redis usage for semantic web application RDF quads alongside SparQL - mysql

I am the sysadmin supporting a Semantic Web application which runs on Tomcat and is using MySQL for the datastore. The dynamic nature of the queries cause the larger pages to be exponentially slower load times than pages with less dynamic content. The database is queried with scan type Select statements millions of times a day, and it is my thinking that the SparQL generated queries are not the the most efficient, but changing them seems to be out of our hands as the queries are somewhat of a black box to the developers. What I would like to know is, can Redis be used in a situation like this to handle the semantic relational data sets RDF (quads, triples, etc)? I am not very knowledgeable on this, so an explanation/links would be appreciated. Thanks!

In my experience, MySQL is not an acceptable backend for a triplestore. You should consider using any one of the many dedicated triple stores, any of them will probably outperform MySQL because they do not have the impedance mismatch of triple to store triples/quads into a relational store; they're using native storage.
There is no production ready solution based on Redis that I'm aware of. A quick google turned up a couple projects that seem to be related, but they may not meet your requirements.

Related

Looking for a database solution for mostly read application, querying 300 million records

Looking for right database technology to query efficiently 300 mil record tables. Tables may contain 5-30 columns mostly tinyint + zip, state. Users can issue arbitrary queries with where conditions on many columns and group with count either by state or zip. Datasets are static in a sense data is reloaded regularly and there is no inserts, just reads.
I already tried Mysql (RDS) with InnoDB. Because of big number of records and nature of queries I could not get satisfactory performance.
Tried MonetDB (columnar store) with very good results but it doesn't seem it is being used by many which raises some concerns.
Requirement is response time quick enough for responsive web UIs for analytics.
What other technologies I should explore?
I would encourage you to try MonetDB, it depends on your queries, but generally - it being a column-store you should get good performance (even over 300 mil record). Plus you don't need to manually create indices and such - it is mostly self-optimizing. MonetDB also has a Node.js driver/connector, which may be used for writing quick analytical web apps. There are also connectors for popular languages/frameworks: Ruby, Python, Perl, PHP, Java (via JDBC).
And don't worry, MonetDB is being actively developed (disclaimer: I am actually a developer) and you can get answers relatively quickly on the users mailing list.
Take a look at Google App Engine's Datastore. They automatically optimize your queries with indexes for speedy responses and it's Google, so they make it easy to scale from zero traffic to bajillions of hits.
Applications can be written in Java or Python, using your own framework or theirs.
Try Cassandra. It is being used very widely nowadays (Facebook, Netflix and many others).
If you want to keep your code relatively abstract from underlying database technology, you can use kundera JPA 2.0.
Additionally it is super easy to use Cassandra locally (for debugging and unit testing). Just take this class.

