I am trying to understand indexes in MySQL. I know that an index created in a table can speed up executing queries and it can slow down the inserting and updating of rows.
When creating an index, I used this query on a table called authors that contains (AuthorNum, AuthorFName, AuthorLName, ...)
Create index Index_1 on Authors ([What to put here]);
I know I have to put a column name, but which one?
Do I have to put the column name that will be compared in the Where statement when a user query the Table or what?
The Anatomy of an Index
An index is a distinct data structure within a database and is data redundancy. Its primary purpose is to provide an ordered representation of the indexed data through a logical ordering which is independent of the physical ordering. We do this using a doubly linked list and a tree structure known as the balanced search tree (B-tree). B-trees are nice because they keep data sorted and allow searches, access, insertions, and deletions in logarithmic time. Because of the doubly linked list, we are able to go backwards or forwards as needed on the index for various queries easily. Inserts become simple since we only have to rearrange pointers to the different pieces of data. Databases use these doubly linked list to connect leaf nodes (usually in a B+ tree or B-tree), each of which are stored in a page, and to establish logical ordering between the leaf nodes. Operations like UPDATE or INSERT become slower because they are actually two writing operations in the filesystem (one for the table data and one for the index data).
Defining an Optimal Index With WHERE
To define an optimal index you must not only understand how indexes work, but you must also understand how the application queries the data. E.g., you must know the column combinations that appear in the WHERE clause.
A common restriction with queries on LAST_NAME and FIRST_NAME columns deals with case sensitivity. For example, instead of doing an exact search like Hotinger we would prefer to match all results such as HoTingEr and so on. This is very easy to do in a WHERE clause: we just say WHERE UPPER(LAST_NAME) = UPPER('Hotinger')
However, if we define an index of LAST_NAME and query, it will actually run a full table scan because the query is not on LAST_NAME but on UPPER(LAST_NAME). From the database's perspective, this is completely different. So, in this case you should define the index on UPPER(LAST_NAME) instead.
Indexes do not necessarily have to be for one column. For example, if the primary key is a composite key (consisting of multiple columns) it will create a concatenated index also known as a combined index. Note that the ordering of the concatenated index has a significant impact on its usability and scalability so it must be chosen carefully. Basically, the ordering should match the way it is ordered in the WHERE clause.
Defining an Optimal Index With LIKE
The position of the wildcard characters makes a huge difference. LIKE clauses only use the characters before the wildcard during tree traversal; the rest do not narrow the scanned index range. The more selective the prefix of the LIKE clause the more narrow the scanned index becomes. This makes the index lookup faster. As a tip, avoid LIKE clauses which lead with wildcards like "%OTINGER%" For full-text searches, MySQL offers MATCH and AGAINST keywords. Starting with MySQL 5.6, you can have full-text indexes. Look at Full-Text Search Functions from MySQL for more in-depth discussion on indexing these results.
Yes, generally you need an index on the column or columns that you compare in the WHERE clause of your queries to speed up queries.
If you search by AuthorFName, then you create an index on that column. If they search by AuthorLName, then you create an index on that column.
In this case though, maybe what you should be looking at is a FULLTEXT index. That would allow users to enter fuzzy queries, which would return a number of results ordered by relevance.
From the MySQL Manual:
Indexes are used to find rows with specific column values quickly.
Without an index, MySQL must begin with the first row and then read
through the entire table to find the relevant rows. The larger the
table, the more this costs. If the table has an index for the columns
in question, MySQL can quickly determine the position to seek to in
the middle of the data file without having to look at all the data. If
a table has 1,000 rows, this is at least 100 times faster than reading
sequentially. If you need to access most of the rows, it is faster to
read sequentially, because this minimizes disk seeks.
An index usually means a B-Tree. Understand the structure of the B-Tree and you'll understand what index can and cannot do.
In your particular case:
WHERE AuthorLName = 'something' and WHERE AuthorLName LIKE 'something%' can be sped-up by an index on {AuthorLName}.
WHERE AuthorLName = 'something AND AuthorFName = 'something else' can be sped-up by a composite index on {AuthorLName, AuthorFName} or {AuthorFName, AuthorLName}.
WHERE AuthorLName = 'something OR AuthorFName = 'something else' (which doesn't make much sense, but is here as an example) can be sped-up by having two indexes: on {AuthorLName} and on {AuthorFName}.
WHERE AuthorLName LIKE '%something' cannot be sped-up by a B-Tree index (cunsider full-text indexing).
Etc...
See Use The Index, Luke! for a much more thorough treatment of the subject than possible in a simple SO post.
Limited length index:
When using text columns or very large varchar columns you won't be able to create an index over the entire length of the text/varchar, there are some limits (around 1024 ASCII characters in length).
In such a case you specify the length in the index declaration.
