Complex Queries in Crate DB possible? - mysql

i just want to convert my all MYSQL tables into crate tables. This is actually an mobile app backend. Is it really possible in Crate to do exact query operation similar to MYSQL.
I didn't see any JOIN, Intersect, union ..etc. Even i can't use subquery (IN operator) in crate.
I also didn't see primary key ==> foreignKey relations set on table.
Please help me to do all the above on Crate DB.
"I love crate". it seems really faster, but it lacks on Complex Query to excute as like normal MYSQL.

Crate currently doesn't support joins or subselects. Although support will be added in the future (see https://news.ycombinator.com/item?id=7611399)
There are also no relations between tables which is why there are no foreign key.
Many of the things that are accomplished using joins can instead be done by de-normalizing the model and make use of the object and array types.
Update: With 0.54.X there is initial (limited) support for joins.
Limited in that some forms (outer joins for example) are missing and that there is still a lot of room for performance improvements.

Related

MySQL self join performance: fact or just bad indexing?

As an example: I'm having a database to detect visitor (bots, etc) and since not every visitor have the same amount of 'credential' I made a 'dynamic' table like so: see fiddle: http://sqlfiddle.com/#!9/ca4c8/1 (simplified version).
This returns me the profile ID that I use to gather info about each profile (in another DB). Depending on the profile type I query the table with different nameclause (name='something') (ei: hostname, ipAddr, userAgent, HumanId, etc).
I'm not an expert in SQL but I'm familiar with indexes, constraints, primary, unique, foreign key etc. And from what I saw from these search results:
Mysql Self-Join Performance
How to tune self-join table in mysql like this?
Optimize MySQL self join query
JOIN Performance Issue MySQL
MySQL JOIN performance issue
Most of them have comments about bad performance on self-join but answers tend to go for the missing index cause.
So the final question is: is self joining a table makes it more prone to bad performance assuming that everything is indexed properly?
On a side note, more information about the table: might be irrelevant to the question but is well in context for my particular situation:
column flag is used to mark records for deletion as the user I use from php don't have DELETE permission over this database. Sorry, Security is more important than performance
I added the 'type' that will go with info I get from the user agent. (ie: if anything is (at least seems to be) a bot, we will only search for type 5000.
Column 'name' is unfortunately a varchar indexed in the primary key (with profile and type).
I tried to use as much INT and filtering (WHERE) in the SELECT query to reduce eventual lost of performance (if that even matters)
I'm willing to study and tweak the thing if needed unless someone with a high background in mysql tells me it's really not a good thing to do.
This is a big project I have in development so I cannot test it with millions of records for now but I wonder if performance will be an issues as this grows. Any input, links, references, documentation or test procedure (maybe in comments) will be appreciated.
A self-join is no different than joining two different tables. The optimizer will pick one 'table', usually based on the WHERE, then do a Nested Loop Join into the other. In your case, you have implied, via LEFT, that it should work only one way. (The Optimizer will ignore that if it sees no need for it.
Your keys are find for that Fiddle.
The real problem is "Entity-Attribute-Value", which is a messy way to lay out data in tables. Your query seems to be saying "find a (limit 1) profile (entity) that has a certain pair of attributes (name = Googlebot AND addr = ...).
It would be so much easier, and faster, to have two columns (name and addr) and a "composite" INDEX(name, addr).
I recommend doing that for the common "attributes", then put the rest into a single column with a JSON string. See here.

MySQL Rename table while keeping view for legacy code

I am renaming multiple tables in a large application. I need to preserve the old table name because some parts of the application will take longer to be updated, we can have no downtime.
My idea is to create a view that selects all from the new table, like this:
create view old_table_name as select a as x, b as y, c as z from new_table_name;
According to this article (http://dev.mysql.com/doc/refman/5.7/en/view-updatability.html) I will be able to make inserts and updates and deletes with this view.
My question is (considering that this is only a temporary solution in the mean time until we are able to migrate all legacy code to use this new table) will I be able to pull this off?
Will I have a decent enough performance in joins and things alike?
Will I be able to make complex updates or deletes (involving joins) with this approach?
Is there a better way to approach this problem?
Thanks in advance for your help.
The performance should be essentially identical.
For simple views without aggregate functions/group by/having, distinct, limit, unions, scalar subqueries, and views that return literals only, MySQL uses the MERGE algorithm by default, which effectively rewites a query referencing such a view as if you had used the columns in the base tables directly.
See View Algorithms in the documentation.
Determining what algorithm MySQL view is using may be informative as well.

