Is there a tool like Google's Protobuf for JSON? I know you can convert from a Protobuf format to JSON but that requires a whole lot of extra serialization/deserialization, and I was wondering if there is some kind of tool that lets you specify the structure of a JSON message and then automatically generates libraries for use in a specified language (direct serialization/deserialization not just a wrapper around Protobuf's JSON formatter class)
I know nearly all languages provide their own in house way of handling JSON, and many higher level ones even allow you to avoid the boiler plate parsing code, but I was looking for a universal tool where you would only need to specify the format once, and then just get the generated libraries for use in multiple languages.
The Protobuf equivalent would be JSON-Schema, but still is language dependent on having a serializer or code generator available, just as Protobuf is.
If you're looking at making a REST-API, then OpenAPI Spec + swagger-codegen could be an option.
I'm as new as can be to JSON. I understand that both JSON-LD and JSON Schema are used to validate JSON data. I, however, cannot find much information comparing and contrasting the two.
Which one is better?
Why use one over the other?
Advantages vs disadvantages?
Can these two even be compared?
Am I misunderstanding what JSON-LD and JSON Schema are?
JSON-LD's goal is to make JSON documents understandable by machines by linking it to well-defined vocabularies. It is not used to validate JSON data. JSON Schema is used for that purpose though. So you can't really compare the two.
Am I misunderstanding what JSON-LD and JSON Schema are?
About JSON-LD, yes; In JSON-LD document, JSON-LD is defined as:
a JSON-based format to serialize Linked Data
Can these two even be compared?
It would be better to compare JSON-LD with JSON (not JSON Schema). Or you could compare JSON Schema with the other encoding syntax schemas e.g. XML Schema.
Note: The following section is about the remaining questions (considering the difference between JSON-LD and JSON).
Choosing between JSON and JSON-LD depends on the situation and context of use. Generally, JSON is a markup language in the syntactic level where the data encoded is just machine-readable. But JSON-LD is being used to semantically markup the data, to make them become not only machine-readable, but also machine-understanable by providing additional syntax to JSON for serialization of Linked Data.
Recommended resource to understand the detailed differences between JSON-LD and JSON is the JSON-LD document published by W3C.
Is JSON.stringify( ) equivalent to serialization or effectively serialization or is it just a necessary step towards
serialization?
In other words, is JSON.stringify( ) sufficient but not necessary for serialization? Or is necessary but not sufficient? Or is it neither necessary nor sufficient for serialization of JavaScript objects?
Serialization is the act of converting data into a format that can be written to disk or transmitted over the network (or written on paper if that's what you want). Usually, serialization is transforming objects to text but that's not necessary since there are several serialization formats such as bittorrent's bencoding and the old/ancient standard asn.1 formats which are binary.
JSON is one form of text-based serialization format and is currently very popular due to it's simplicity. It's not the only one though. Other popular formats include XML and CSV.
Due to its popularity and its origin as javascript object literal syntax ES5 introduced JSON.stringify() to generate a JSON string from an object. Previously you had to use libraries or write a recursive descent parser to do the job.
So, is JSON.stringify() enough for serialization? Yes, if the output format you want is JSON. No, if you want other output formats such as XML or CSV or bencode.
There are limitations to the JSON format. One limitation is that JSON cannot encode functions so JSON.stringify() ignores functions/methods when serializing. JSON also can't encode circular references. Most other serialization formats have this limitation as well but since JSON looks like javascript syntax some people assume it can do what javascript object literals can. It can't.
So the relationship between "JSON" and "serialization" is like the relationship between "Toyota Prius" and "car". JSON.stringify() is simply a function that generates JSON strings so I guess that would make it a Toyota factory.
Old question, but the following information may be useful for posterity.
Of course, you can serialise any way you want, including any number of custom methods, but JSON has become an increasingly popular method.
The most obvious benefit of JSON is that it represents objects in the same way that JavaScript object literals do, though it is slightly less flexible. Nevertheless, if you can represent normal data in JavaScript then JSON is a good match.
The most significant feature is that, since it represents objects as well as arrays, it can represent fairly complex & hierarchical data.
For one reason or another, JSON has more-or-less supplanted XML as the preferred serialisation for sending data between the server and browser. It is so useful that many languages include their own JSON functions (PHP, for example, has the better named json_encode & json_decode functions), as do some modern Databases. I myself have found it convenient to use JSON functions to store a more complex data structure in a single field of a database without JavaScript anywhere in sight).
The short answer is yes, for the most part it is a sufficient step to serializing most data (non-binary). It is not, however, necessary as there are alternatives.
Serializing binary data, on the other hand, now that’s another story …
Short answer... Serialize means the same thing as Stringify, IMHO.