CREATE INDEX `my_limited_length_index` ON `my_table`(`long_text_content`(512));
-- please notice the use of the numeric length of the index after the column name
Processed value index (apparently available in PostgreSQL not MySQL):
Indexes are not exclusively built from one column, some may be built from multiple columns and other may be built from just some of the info a column has. For example if you have a full datetime column but you know you're only going to filter records by date you can build an index based on the datetime column but only containing date info.
-- `my_table` has a `created` column of type timestamp
CREATE INDEX `my_date_created` ON `my_table`(DATE(`created`));
-- please notice the use of the DATE function which extracts only
-- the date from the `created` timestamp
index shall span the columns you are going to use in WHERE statement.
To better understand, here is an example:
SELECT * FROM Authors WHERE AuthorNum > 10 AND AuthorLName LIKE 'A%';
SELECT * FROM Authors WHERE AuthorLName LIKE 'Be%';
If you are often using the shown above queries, you are highly adviced to have two indexes:
Create index AuthNum_AuthLName_Index on Authors (AuthorNum, AuthorLName);
Create index AuthLName_Index on Authors (AuthorLName);
The key thing to remember: index shall have the same combiation of columns used in WHERE statements
Related
I've been using indexes on my MySQL databases for a while now but never properly learnt about them. Generally I put an index on any fields that I will be searching or selecting using a WHERE clause but sometimes it doesn't seem so black and white.
What are the best practices for MySQL indexes?
Example situations/dilemmas:
If a table has six columns and all of them are searchable, should I index all of them or none of them?
What are the negative performance impacts of indexing?
If I have a VARCHAR 2500 column which is searchable from parts of my site, should I index it?
You should definitely spend some time reading up on indexing, there's a lot written about it, and it's important to understand what's going on.
Broadly speaking, an index imposes an ordering on the rows of a table.
For simplicity's sake, imagine a table is just a big CSV file. Whenever a row is inserted, it's inserted at the end. So the "natural" ordering of the table is just the order in which rows were inserted.
Imagine you've got that CSV file loaded up in a very rudimentary spreadsheet application. All this spreadsheet does is display the data, and numbers the rows in sequential order.
Now imagine that you need to find all the rows that have some value "M" in the third column. Given what you have available, you have only one option. You scan the table checking the value of the third column for each row. If you've got a lot of rows, this method (a "table scan") can take a long time!
Now imagine that in addition to this table, you've got an index. This particular index is the index of values in the third column. The index lists all of the values from the third column, in some meaningful order (say, alphabetically) and for each of them, provides a list of row numbers where that value appears.
Now you have a good strategy for finding all the rows where the value of the third column is "M". For instance, you can perform a binary search! Whereas the table scan requires you to look N rows (where N is the number of rows), the binary search only requires that you look at log-n index entries, in the very worst case. Wow, that's sure a lot easier!
Of course, if you have this index, and you're adding rows to the table (at the end, since that's how our conceptual table works), you need to update the index each and every time. So you do a little more work while you're writing new rows, but you save a ton of time when you're searching for something.
So, in general, indexing creates a tradeoff between read efficiency and write efficiency. With no indexes, inserts can be very fast -- the database engine just adds a row to the table. As you add indexes, the engine must update each index while performing the insert.
On the other hand, reads become a lot faster.
Hopefully that covers your first two questions (as others have answered -- you need to find the right balance).
Your third scenario is a little more complicated. If you're using LIKE, indexing engines will typically help with your read speed up to the first "%". In other words, if you're SELECTing WHERE column LIKE 'foo%bar%', the database will use the index to find all the rows where column starts with "foo", and then need to scan that intermediate rowset to find the subset that contains "bar". SELECT ... WHERE column LIKE '%bar%' can't use the index. I hope you can see why.
Finally, you need to start thinking about indexes on more than one column. The concept is the same, and behaves similarly to the LIKE stuff -- essentially, if you have an index on (a,b,c), the engine will continue using the index from left to right as best it can. So a search on column a might use the (a,b,c) index, as would one on (a,b). However, the engine would need to do a full table scan if you were searching WHERE b=5 AND c=1)
Hopefully this helps shed a little light, but I must reiterate that you're best off spending a few hours digging around for good articles that explain these things in depth. It's also a good idea to read your particular database server's documentation. The way indices are implemented and used by query planners can vary pretty widely.
Check out presentations like More Mastering the Art of Indexing.
Update 12/2012: I have posted a new presentation of mine: How to Design Indexes, Really. I presented this in October 2012 at ZendCon in Santa Clara, and in December 2012 at Percona Live London.
Designing the best indexes is a process that has to match the queries you run in your app.
It's hard to recommend any general-purpose rules about which columns are best to index, or whether you should index all columns, no columns, which indexes should span multiple columns, etc. It depends on the queries you need to run.
Yes, there is some overhead so you shouldn't create indexes needlessly. But you should create the indexes that give benefit to the queries you need to run quickly. The overhead of an index is usually far outweighed by its benefit.