MongoDB vs Mysql Storage space compare

I am building a data ware house that is the range of 15+ TBs. While storage is cheap, but due to limited budget we have to squeeze as much data as possible in to that space while maintaining performance and flexibility since the data format changes quiet frequently.
I tried Infobright(community edition) as a SQL solution and it works wonderful in term of storage and performance, but the limitation on data/table alteration is making it almost a no go. and infobright's pricing on enterprise version is quiet steep.
After checking out MongoDB, it seems promising except one thing. I was in a chat with a 10gen guy, and he stated that they don't really give much of a thought in term of storage space since they flatten out the data to achieve the performance and flexibility, and in their opinion storage is too cheap nowadays to be bother with.
So any experienced mongo user out there can comment on its storage space vs mysql (as it is the standard for what we comparing against to right now). if it's larger or smaller, can you give rough ratio? I know it's very situation dependent on what sort of data you put in SQL and how you define the fields, indexing and such... but I am just trying to get a general idea.
Thanks for the help in advance!
MongoDB is not optimized for small disk space - as you've said, "disk is cheap".
From what I've seen and read, it's pretty difficult to estimate the required disk space due to:
Padding of documents to allow in-place updates
Attribute names are stored in each collection, so you might save quite a bit by using abbreviations
No built in compression (at the moment)
...
IMHO the general approach is to build a prototype, insert data and see how much disk space your specific use case requires. The more realistic you can model your queries (inserts and updates) the better your result will be.
For more details see http://www.mongodb.org/display/DOCS/Excessive+Disk+Space as well.
Pros and Cons of MongoDB
For the most part, users seem to like MongoDB. Reviews on TrustRadius give the document-oriented database 8.3 out of 10 stars.
Some of the things that authenticated MongoDB users say they like about the database include its:
Scalability.
Readable queries.
NoSQL.
Change streams and graph queries.
A flexible schema for altering data elements.
Quick query times.
Schema-less data models.
Easy installation.
Users also have negative things to say about MongoDB. Some cons reported by authenticated users include:
User interface, which has a fairly steep learning curve.
Lack of joins, which can make some data retrieval projects difficult.
Occasional slowness in the cloud environment.
High memory consumption
Poorly structured documentation.
Lack of built-in analytics.
Pros and Cons of MySQL
MySQL gets a slightly higher rating (8.6 out of 10 stars) on TrustRadius than MongoDB. Despite the higher rating, authenticated users still mention plenty of pros and cons of choosing MySQL.
Some of the positive features that users mention frequently include MySQL’s:
Portability that lets it connect to secondary databases easily.
Ability to store relational data.
Fast speed.
Excellent reliability.
Exceptional data security standards.
User-friendly interface that helps beginners complete projects.
Easy configuration and management.
Quick processing.
Of course, even people who enjoy using MySQL find features that they don’t like. Some of their complaints include:
Reliance on SQL, which creates a steeper learning curve for users who
do not know the language.
Lack of support for full-text searches in InnoDB tables.
Occasional stability issues.
Dependence on add-on features.
Limitations on fine-tuning and common table expressions.
Difficulties with some complex data types.
MongoDB vs MySQL Performance
When comparing the performance of MongoDB and MySQL, you must consider how each database will affect your projects on a case-by-case basis. While some performance features may appear to be objectively promising, your team members may never use the features that drew you to a database in the first place.
MongoDB Performance
Many people claim that MongoDB outperforms MySQL because it allows them to create queries in multiple ways. To put it another way, MongoDB can be used without knowing SQL. While the flexibility improves MongoDB's performance for some organizations, SQL queries will suffice for others.
MongoDB is also praised for its ability to handle large amounts of unstructured data. Depending on the types of data you collect, this feature could be extremely useful.
MongoDB does not bind you to a single vendor, giving you the freedom to improve its performance. If a vendor fails to provide you with excellent customer service, look for another vendor.
MySQL Performance
MySQL performs extremely well for teams that want an open-source relational database that can store information in multiple tables. The performance that you get, however, depends on how well you configure the MySQL database. Configurations should differ depending on the intended use. An e-commerce site, for example, might need a different MySQL configuration than a team of research scientists.
No matter how you plan to use MySQL, the database’s performance gets a boost from full-text indexes, a high-speed transactional system, and memory caches that prevent you from losing crucial information or work.
If you don’t get the performance that you expect from MySQL data warehouses and databases, you can improve performance by integrating them with an excellent ETL tool that makes data storage and manipulation easier than ever.
MySQL vs MongoDB Speed
In most speed comparisons between MySQL and MongoDB, MongoDB is the clear winner. MongoDB is much faster than MySQL at accepting large amounts of unstructured data. When dealing with large projects, it's difficult to say how much faster MongoDB is than MySQL. The speed you get depends on a number of factors, including the bandwidth of your internet connection, the distance between your location and the database server, and how well you organise your data.
If all else is equal, MongoDB should be able to handle large data projects much faster than MySQL.
Choosing Between MySQL and MongoDB
Whether you choose MySQL or MongoDB probably depends on how you plan to use your database.
Choosing MySQL
For projects that require a strong relational database management system, such as storing data in a table format, MySQL is likely to be the better choice. MySQL is also a great choice for cases requiring data security and fault tolerance. MySQL is a good choice if you have high-quality data that you've been collecting for a long time.
Keep in mind that to use MySQL, your team members will need to know SQL. You'll need to provide training to get them up to speed if they don't already know the language.
Choosing MongoDB
When you want to use data clusters and search languages other than SQL, MongoDB may be a better option. Anyone who knows how to code in a modern language will be able to get started with MongoDB. MongoDB is also good at scaling quickly, allowing multiple teams to collaborate, and storing data in a variety of formats.
Because MongoDB does not use data tables to make browsing easy, some people may struggle to understand the information stored there. Users can grow accustomed to MongoDB's document-oriented storage system over time.