Optimization: WHERE x IN (1, 2 .., 100.000) vs INNER JOIN tmp_table USING(x)?

I've visited one interesting job interview recently. There I was asked a question about optimizing a query with a WHERE..IN clause containing long list of scalars (thousands of values, that is). This question is NOT about subqueries in the IN clause, but about simple list of scalars.
I answered right away, that this can be optimized using an INNER JOIN with another table (possibly temporary one), which will contain only those scalars. My answer was accepted and there was a note from the reviewer, that "no database engine currently can optimize long WHERE..IN conditions to be performant enough". I nodded.
But when I walked out, I started to have some doubts. The condition seemed rather trivial and widely used for modern RDBMS not to be able to optimize it. So, I started some digging.
PostgreSQL:
It seems, that PostgreSQL parse scalar IN() constructions into ScalarArrayOpExpr structure, which is sorted. This structure is later used during index scan to locate matching rows. EXPLAIN ANALYZE for such queries shows only one loop. No joins are done. So, I expect such query to be even faster, than INNER JOIN. I tried some queries on my existing database and my tests proved that position. But I didn't care about test purity and that Postgres was under Vagrant so I might be wrong.
MSSQL Server:
MSSQL Server builds a hash structure from the list of constant expressions and then does a hash join with the source table. Even though no sorting seems to be done, that is a performance match, I think. I didn't do any tests since I don't have any experience with this RDBMS.
MySQL Server:
The 13th of these slides says, that before 5.0 this problem indeed took place in MySQL with some cases. But other than that, I didn't find any other problem related to bad IN () treatment. I didn't find any proofs of the inverse, unfortunately. If you did, please kick me.
SQLite:
Documentation page hints some problems, but I tend to believe things described there are really at conceptual level. No other information was found.
So, I'm starting to think I misunderstood my interviewer or misused Google ;) Or, may be, it's because we didn't set any conditions and our talk became a little vague (we didn't specify any concrete RDBMS or other conditions. That was just abstract talk).
It looks like the days, where databases rewrote IN() as a set of OR statements (which can cause problems sometimes with NULL values in lists, btw) are long ago. Or not?
Of course, in cases where a list of scalars is longer than allowed database protocol packet, INNER JOIN might be the only solution available.
I think in some cases query parsing time (if it was not prepared) alone can kill performance.
Also databases could be unable to prepare IN(?) query which will lead to reparsing it again and again (which may kill performance). Actually, I never tried, but I think that even in such cases query parsing and planning is not huge comparing to query execution.
But other than that I do not see other problems. Well, other than the problem of just HAVING this problem. If you have queries, that contain thousands of IDs inside, something is wrong with your architecture.
Do you?
Your answer is only correct if you build an index (preferably a primary key index) on the list, unless the list is really small.
Any description of optimization is definitely database specific. However, MySQL is quite specific about how it optimizes in:
Returns 1 if expr is equal to any of the values in the IN list, else
returns 0. If all values are constants, they are evaluated according
to the type of expr and sorted. The search for the item then is done
using a binary search. This means IN is very quick if the IN value
list consists entirely of constants.
This would definitely be a case where using IN would be faster than using another table -- and probably faster than another table using a primary key index.
I think that SQL Server replaces the IN with a list of ORs. These would then be implemented as sequential comparisons. Note that sequential comparisons can be faster than a binary search, if some elements are much more common than others and those appear first in the list.
I think it is bad application design. Those values using IN operator are most probably not hardcoded but dynamic. In such case we should always use prepared statements the only reliable mechanism to prevent SQL injection.
In each case it will result in dynamically formatting the prepared statement (as number of placeholders is dynamic too) and it will also result in having excessive hard parsing (as many unique queries as we have number of IN values - IN (?), IN (?,?), ...).
I would either load these values into table as use join as you mentioned (unless loading is too overhead) or use Oracle pipelined function IN foo(params) where params argument can be complex structure (array) coming from memory (PLSQL/Java etc).
If the number of values is larger I would consider using EXISTS (select from mytable m where m.key=x.key) or EXISTS (select x from foo(params) instead of IN. In such case EXISTS provides better performance than IN.