For a column that is VARCHAR(2500), you probably want to use a FULLTEXT index or a prefix index:
CREATE INDEX i ON SomeTable(longVarchar(100));
Note that a conventional index can't help if you're searching for words that may be in the middle of that long varchar. For that, use a fulltext index.
I won't repeat some of the good advice in other answers, but will add:
Compound Indices
You can create compound indices - an index that includes multiple columns. MySQL can use these from left to right. So if you have:
Table A
Id
Name
Category
Age
Description
if you have a compound index that includes Name/Category/Age in that order, these WHERE clauses would use the index:
WHERE Name='Eric' and Category='A'
WHERE Name='Eric' and Category='A' and Age > 18
but
WHERE Category='A' and Age > 18
would not use that index because everything has to be used from left to right.
Explain
Use Explain / Explain Extended to understand what indices are available to MySQL and which one it actually selects. MySQL will only use ONE key per query.
EXPLAIN EXTENDED SELECT * from Table WHERE Something='ABC'
Slow Query Log
Turn on the slow query log to see which queries are running slow.
Wide Columns
If you have a wide column where MOST of the distinction happens in the first several characters, you can use only the first N characters in your index. Example: We have a ReferenceNumber column defined as varchar(255) but 97% of the cases, the reference number is 10 characters or less. I changed the index to only look at the first 10 characters and improved performance quite a bit.
If a table has six columns and all of them are searchable, should i index all of them or none of them
Are you searching on a field by field basis or are some searches using multiple fields?
Which fields are most being searched on?
What are the field types? (Index works better on INTs than on VARCHARs for example)
Have you tried using EXPLAIN on the queries that are being run?
What are the negetive performance impacts of indexing
UPDATEs and INSERTs will be slower. There's also the extra storage space requirments, but that's usual unimportant these days.
If i have a VARCHAR 2500 column which is searchable from parts of my site, should i index it
No, unless it's UNIQUE (which means it's already indexed) or you only search for exact matches on that field (not using LIKE or mySQL's fulltext search).
Generally I put an index on any fields that i will be searching or selecting using a WHERE clause
I'd normally index the fields that are the most queried, and then INTs/BOOLEANs/ENUMs rather that fields that are VARCHARS. Don't forget, often you need to create an index on combined fields, rather than an index on an individual field. Use EXPLAIN, and check the slow log.
Load Data Efficiently: Indexes speed up retrievals but slow down inserts and deletes, as well as updates of values in indexed columns. That is, indexes slow down most operations that involve writing. This occurs because writing a row requires writing not only the data row, it requires changes to any indexes as well. The more indexes a table has, the more changes need to be made, and the greater the average performance degradation. Most tables receive many reads and few writes, but for a table with a high percentage of writes, the cost of index updating might be significant.
Avoid Indexes: If you don’t need a particular index to help queries perform better, don’t create it.
Disk Space: An index takes up disk space, and multiple indexes take up correspondingly more space. This might cause you to reach a table size limit more quickly than if there are no indexes. Avoid indexes wherever possible.
Takeaway: Don't over index
In general, indices help speedup database search, having the disadvantage of using extra disk space and slowing INSERT / UPDATE / DELETE queries. Use EXPLAIN and read the results to find out when MySQL uses your indices.
If a table has six columns and all of them are searchable, should i index all of them or none of them?
Indexing all six columns isn't always the best practice.
(a) Are you going to use any of those columns when searching for specific information?
(b) What is the selectivity of those columns (how many distinct values are there stored, in comparison to the total amount of records on the table)?
MySQL uses a cost-based optimizer, which tries to find the "cheapest" path when performing a query. And fields with low selectivity aren't good candidates.
What are the negetive performance impacts of indexing?
Already answered: extra disk space, lower performance during insert - update - delete.
If i have a VARCHAR 2500 column which is searchable from parts of my site, should i index it?
Try the FULLTEXT Index.
1/2) Indexes speed up certain select operations but they slow down other operations like insert, update and deletes. It can be a fine balance.
3) use a full text index or perhaps sphinx
I am really interested in how MySQL indexes work, more specifically, how can they return the data requested without scanning the entire table?
It's off-topic, I know, but if there is someone who could explain this to me in detail, I would be very, very thankful.
Basically an index on a table works like an index in a book (that's where the name came from):
Let's say you have a book about databases and you want to find some information about, say, storage. Without an index (assuming no other aid, such as a table of contents) you'd have to go through the pages one by one, until you found the topic (that's a full table scan).
On the other hand, an index has a list of keywords, so you'd consult the index and see that storage is mentioned on pages 113-120,231 and 354. Then you could flip to those pages directly, without searching (that's a search with an index, somewhat faster).