SQL Server vs. NoSQL

So I have a website that could eventually get some pretty high traffic. My DB implementation is in SQL Server 2008 at the moment. I really only have 2 tables and a few stored procs. Most of the DB could be re-designed to work without joining (although it wouldn't make sense when I can join so easily within SQL Server).
I heard that sites like Digg and Facebook use NoSQL databases for a lot of their basic data access. Is this something worth looking into, or will SQL Server not really slow me down that bad?
I use paging on my site (although this might change in the future), and I also use AJAX'd data access for most of the "live" stuff, so it doesn't really seem to be a performance hindrance at the moment, but I'm afraid it will be as the data starts expanding exponentially.
Am I going to gain a lot of performance my moving to NoSQL? Honestly, right now I don't even completely understand NoSQL, so any tips on how this will help me improve the better.
Thanks guys.
Actually Facebook use a relational database at its core, see SOCC Keynote Address: Building Facebook: Performance at Massive Scale. And so do many other web-scale sites, see Why does Quora use MySQL as the data store instead of NoSQLs such as Cassandra, MongoDB, CouchDB etc?. There is also a discussion of how to scale SQL Server to web-scale size, see How do large-scale sites and applications remain SQL-based? which is based on MySpace's architecture (more details at Scale out SQL Server by using Reliable Messaging). I'm not saying that NoSQL doesn't have its use cases, I just want to point out that there are many shades of gray between white and black.
If you're afraid that your current solution will not scale then perhaps you should look at what are the factors that prevent scalability with your current solution. Test data is cheap to produce, load the 'exponentially increased' data volume and run your test harness, see where it cracks. None of the NoSQL solutions will bring magic off-the-shelf scalability, they all require you to understand how to use them effectively and deploy them correctly. And they also require you to test with large volumes if you want to ensure success at scale. Same for traditional relational solutions.
Sql Server scales pretty well. For example, Stack Overflow used it to serve you this very page. Facebook and Google might use a form of nosql, but even if you make it really big you're unlikely to rise to that level.
With a simple table structure and data that fits on one server, it doesn't matter much what platform you use. There are a several possible reasons to need to move to NoSQL:
Data scaling - SQL works best when all the data fits on one server (up to a few TB). The reason a lot of NoSQL stores don't have join is that they were designed not to require all the objects to be on one server.
Performance scaling - NoSQL stores do tend to be faster at handling high traffic, but not necessarily by enough to matter. You can improve SQL performance quite a lot with replication and caching as long as you aren't running into data size issues. Writes generally do have to run on the one server, but in most cases you will need to improve read performance long before write performance becomes an issue.
Complex data access - some types of queries simply don't fit well into a relational model. Graph and set stores work quite differently from relational databases so are a better fit for some applications.
Easier development - If you don't already have a SQL database and all the code to support it, using a schemaless datastore can save quite a bit of development time.
I don't think so you have to move your database from SQL to NoSQL unless and untill you are serving thousands of TB data. If you properly normalize your tables and serve the data and also need to set proper archive mechanism it should work.
If you still have question what to choose and how, than check this. Let's assume that you have decided to move on to NoSQL database than there are lot of market player. Just have a look at the list which is again depending upon your need and type of data you have.
Am I going to gain a lot of performance my moving to NoSQL?
It depends.
Check out this article for 7 reasons when you DON'T want to use NoSQL. If none is your case, then read further.
The main advantage of Document-based NoSQL for the traditional enterprise needs is cheaper hosting at high scale due to lower CPU usage on querying denormalised data (the most often request). Key points:
The CPU is going nuts on JOINs and GROUP BYs in the SQL queries, when a denormilised data structure implies no/less JOINs, hence less stress on CPU.
CPU is the most expensive resource in the cloud, then storage is the cheapest. And denormalised data trades higher storage for lower CPU.
How to get there?
Master the DDD (Domain-Driven Design).
Gain good understanding of CQRS (Command Query Responsibility Segregation) and Eventual consistency.
Understand your domain and business processes.
Design model, which is tuned to the access patterns.
Review.
Repeat steps 3 - 5.

What database systems should a startup company consider?