MySQL Best Practice for adding columns

So I started working for a company where they had 3 to 5 different tables that were often queried in either a complex join or through a double, triple query (I'm probably the 4th person to start working here, it's very messy).
Anyhow, I created a table that when querying the other 3 or 5 tables at the same time inserts that data into my table along with whatever information normally got inserted there. It has drastically sped up the page speeds for many applications and I'm wondering if I made a mistake here.
I'm hoping that in the future to remove inserting into those other tables and simply inserting all that information into the table that I've started and to switch the applications to that one table. It's just a lot faster.
Could someone tell me why it's much faster to group all the information into one massive table and if there is any downside to doing it this way?
If the joins are slow, it may be because the tables did not have FOREIGN KEY relationships and indexes properly defined. If the tables had been properly normalized before, it is probably not a good idea to denormalize them into a single table unless they were not performant with proper indexing. FOREIGN KEY constraints require indexing on both the PK table and the related FK column, so simply defining those constraints if they don't already exist may go a long way toward improving performance.
The first course of action is to make sure the table relationships are defined correctly and the tables are indexed, before you begin denormalizing it.
There is a concept called materialized views, which serve as a sort of cache for views or queries whose result sets are deterministic, by storing the results of a view's query into a temporary table. MySQL does not support materialized views directly, but you can implement them by occasionally selecting all rows from a multi-table query and storing the output into a table. When the data in that table is stale, you overwrite it with a new rowset. For simple SELECT queries which are used to display data that doesn't change often, you may be able to speed up your pageloads using this method. It is not advisable to use it for data which is constantly changing though.
A good use for materialized views might be constructing rows to populate your site's dropdown lists or to store the result of complicated reports which are only run once a week. A bad use for them would be to store customer order information, which requires timely access.
Without seeing the table structures, etc it would be guesswork. But it sounds like possibly the database was over-normalized.
It is hard to say exactly what the issue is without seeing it. But you might want to look at adding indexes, and foreign keys to the tables.
If you are adding a table with all of the data in it, you might be denormalizing the database.
There are some cases where de-normalizing your tables has its advantages, but I would be more interested in finding out if the problem really lies with the table schema or with how the queries are being written. You need to know if the queries utilize indexes (or whether indexes need to be added to the table), whether the original query writer did things like using subselects when they could have been using joins to make a query more efficient, etc.
I would not just denormalize because it makes things faster unless there is a good reason for it.
Having a separate copy of the data in your newly defined table is a valid performance enchancing practice, but on the other hand it might become a total mess when it comes to keeping the data in your table and the other ones same. You are essentially having two truths, without good idea how to invalidate this "cache" when it comes to updates/deletes.
Read more about "normalization" and read more about "EXPLAIN" in MySQL - it will tell you why the other queries are slow and you might get away with few proper indexes and foreign keys instead of copying the data.

What is a good way to denormalize a mysql database?