Of course, how useful the index will be, depends on many things - a few examples, using the simile above:
if you had a book on databases and indexed the word "database", you'd see that it's mentioned on pages 1-59,61-290, and 292 to 400. In such case, the index is not much help and it might be faster to go through the pages one by one (in a database, this is "poor selectivity").
For a 10-page book, it makes no sense to make an index, as you may end up with a 10-page book prefixed by a 5-page index, which is just silly - just scan the 10 pages and be done with it.
The index also needs to be useful - there's generally no point to index e.g. the frequency of the letter "L" per page.
The first thing you must know is that indexes are a way to avoid scanning the full table to obtain the result that you're looking for.
There are different kinds of indexes and they're implemented in the storage layer, so there's no standard between them and they also depend on the storage engine that you're using.
InnoDB and the B+Tree index
For InnoDB, the most common index type is the B+Tree based index, that stores the elements in a sorted order. Also, you don't have to access the real table to get the indexed values, which makes your query return way faster.
The "problem" about this index type is that you have to query for the leftmost value to use the index. So, if your index has two columns, say last_name and first_name, the order that you query these fields matters a lot.
So, given the following table:
CREATE TABLE person (
last_name VARCHAR(50) NOT NULL,
first_name VARCHAR(50) NOT NULL,
INDEX (last_name, first_name)
);
This query would take advantage of the index:
SELECT last_name, first_name FROM person
WHERE last_name = "John" AND first_name LIKE "J%"
But the following one would not
SELECT last_name, first_name FROM person WHERE first_name = "Constantine"
Because you're querying the first_name column first and it's not the leftmost column in the index.
This last example is even worse:
SELECT last_name, first_name FROM person WHERE first_name LIKE "%Constantine"
Because now, you're comparing the rightmost part of the rightmost field in the index.
The hash index
This is a different index type that unfortunately, only the memory backend supports. It's lightning fast but only useful for full lookups, which means that you can't use it for operations like >, < or LIKE.
Since it only works for the memory backend, you probably won't use it very often. The main case I can think of right now is the one that you create a temporary table in the memory with a set of results from another select and perform a lot of other selects in this temporary table using hash indexes.
If you have a big VARCHAR field, you can "emulate" the use of a hash index when using a B-Tree, by creating another column and saving a hash of the big value on it. Let's say you're storing a url in a field and the values are quite big. You could also create an integer field called url_hash and use a hash function like CRC32 or any other hash function to hash the url when inserting it. And then, when you need to query for this value, you can do something like this:
SELECT url FROM url_table WHERE url_hash=CRC32("http://gnu.org");
The problem with the above example is that since the CRC32 function generates a quite small hash, you'll end up with a lot of collisions in the hashed values. If you need exact values, you can fix this problem by doing the following:
SELECT url FROM url_table
WHERE url_hash=CRC32("http://gnu.org") AND url="http://gnu.org";
It's still worth to hash things even if the collision number is high cause you'll only perform the second comparison (the string one) against the repeated hashes.
Unfortunately, using this technique, you still need to hit the table to compare the url field.
Wrap up
Some facts that you may consider every time you want to talk about optimization:
Integer comparison is way faster than string comparison. It can be illustrated with the example about the emulation of the hash index in InnoDB.
Maybe, adding additional steps in a process makes it faster, not slower. It can be illustrated by the fact that you can optimize a SELECT by splitting it into two steps, making the first one store values in a newly created in-memory table, and then execute the heavier queries on this second table.
MySQL has other indexes too, but I think the B+Tree one is the most used ever and the hash one is a good thing to know, but you can find the other ones in the MySQL documentation.
I highly recommend you to read the "High Performance MySQL" book, the answer above was definitely based on its chapter about indexes.
Basically an index is a map of all your keys that is sorted in order. With a list in order, then instead of checking every key, it can do something like this:
1: Go to middle of list - is higher or lower than what I'm looking for?
2: If higher, go to halfway point between middle and bottom, if lower, middle and top
3: Is higher or lower? Jump to middle point again, etc.
Using that logic, you can find an element in a sorted list in about 7 steps, instead of checking every item.
Obviously there are complexities, but that gives you the basic idea.
Take a look at this link: http://dev.mysql.com/doc/refman/5.0/en/mysql-indexes.html
How they work is too broad of a subject to cover in one SO post.
Here is one of the best explanations of indexes I have seen. Unfortunately it is for SQL Server and not MySQL. I'm not sure how similar the two are...
In MySQL InnoDB, there are two types of index.
Primary key which is called clustered index. Index key words are stored with
real record data in the B+Tree leaf node.
Secondary key which is non clustered index. These index only store primary key's key words along with their own index key words in the B+Tree leaf node. So when searching from secondary index, it will first find its primary key index key words and scan the primary key B+Tree to find the real data records. This will make secondary index slower compared to primary index search. However, if the select columns are all in the secondary index, then no need to look up primary index B+Tree again. This is called covering index.