Right now I'm developing the prototype of a web application that aggregates large number of text entries from a large number of users. This data must be frequently displayed back and often updated. At the moment I store the content inside a MySQL database and use NHibernate ORM layer to interact with the DB. I've got a table defined for users, roles, submissions, tags, notifications and etc. I like this solution because it works well and my code looks nice and sane, but I'm also worried about how MySQL will perform once the size of our database reaches a significant number. I feel that it may struggle performing join operations fast enough.
This has made me think about non-relational database system such as MongoDB, CouchDB, Cassandra or Hadoop. Unfortunately I have no experience with either. I've read some good reviews on MongoDB and it looks interesting. I'm happy to spend the time and learn if one turns out to be the way to go. I'd much appreciate any one offering points or issues to consider when going with none relational dbms?
The other answers here have focused mainly on the technical aspects, but I think there are important points to be made that focus on the startup company aspect of things:
Availabililty of talent. MySQL is very common and you will probably find it easier (and more importantly, cheaper) to find developers for it, compared to the more rarified database systems. This larger developer base will also mean more tutorials, a more active support community, etc.
Ease of development. Again, because MySQL is so common, you will find it is the db of choice for a great many systems / services. This common ground may make any external integration a little easier.
You are preparing for a situation that may never exist, and is manageable if it does. Very few businesses (nevermind startups) come close to MySQL's limits, and with all due respect (and I am just guessing here); the likelihood that your startup will ever hit the sort of data throughput to cripple a properly structured, well resourced MySQL db is almost zero.
Basically, don't spend your time ( == money) worrying about which db to use, as MySQL can handle a lot of data, is well proven and well supported.
Going back to the technical side of things... Something that will have a far greater impact on the speed of your app than choice of db, is how efficiently data can be cached. An effective cache can have dramatic effects on reducing db load and speeding up the general responsivness of an app. I would spend your time investigating caching solutions and making sure you are developing your app in such a way that it can make the best use of those solutions.
FYI, my caching solution of choice is memcached.
So far no one has mentioned PostgreSQL as alternative to MySQL on the relational side. Be aware that MySQL libs are pure GPL, not LGPL. That might force you to release your code if you link to them, although maybe someone with more legal experience could tell you better the implications. On the other side, linking to a MySQL library is not the same that just connecting to the server and issue commands, you can do that with closed source.
PostreSQL is usually the best free replacement of Oracle and the BSD license should be more business friendly.
Since you prefer a non relational database, consider that the transition will be more dramatic. If you ever need to customize your database, you should also consider the license type factor.
There are three things that really have a deep impact on which one is your best database choice and you do not mention:
The size of your data or if you need to store files within your database.
A huge number of reads and very few (even restricted) writes. In that case more than a database you need a directory such as LDAP
The importance of of data distribution and/or replication. Most relational databases can be more or less well replicated, but because of their concept/design do not handle data distribution as well... but will you handle as much data that does not fit into one server or have access rights that needs special separate/extra servers?
However most people will go for a non relational database just because they do not like learning SQL
What do you think is a significant amount of data? MySQL, and basically most relational database engines, can handle rather large amount of data, with proper indexes and sane database schema.
Why don't you try how MySQL behaves with bigger data amount in your setup? Make some scripts that generate realistic data to MySQL test database and and generate some load on the system and see if it is fast enough.
Only when it is not fast enough, first start considering optimizing the database and changing to different database engine.
Be careful with NHibernate, it is easy to make a solution that is nice and easy to code with, but has bad performance with large amount of data. For example whether to use lazy or eager fetching with associations should be carefully considered. I don't mean that you shouldn't use NHibernate, but make sure that you understand how NHibernate works, for example what "n + 1 selects" -problem means.
Measure, don't assume.
Relational databases and NoSQL databases can both scale enormously, if the application is written right in each case, and if the system it runs on is properly tuned.
So, if you have a use case for NoSQL, code to it. Or, if you're more comfortable with relational, code to that. Then, measure how well it performs and how it scales, and if it's OK, go with it, if not, analyse why.
Only once you understand your performance problem should you go searching for exotic technology, unless you're comfortable with that technology or want to try it for some other reason.
I'd suggest you try out each db and pick the one that makes it easiest to develop your application. Go to http://try.mongodb.org to try MongoDB with a simple tutorial. Don't worry as much about speed since at the beginning developer time is more valuable than the CPU time.
I know that many MongoDB users have been able to ditch their ORM and their caching layer. Mongo's data model is much closer to the objects you work with than relational tables, so you can usually just directly store your objects as-is, even if they contain lists of nested objects, such as a blog post with comments. Also, because mongo is fast enough for most sites as-is, you can avoid dealing the complexities of caching and generally deliver a more real-time site. For example, Wordnik.com reported 250,000 reads/sec and 100,000 inserts/sec with a 1.2TB / 5 billion object DB.
There are a few ways to connect to MongoDB from .Net, but I don't have enough experience with that platform to know which is best:
Norm: http://wiki.github.com/atheken/NoRM/
MongoDB-CSharp: http://github.com/samus/mongodb-csharp
Simple-MongoDB: http://code.google.com/p/simple-mongodb/
Disclaimer: I work for 10gen on MongoDB so I am a bit biased.

Switching from MySQL to Cassandra - Pros/Cons?

