniquely represents a tuple.

Difference between Key, Primary Key, Unique Key and Index in MySQL

When should I use KEY, PRIMARY KEY, UNIQUE KEY and INDEX?
KEY and INDEX are synonyms in MySQL. They mean the same thing. In databases you would use indexes to improve the speed of data retrieval. An index is typically created on columns used in JOIN, WHERE, and ORDER BY clauses.
Imagine you have a table called users and you want to search for all the users which have the last name 'Smith'. Without an index, the database would have to go through all the records of the table: this is slow, because the more records you have in your database, the more work it has to do to find the result. On the other hand, an index will help the database skip quickly to the relevant pages where the 'Smith' records are held. This is very similar to how we, humans, go through a phone book directory to find someone by the last name: We don't start searching through the directory from cover to cover, as long we inserted the information in some order that we can use to skip quickly to the 'S' pages.
Primary keys and unique keys are similar. A primary key is a column, or a combination of columns, that can uniquely identify a row. It is a special case of unique key. A table can have at most one primary key, but more than one unique key. When you specify a unique key on a column, no two distinct rows in a table can have the same value.
Also note that columns defined as primary keys or unique keys are automatically indexed in MySQL.
KEY and INDEX are synonyms.
You should add an index when performance measurements and EXPLAIN shows you that the query is inefficient because of a missing index. Adding an index can improve the performance of queries (but it can slow down modifications to the table).
You should use UNIQUE when you want to contrain the values in that column (or columns) to be unique, so that attempts to insert duplicate values result in an error.
A PRIMARY KEY is both a unique constraint and it also implies that the column is NOT NULL. It is used to give an identity to each row. This can be useful for joining with another table via a foreign key constraint. While it is not required for a table to have a PRIMARY KEY it is usually a good idea.
Primary key does not allow NULL values, but unique key allows NULL values.
We can declare only one primary key in a table, but a table can have multiple unique keys (column assign).
PRIMARY KEY AND UNIQUE KEY are similar except it has different functions. Primary key makes the table row unique (i.e, there cannot be 2 row with the exact same key). You can only have 1 primary key in a database table.
Unique key makes the table column in a table row unique (i.e., no 2 table row may have the same exact value). You can have more than 1 unique key table column (unlike primary key which means only 1 table column in the table is unique).
INDEX also creates uniqueness. MySQL (example) will create a indexing table for the column that is indexed. This way, it's easier to retrieve the table row value when the query is queried on that indexed table column. The disadvantage is that if you do many updating/deleting/create, MySQL has to manage the indexing tables (and that can be a performance bottleneck).
Hope this helps.
Unique Keys: The columns in which no two rows are similar
Primary Key: Collection of minimum number of columns which can uniquely identify every row in a table (i.e. no two rows are similar in all the columns constituting primary key). There can be more than one primary key in a table. If there exists a unique-key then it is primary key (not "the" primary key) in the table. If there does not exist a unique key then more than one column values will be required to identify a row like (first_name, last_name, father_name, mother_name) can in some tables constitute primary key.
Index: used to optimize the queries. If you are going to search or sort the results on basis of some column many times (eg. mostly people are going to search the students by name and not by their roll no.) then it can be optimized if the column values are all "indexed" for example with a binary tree algorithm.
The primary key is used to work with different tables. This is the foundation of relational databases. If you have a book database it's better to create 2 tables - 1) books and 2) authors with INT primary key "id". Then you use id in books instead of authors name.
The unique key is used if you don't want to have repeated entries. For example you may have title in your book table and want to be sure there is only one entry for each title.
Primary key - we can put only one primary key on a table into a table and we can not left that column blank when we are entering the values into the table.
Unique Key - we can put more than one unique key on a table and we may left that column blank when we are entering the values into the table.
column take unique values (not same) when we applied primary & unique key.
Unique Key :
More than one value can be null.
No two tuples can have same values in unique key.
One or more unique keys can be combined to form a primary key, but not vice versa.
Primary Key
Can contain more than one unique keys.
Uniquely represents a tuple.