Take at this videos for more details about Indexing
Simple Indexing
You can create a unique index on a table. A unique index means that two rows cannot have the same index value. Here is the syntax to create an Index on a table
CREATE UNIQUE INDEX index_name
ON table_name ( column1, column2,...);
You can use one or more columns to create an index. For example, we can create an index on tutorials_tbl using tutorial_author.
CREATE UNIQUE INDEX AUTHOR_INDEX
ON tutorials_tbl (tutorial_author)
You can create a simple index on a table. Just omit UNIQUE keyword from the query to create simple index. Simple index allows duplicate values in a table.
If you want to index the values in a column in descending order, you can add the reserved word DESC after the column name.
mysql> CREATE UNIQUE INDEX AUTHOR_INDEX
ON tutorials_tbl (tutorial_author DESC)
Adding some visual representation to the list of answers.
MySQL uses an extra layer of indirection: secondary index records point to primary index records, and the primary index itself holds the on-disk row locations. If a row offset changes, only the primary index needs to be updated.
Caveat: Disk data structure looks flat in the diagram but actually is a
B+ tree.
Source: link
I want to add my 2 cents. I am far from being a database expert, but I've recently read up a bit on this topic; enough for me to try and give an ELI5. So, here's may layman's explanation.
I understand it as such that an index is like a mini-mirror of your table, pretty much like an associative array. If you feed it with a matching key then you can just jump to that row in one "command".
But if you didn't have that index / array, the query interpreter must use a for-loop to go through all rows and check for a match (the full-table scan).
Having an index has the "downside" of extra storage (for that mini-mirror), in exchange for the "upside" of looking up content faster.
Note that (in dependence of your db engine) creating primary, foreign or unique keys automatically sets up a respective index as well. That same principle is basically why and how those keys work.
Let's suppose you have a book, probably a novel, a thick one with lots of things to read, hence lots of words.
Now, hypothetically, you brought two dictionaries, consisting of only words that are only used, at least one time in the novel. All words in that two dictionaries are stored in typical alphabetical order. In hypothetical dictionary A, words are printed only once while in hypothetical dictionary B words are printed as many numbers of times it is printed in the novel. Remember, words are sorted alphabetically in both the dictionaries.
Now you got stuck at some point while reading a novel and need to find the meaning of that word from anyone of those hypothetical dictionaries. What you will do? Surely you will jump to that word in a few steps to find its meaning, rather look for the meaning of each of the words in the novel, from starting, until you reach that bugging word.
This is how the index works in SQL. Consider Dictionary A as PRIMARY INDEX, Dictionary B as KEY/SECONDARY INDEX, and your desire to get for the meaning of the word as a QUERY/SELECT STATEMENT.
The index will help to fetch the data at a very fast rate. Without an index, you will have to look for the data from the starting, unnecessarily time-consuming costly task.
For more about indexes and types, look this.
Indexes are used to find rows with specific column values quickly. Without an index, MySQL must begin with the first row and then read through the entire table to find the relevant rows. The larger the table, the more this costs. If the table has an index for the columns in question, MySQL can quickly determine the position to seek to in the middle of the data file without having to look at all the data. This is much faster than reading every row sequentially.
Indexing adds a data structure with columns for the search conditions and a pointer
The pointer is the address on the memory disk of the row with the
rest of the information
The index data structure is sorted to optimize query efficiency
The query looks for the specific row in the index; the index refers to the pointer which will find the rest of the information.
The index reduces the number of rows the query has to search through from 17 to 4.
I'm looking to add some mysql indexes to a database table. Most of the queries are for selects. Would it be best to create a separate index for each column, or add an index for province, province and number, and name. Does it even make sense to index province since there are only about a dozen options?
select * from employees where province = 'ab' and number = 'v45g';
select * from employees where province = 'ab';
If the usage changed to more inserts should I remove all the indexes except for the number?
An index is a data structure that maps the values of a column into a fast searchable tree. This tree contains the index of rows which the DB can use to find rows fast. One thing to know, some DB engines read plus or minus a bunch of rows to take advantage of disk read ahead. So you may actually read 50 or 100 rows per index read, and not just one. Hence, if you access 30% of a table through an index, you may wind up reading all table data multiple times.
Rule of thumb:
- index the more unique values, a tree with 2 branches and half of your table on either side is not too useful for narrowing down a search
- use as few index as possible
- use real world examples numbers as much as possible. Performance can change dynamically based on data or the whim of the DB engine, so it's very important to try and track how fast your queries are running consistently (ie: log this in case a query ever gets slow). But from this data you can add indexes without being blind
Okay, so there are multiple kinds of index, single and multiple column. You want multiple indexes when it makes sense for indexes to access each other, multiple columns typically when you are refining with a where clause. Think of the first as good when you want joins, or you have "or" conditions. The second is better when you have and conditions and successively filter rows.