For a bit of background - this question deals with a project running on a single small EC2 instance, and is about to migrate to a medium one. The main components are Django, MySQL and a large number of custom analysis tools written in python and java, which do the heavy
lifting. The same machine is running Apache as well.
The data model looks like the following - a large amount of real time data comes in streamed from various networked sensors, and ideally, I'd like to establish a long-poll approach rather than the current poll every 15 minutes approach (a limitation of computing stats and writing into the database itself). Once the data comes in, I store the raw version in
MySQL, let the analysis tools loose on this data, and store statistics in another few tables. All of this is rendered using Django.
Relational features I would need -
Order by [SliceRange in Cassandra's API seems to satisy this]
Group by
Manytomany relations between multiple tables [Cassandra SuperColumns seem to do well for one to many]
Sphinx on this gives me a nice full text engine, so thats a necessity too. [On Cassandra, the Lucandra project seems to satisfy this need]
My major problem is that data reads are extremely slow (and writes aren't that hot either). I don't want to throw a lot of money and hardware on it right now, and I'd prefer something that can scale easily with time. Vertically scaling MySQL is not trivial in that sense (or cheap).
So essentially, after having read a lot about NOSQL and experimented with things like MongoDB, Cassandra and Voldemort, my questions are,
On a medium EC2 instance, would I gain any benefits in reads/writes by shifting to something like Cassandra? This article (pdf) definitely seems to suggest that. Currently, I'd say a few hundred writes per minute would be the norm. For reads - since the data changes every 5 minutes or so, cache invalidation has to happen pretty quickly. At some point, it should be able to handle a large number of concurrent users as well. The app performance currently gets killed on MySQL doing some joins on large tables even if indexes are created - something to the order of 32k rows takes more than a minute to render. (This may be an artifact of EC2 virtualized I/O as well). Size of tables is around 4-5 million rows, and there are about 5 such tables.
Everyone talks about using Cassandra on multiple nodes, given the CAP theorem and eventual consistency. But, for a project that is just beginning to grow, does it make sense
to deploy a one node cassandra server? Are there any caveats? For instance, can it replace MySQL as a backend for Django? [Is this recommended?]
If I do shift, I'm guessing I'll have to rewrite parts of the app to do a lot more "administrivia" since I'd have to do multiple lookups to fetch rows.
Would it make any sense to just use MySQL as a key value store rather than a relational engine, and go with that? That way I could utilize a large number of stable APIs available, as well as a stable engine (and go relational as needed). (Brett Taylor's post from Friendfeed on this - http://bret.appspot.com/entry/how-friendfeed-uses-mysql)
Any insights from people who've done a shift would be greatly appreciated!
Thanks.
Cassandra and the other distributed databases available today do not provide the kind of ad-hoc query support you are used to from sql. This is because you can't distribute queries with joins performantly, so the emphasis is on denormalization instead.
However, Cassandra 0.6 (beta officially out tomorrow, but you can build from the 0.6 branch yourself if you're impatient) supports Hadoop map/reduce for analytics, which actually sounds like a good fit for you.
Cassandra provides excellent support for adding new nodes painlessly, even to an initial group of one.
That said, at a few hundred writes/minute you're going to be fine on mysql for a long, long time. Cassandra is much better at being a key/value store (even better, key/columnfamily) but MySQL is much better at being a relational database. :)
There is no django support for Cassandra (or other nosql database) yet. They are talking about doing something for the next version after 1.2, but based on talking to django devs at pycon, nobody is really sure what that will look like yet.
If you're a relational database developer (as I am), I'd suggest/point out:
Get some experience working with Cassandra before you commit to its use on a production system... especially if that production system has a hard deadline for completion. Maybe use it as the backend for something unimportant first.
It's proving more challenging than I'd anticipated to do simple things that I take for granted about data manipulation using SQL engines. In particular, indexing data and sorting result sets is non-trivial.
Data modelling has proven challenging as well. As a relational database developer you come to the table with a lot of baggage... you need to be willing to learn how to model data very differently.
These things said, I strongly recommend building something in Cassandra. If you're like me, then doing so will challenge your understanding of data storage and make you rethink a relational-database-fits-all-situations outlook that I didn't even realize I held.
Some good resources I've found include:
Dominic Williams' Cassandra blog posts
Secondary Indexes in Cassandra
More from Ed Anuff on indexing
Cassandra book (not fantastic, but a good start)
"WTF is a SuperColumn" pdf
The Django-cassandra is an early beta mode. Also Django didn't made for no-sql databases. The key in Django ORM is based on SQL (Django recommends to use PostgreSQL). If you need to use ONLY no-sql (you can mix sql and no-sql in same app) you need to risky use no-sql ORM (it significantly slower than traditional SQL orm or direct use of No-SQL storage). Or you'll need to completely full rewrite django ORM. But in this case i can't presume, why you need Django. Maybe you can use something else, like Tornado?