If I were to store the same markup in 2 separate documents, one XML, the other JSON, in MarkLogic 6, does MarkLogic automatically convert the JSON equivalent to XML, and index it in that regard, or are both stored in their respective formats?
What I'm getting at is, does MarkLogic store ALL documents as XML, regardless, and simply apply JSON transformations to JSON documents when queried?
If documents are stored in native format, is there any advantage, in terms of performance, to storing documents in JSON over XML?
Below is an example code-snippet:
if($outputFormat="json") then (: result in json format :)
let $custom-config :=
let $config := json:config("custom")
return (map:put($config, "array-element-names",(xs:QName("lp:lesson_plan"),
xs:QName("lp:instructional_segment"),
xs:QName("lp:strand_type"),
xs:QName("lp:resource"),
xs:QName("lp:level"),
xs:QName("lp:discipline"),
xs:QName("lp:language"),
xs:QName("lp:program"),
xs:QName("lp:grade"),
xs:QName("res:strand_type"),
xs:QName("res:resource"),
xs:QName("res:ISBN"),
xs:QName("res:level"),
xs:QName("res:standard"),
xs:QName("res:secondaryURL"),
xs:QName("res:grade"),
xs:QName("res:keyword"))),
map:put($config, "whitespace","ignore"),
map:put($config, "text-value","value"),
$config)
return json:transform-to-json($finalResult, $custom-config)
else (: finalResult in xml format :)
$finalResult
MarkLogic is XML-native and does need to convert JSON to XML to store it in the database. There is a high-level JSON library to perform transformations. The main functions are json:transform-to-json and json:transform-from-json, and when configured correctly should provide lossless conversions.
I think the main difference from your example is whether you want to convert to XML using your own process or use MarkLogic's toolkit.
For more detailed information, see MarkLogic's docs:
http://docs.marklogic.com/guide/app-dev/json
On disk, MarkLogic stores highly compressed C++ data structures that represent hierarchical trees and corresponding indexes. (OK, that’s an over-simplification, but illustrative nonetheless.) There are two places where you as a developer will typically interact with those data structures: 1) building queries and application logic 2) deserializing/serializing data into and out of this internal data model. Today, MarkLogic uses the XML data model (XDM) for the latter and, correspondingly, XQuery, XPath, and XSLT for the former. We chose this stack for several reasons: XML is good at representing both text mark-up as well as data structures and the tooling around XML is mature and widespread.
Having said that, JSON has emerged as a popular serialization of hierarchical data structures—the “X” in AJAX. While we don't have the same watertight abstraction between JSON and MarkLogic’s internal data model today, we do provide a set of tools that allow you to efficiently and losslessly convert between JSON and the XML data model. Additionally, our REST and Java APIs allow you to store, retrieve, and even query tree structures that originated as JSON without having to think about this conversion step; the APIs handle this in the plumbing.
As for performance, there will be a little overhead converting between a JSON and XDM representation. However, I’d expect that to be negligible for most applications. The real benefits of XML will be in the expressiveness of XQuery, XPath, and XSLT in working with the data. There is no widespread equivalent to these in the JSON world today.
One footnote: The REST API (and thus the Java API wrapper around the REST API) provide a facade for the JSON conversion to XML -- that is, the APIs do the conversion to XML for you.
Usually, you don't need to think about the conversion except when you are creating range and geospatial indexes over the converted elements.
If you need to support JSON documents in your client, then the facade is convenient.
On the other hand, expressing the structure as JSON has no advantages for database operations and some limitations. (For instance, XML has the standards-based, baked atomic data types, schema validation, and server processing with XQuery or XSLT.) So, if you have complete control over the data structure, you might want to write it to the server as XML.
As of MarkLogic 8 (February 2015), JSON is now a native data type, just like XML. This eliminates the needs for a translation layer for applications that want to work exclusively in JSON. In addition, we’ve added JavaScript as a first-class language in the database itself (using Google’s V8 engine). This means that you can write stored procedures, triggers, and even full HTTP applications with JavaScript that runs in the database, close to the data.
I'm writing a spec and need to describe some JSON objects. Big JSONs tend to get too confusing with text and tabs alone. Is there any online (preferably) tool to create diagrams like the ones on http://www.json.org/ or http://www.sqlite.org/lang_altertable.html. They use them to describe syntax, but, is there anything like it to describe JSON objects ? They are great to represent objects that are required, optional, arrays, etc.
These types of syntax diagrams are known as "railroad diagrams".
There is an online tool at http://bottlecaps.de/rr/ui that you can use to generate tour own diagrams. You must specify your grammar in EBNF notation.