In your case name does not make sense since like does not use index. city and number do make sense, probably as a multi-column index. Province could help as well as the last index.
So an index with these columns would likely help:
(number,city,province)
Or try as well just:
(number,city)
You should index fields that are searched upon and have high selectivity / cardinality. Indexes make writes slower.
Other thing is that indexes can be added and dropped at any time so maybe you should let this for a later review of the database and optimization of querys.
That being said one index that you can be sure to add is in the column that holds the name of a person. That's almost always used in searching.
According to MySQL documentation found here:
You can create multiple column indexes and the first column mentioned in the index declaration uses index when searched alone but not the others.
Documentation also says that if you create a hash of the columns and save in another column and index the hashed column the search could be faster then multiple indexes.
SELECT * FROM tbl_name
WHERE hash_col=MD5(CONCAT(val1,val2))
AND col1=val1 AND col2=val2;
You could use an unique index on province.
Just say I had a query as below..
SELECT
name,category,address,city,state
FROM
table
WHERE
MATCH(name,subcategory,category,tag1) AGAINST('education')
AND
city='Oakland'
AND
state='CA'
LIMIT
0, 10;
..and I had a fulltext index as name,subcategory,category,tag1 and a composite index as city,state; is this good enough for this query? Just wondering if something extra is needed when mixing additional AND's when making use of the fulltext index with the MATCH/AGAINST.
Edit: What I am trying to understand is, what happens with the additional columns that are within the query but are not indexed in the chosen index (the fulltext index), the above example being city and state. How does MySQL now find the matching rows for these since it can't use two indexes (or can it?) - so, basically, I'm trying to understand how MySQL goes about finding the data optimally for the columns NOT in the chosen fulltext index and if there is anything I can or should do to optimize the query.
If I understand your question, you know that the MATCH AGAINST uses your FULLTEXT index and your wondering how MySQL goes about applying the rest of the WHERE clause (ie. does it do a tablescan or an indexed lookup).
Here's what I'm assuming about your table: it has a PRIMARY KEY on some id column and the FULLTEXT index.
So first off, MySQL will never use the FULLTEXT index for the city/state WHERE clause. Why? Because FULLTEXT indexes only apply with MATCH AGAINST. See here in the paragraph after the first set of bullets (not the Table of Contents bullets).
EDIT: In your case, assuming your table doesn't only have like 10 rows, MySQL will apply the FULLTEXT index for your MATCH AGAINST, then do a tablescan on those results to apply the city/state WHERE.
So what if you add a BTREE index onto city and state?
CREATE INDEX city__state ON table (city(10),state(2)) USING BTREE;
Well MySQL can only use one index for this query since it's a simple select. It will either use the FULLTEXT or the BTREE. Note that when I say one index, I mean one index definition, not one column in a multi-part index. Anwway, this then begs the question which one does it use?
That depends on the table analysis. MySQL will attempt to estimate (based on table stats from the last OPTIMIZE TABLE) which index will prune the most records. If the city/state WHERE gets you down to 10 records while the MATCH AGAINST only gets you down to 100, then MySQL will use the city__state index first for the city/state WHERE and then do a tablescan for the MATCH AGAINST.
On the other hand, if the MATCH_AGAINST gets you down to 10 records while the city/state WHERE gets you down to only a 1000, then MySQL will apply the FULLTEXT index first and tablescan for city and state.
The bottom line is the cardinality of your index. Essentially, how unique are the values that will go into your index? If every record in your table has city set to Oakland, then it's not a very unique key and so having city = 'Oakland' doesn't really reduce the number of records all that much for you. In that case, we say your city__state index has a low cardinality.
Consequently if 90% of the words in your FULLTEXT index are "John", then that doesn't really help you much either for the exact same reasons.
If you can afford the space and the UPDATE/DELETE/INSERT overhead, I would recommend adding the BTREE index and letting MySQL decide which index he wants to use. In my experience, he usually does a very good job of picking the right one.
I hope that answers your question.
EDIT: On a side note, making sure you pick the right size for your BTREE index (in my example I picked the first 10 char in city). This obviously makes a huge impact to cardinality. If you picked city(1), then obviously you'll get a lower cardinality then if you did city(10).
EDIT2: MySQL's query plan (estimation) for which index prunes the most records is what you see in EXPLAIN.
I think you can easily determine which index gets used by using EXPLAIN on your query. Please check the accepted answer for this question, which provides some good resources on how to interpret the output of EXPLAIN.
How does MySQL now find the matching rows for these since it can't use
two indexes
Yes it can: Can MySQL use multiple indexes for a single query? Also, you should read the documentation: How MySQL Uses Indexes
I had similar task some time ago, and I have noticed that MySQL can use either FULLTEXT index or any other index/indexes in one query, but not both; I wasn't able to mix FULLTEXT with any other index. Any selection with fulltext search will work in such way:
select subset using FULLTEXT search
select records matching other criteria from that subset 'Using where'
So you can use either fulltext index or any other index (I wasn't able to use both indexes by FORCE INDEX or anything else).