I have a large database of normalized order data that is becoming very slow to query for reporting. Many of the queries that I use in reports join five or six tables and are having to examine tens or hundreds of thousands of lines.
There are lots of queries and most have been optimized as much as possible to reduce server load and increase speed. I think it's time to start keeping a copy of the data in a denormalized format.
Any ideas on an approach? Should I start with a couple of my worst queries and go from there?
I know more about mssql that mysql, but I don't think the number of joins or number of rows you are talking about should cause you too many problems with the correct indexes in place. Have you analyzed the query plan to see if you are missing any?
http://dev.mysql.com/doc/refman/5.0/en/explain.html
That being said, once you are satisifed with your indexes and have exhausted all other avenues, de-normalization might be the right answer. If you just have one or two queries that are problems, a manual approach is probably appropriate, whereas some sort of data warehousing tool might be better for creating a platform to develop data cubes.
Here's a site I found that touches on the subject:
http://www.meansandends.com/mysql-data-warehouse/?link_body%2Fbody=%7Bincl%3AAggregation%7D
Here's a simple technique that you can use to keep denormalizing queries simple, if you're just doing a few at a time (and I'm not replacing your OLTP tables, just creating a new one for reporting purposes). Let's say you have this query in your application:
select a.name, b.address from tbla a
join tblb b on b.fk_a_id = a.id where a.id=1
You could create a denormalized table and populate with almost the same query:
create table tbl_ab (a_id, a_name, b_address);
-- (types elided)
Notice the underscores match the table aliases you use
insert tbl_ab select a.id, a.name, b.address from tbla a
join tblb b on b.fk_a_id = a.id
-- no where clause because you want everything
Then to fix your app to use the new denormalized table, switch the dots for underscores.
select a_name as name, b_address as address
from tbl_ab where a_id = 1;
For huge queries this can save a lot of time and makes it clear where the data came from, and you can re-use the queries you already have.
Remember, I'm only advocating this as the last resort. I bet there's a few indexes that would help you. And when you de-normalize, don't forget to account for the extra space on your disks, and figure out when you will run the query to populate the new tables. This should probably be at night, or whenever activity is low. And the data in that table, of course, will never exactly be up to date.
[Yet another edit] Don't forget that the new tables you create need to be indexed too! The good part is that you can index to your heart's content and not worry about update lock contention, since aside from your bulk insert the table will only see selects.
MySQL 5 does support views, which may be helpful in this scenario. It sounds like you've already done a lot of optimizing, but if not you can use MySQL's EXPLAIN syntax to see what indexes are actually being used and what is slowing down your queries.
As far as going about normalizing data (whether you're using views or just duplicating data in a more efficient manner), I think starting with the slowest queries and working your way through is a good approach to take.
I know this is a bit tangential, but have you tried seeing if there are more indexes you can add?
I don't have a lot of DB background, but I am working with databases a lot recently, and I've been finding that a lot of the queries can be improved just by adding indexes.
We are using DB2, and there is a command called db2expln and db2advis, the first will indicate whether table scans vs index scans are being used, and the second will recommend indexes you can add to improve performance. I'm sure MySQL has similar tools...
Anyways, if this is something you haven't considered yet, it has been helping a lot with me... but if you've already gone this route, then I guess it's not what you are looking for.
Another possibility is a "materialized view" (or as they call it in DB2), which lets you specify a table that is essentially built of parts from multiple tables. Thus, rather than normalizing the actual columns, you could provide this view to access the data... but I don't know if this has severe performance impacts on inserts/updates/deletes (but if it is "materialized", then it should help with selects since the values are physically stored separately).
In line with some of the other comments, i would definately have a look at your indexing.
One thing i discovered earlier this year on our MySQL databases was the power of composite indexes. For example, if you are reporting on order numbers over date ranges, a composite index on the order number and order date columns could help. I believe MySQL can only use one index for the query so if you just had separate indexes on the order number and order date it would have to decide on just one of them to use. Using the EXPLAIN command can help determine this.
To give an indication of the performance with good indexes (including numerous composite indexes), i can run queries joining 3 tables in our database and get almost instant results in most cases. For more complex reporting most of the queries run in under 10 seconds. These 3 tables have 33 million, 110 million and 140 millions rows respectively. Note that we had also already normalised these slightly to speed up our most common query on the database.
More information regarding your tables and the types of reporting queries may allow further suggestions.
For MySQL I like this talk: Real World Web: Performance & Scalability, MySQL Edition. This contains a lot of different pieces of advice for getting more speed out of MySQL.
You might also want to consider selecting into a temporary table and then performing queries on that temporary table. This would avoid the need to rejoin your tables for every single query you issue (assuming that you can use the temporary table for numerous queries, of course). This basically gives you denormalized data, but if you are only doing select calls, there's no concern about data consistency.
Further to my previous answer, another approach we have taken in some situations is to store key reporting data in separate summary tables. There are certain reporting queries which are just going to be slow even after denormalising and optimisations and we found that creating a table and storing running totals or summary information throughout the month as it came in made the end of month reporting much quicker as well.
We found this approach easy to implement as it didn't break anything that was already working - it's just additional database inserts at certain points.
I've been toying with composite indexes and have seen some real benefits...maybe I'll setup some tests to see if that can save me here..at least for a little longer.