I suggest trying with both using fulltext and using other index (i.e. on City and State columns) and compare the results - they may vary depending on actual content in your database.
In my case I have discovered that forcing regular (non-fulltext) index in such query produced better performance (since I had very large number of rows, about 300 000, and non-fulltext criteria matched about 1000 of them).
I was using MySQL 5.5.24
I am really interested in how MySQL indexes work, more specifically, how can they return the data requested without scanning the entire table?
It's off-topic, I know, but if there is someone who could explain this to me in detail, I would be very, very thankful.
Basically an index on a table works like an index in a book (that's where the name came from):
Let's say you have a book about databases and you want to find some information about, say, storage. Without an index (assuming no other aid, such as a table of contents) you'd have to go through the pages one by one, until you found the topic (that's a full table scan).
On the other hand, an index has a list of keywords, so you'd consult the index and see that storage is mentioned on pages 113-120,231 and 354. Then you could flip to those pages directly, without searching (that's a search with an index, somewhat faster).
Of course, how useful the index will be, depends on many things - a few examples, using the simile above:
if you had a book on databases and indexed the word "database", you'd see that it's mentioned on pages 1-59,61-290, and 292 to 400. In such case, the index is not much help and it might be faster to go through the pages one by one (in a database, this is "poor selectivity").
For a 10-page book, it makes no sense to make an index, as you may end up with a 10-page book prefixed by a 5-page index, which is just silly - just scan the 10 pages and be done with it.
The index also needs to be useful - there's generally no point to index e.g. the frequency of the letter "L" per page.
The first thing you must know is that indexes are a way to avoid scanning the full table to obtain the result that you're looking for.
There are different kinds of indexes and they're implemented in the storage layer, so there's no standard between them and they also depend on the storage engine that you're using.
InnoDB and the B+Tree index
For InnoDB, the most common index type is the B+Tree based index, that stores the elements in a sorted order. Also, you don't have to access the real table to get the indexed values, which makes your query return way faster.
The "problem" about this index type is that you have to query for the leftmost value to use the index. So, if your index has two columns, say last_name and first_name, the order that you query these fields matters a lot.
So, given the following table:
CREATE TABLE person (
last_name VARCHAR(50) NOT NULL,
first_name VARCHAR(50) NOT NULL,
INDEX (last_name, first_name)
);
This query would take advantage of the index:
SELECT last_name, first_name FROM person
WHERE last_name = "John" AND first_name LIKE "J%"
But the following one would not
SELECT last_name, first_name FROM person WHERE first_name = "Constantine"
Because you're querying the first_name column first and it's not the leftmost column in the index.
This last example is even worse:
SELECT last_name, first_name FROM person WHERE first_name LIKE "%Constantine"
Because now, you're comparing the rightmost part of the rightmost field in the index.
The hash index
This is a different index type that unfortunately, only the memory backend supports. It's lightning fast but only useful for full lookups, which means that you can't use it for operations like >, < or LIKE.
Since it only works for the memory backend, you probably won't use it very often. The main case I can think of right now is the one that you create a temporary table in the memory with a set of results from another select and perform a lot of other selects in this temporary table using hash indexes.
If you have a big VARCHAR field, you can "emulate" the use of a hash index when using a B-Tree, by creating another column and saving a hash of the big value on it. Let's say you're storing a url in a field and the values are quite big. You could also create an integer field called url_hash and use a hash function like CRC32 or any other hash function to hash the url when inserting it. And then, when you need to query for this value, you can do something like this:
SELECT url FROM url_table WHERE url_hash=CRC32("http://gnu.org");
The problem with the above example is that since the CRC32 function generates a quite small hash, you'll end up with a lot of collisions in the hashed values. If you need exact values, you can fix this problem by doing the following:
SELECT url FROM url_table
WHERE url_hash=CRC32("http://gnu.org") AND url="http://gnu.org";
It's still worth to hash things even if the collision number is high cause you'll only perform the second comparison (the string one) against the repeated hashes.
Unfortunately, using this technique, you still need to hit the table to compare the url field.
Wrap up
Some facts that you may consider every time you want to talk about optimization:
Integer comparison is way faster than string comparison. It can be illustrated with the example about the emulation of the hash index in InnoDB.
Maybe, adding additional steps in a process makes it faster, not slower. It can be illustrated by the fact that you can optimize a SELECT by splitting it into two steps, making the first one store values in a newly created in-memory table, and then execute the heavier queries on this second table.
MySQL has other indexes too, but I think the B+Tree one is the most used ever and the hash one is a good thing to know, but you can find the other ones in the MySQL documentation.
I highly recommend you to read the "High Performance MySQL" book, the answer above was definitely based on its chapter about indexes.
Basically an index is a map of all your keys that is sorted in order. With a list in order, then instead of checking every key, it can do something like this:
1: Go to middle of list - is higher or lower than what I'm looking for?
2: If higher, go to halfway point between middle and bottom, if lower, middle and top
3: Is higher or lower? Jump to middle point again, etc.
Using that logic, you can find an element in a sorted list in about 7 steps, instead of checking every item.
Obviously there are complexities, but that gives you the basic idea.
Take a look at this link: http://dev.mysql.com/doc/refman/5.0/en/mysql-indexes.html
How they work is too broad of a subject to cover in one SO post.
Here is one of the best explanations of indexes I have seen. Unfortunately it is for SQL Server and not MySQL. I'm not sure how similar the two are...
In MySQL InnoDB, there are two types of index.
Primary key which is called clustered index. Index key words are stored with
real record data in the B+Tree leaf node.
Secondary key which is non clustered index. These index only store primary key's key words along with their own index key words in the B+Tree leaf node. So when searching from secondary index, it will first find its primary key index key words and scan the primary key B+Tree to find the real data records. This will make secondary index slower compared to primary index search. However, if the select columns are all in the secondary index, then no need to look up primary index B+Tree again. This is called covering index.
Take at this videos for more details about Indexing
Simple Indexing
You can create a unique index on a table. A unique index means that two rows cannot have the same index value. Here is the syntax to create an Index on a table
CREATE UNIQUE INDEX index_name
ON table_name ( column1, column2,...);
You can use one or more columns to create an index. For example, we can create an index on tutorials_tbl using tutorial_author.
CREATE UNIQUE INDEX AUTHOR_INDEX
ON tutorials_tbl (tutorial_author)
You can create a simple index on a table. Just omit UNIQUE keyword from the query to create simple index. Simple index allows duplicate values in a table.
If you want to index the values in a column in descending order, you can add the reserved word DESC after the column name.
mysql> CREATE UNIQUE INDEX AUTHOR_INDEX
ON tutorials_tbl (tutorial_author DESC)
Adding some visual representation to the list of answers.
MySQL uses an extra layer of indirection: secondary index records point to primary index records, and the primary index itself holds the on-disk row locations. If a row offset changes, only the primary index needs to be updated.
Caveat: Disk data structure looks flat in the diagram but actually is a
B+ tree.
Source: link
I want to add my 2 cents. I am far from being a database expert, but I've recently read up a bit on this topic; enough for me to try and give an ELI5. So, here's may layman's explanation.
I understand it as such that an index is like a mini-mirror of your table, pretty much like an associative array. If you feed it with a matching key then you can just jump to that row in one "command".
But if you didn't have that index / array, the query interpreter must use a for-loop to go through all rows and check for a match (the full-table scan).
Having an index has the "downside" of extra storage (for that mini-mirror), in exchange for the "upside" of looking up content faster.
Note that (in dependence of your db engine) creating primary, foreign or unique keys automatically sets up a respective index as well. That same principle is basically why and how those keys work.
Let's suppose you have a book, probably a novel, a thick one with lots of things to read, hence lots of words.
Now, hypothetically, you brought two dictionaries, consisting of only words that are only used, at least one time in the novel. All words in that two dictionaries are stored in typical alphabetical order. In hypothetical dictionary A, words are printed only once while in hypothetical dictionary B words are printed as many numbers of times it is printed in the novel. Remember, words are sorted alphabetically in both the dictionaries.
Now you got stuck at some point while reading a novel and need to find the meaning of that word from anyone of those hypothetical dictionaries. What you will do? Surely you will jump to that word in a few steps to find its meaning, rather look for the meaning of each of the words in the novel, from starting, until you reach that bugging word.
This is how the index works in SQL. Consider Dictionary A as PRIMARY INDEX, Dictionary B as KEY/SECONDARY INDEX, and your desire to get for the meaning of the word as a QUERY/SELECT STATEMENT.
The index will help to fetch the data at a very fast rate. Without an index, you will have to look for the data from the starting, unnecessarily time-consuming costly task.
For more about indexes and types, look this.
Indexes are used to find rows with specific column values quickly. Without an index, MySQL must begin with the first row and then read through the entire table to find the relevant rows. The larger the table, the more this costs. If the table has an index for the columns in question, MySQL can quickly determine the position to seek to in the middle of the data file without having to look at all the data. This is much faster than reading every row sequentially.
Indexing adds a data structure with columns for the search conditions and a pointer
The pointer is the address on the memory disk of the row with the
rest of the information
The index data structure is sorted to optimize query efficiency
The query looks for the specific row in the index; the index refers to the pointer which will find the rest of the information.
The index reduces the number of rows the query has to search through from 17 to 4.