Strange behaviour in fromJSON in RJSONIO package - json
Ok, I'm trying to convert the following JSON data into an R data frame.
For some reason fromJSON in the RJSONIO package only reads up to about character 380 and then it stops converting the JSON properly.
Here is the JSON:-
"{\"metricDate\":\"2013-05-01\",\"pageCountTotal\":\"33682\",\"landCountTotal\":\"11838\",\"newLandCountTotal\":\"8023\",\"returnLandCountTotal\":\"3815\",\"spiderCountTotal\":\"84\",\"goalCountTotal\":\"177.000000\",\"callGoalCountTotal\":\"177.000000\",\"callCountTotal\":\"237.000000\",\"onlineGoalCountTotal\":\"0.000000\",\"conversionPerc\":\"1.50\",\"callConversionPerc\":\"74.68\"}\n{\"metricDate\":\"2013-05-02\",\"pageCountTotal\":\"32622\",\"landCountTotal\":\"11626\",\"newLandCountTotal\":\"7945\",\"returnLandCountTotal\":\"3681\",\"spiderCountTotal\":\"58\",\"goalCountTotal\":\"210.000000\",\"callGoalCountTotal\":\"210.000000\",\"callCountTotal\":\"297.000000\",\"onlineGoalCountTotal\":\"0.000000\",\"conversionPerc\":\"1.81\",\"callConversionPerc\":\"70.71\"}\n{\"metricDate\":\"2013-05-03\",\"pageCountTotal\":\"28467\",\"landCountTotal\":\"11102\",\"newLandCountTotal\":\"7786\",\"returnLandCountTotal\":\"3316\",\"spiderCountTotal\":\"56\",\"goalCountTotal\":\"186.000000\",\"callGoalCountTotal\":\"186.000000\",\"callCountTotal\":\"261.000000\",\"onlineGoalCountTotal\":\"0.000000\",\"conversionPerc\":\"1.68\",\"callConversionPerc\":\"71.26\"}\n{\"metricDate\":\"2013-05-04\",\"pageCountTotal\":\"20884\",\"landCountTotal\":\"9031\",\"newLandCountTotal\":\"6670\",\"returnLandCountTotal\":\"2361\",\"spiderCountTotal\":\"51\",\"goalCountTotal\":\"7.000000\",\"callGoalCountTotal\":\"7.000000\",\"callCountTotal\":\"44.000000\",\"onlineGoalCountTotal\":\"0.000000\",\"conversionPerc\":\"0.08\",\"callConversionPerc\":\"15.91\"}\n{\"metricDate\":\"2013-05-05\",\"pageCountTotal\":\"20481\",\"landCountTotal\":\"8782\",\"newLandCountTotal\":\"6390\",\"returnLandCountTotal\":\"2392\",\"spiderCountTotal\":\"58\",\"goalCountTotal\":\"1.000000\",\"callGoalCountTotal\":\"1.000000\",\"callCountTotal\":\"8.000000\",\"onlineGoalCountTotal\":\"0.000000\",\"conversionPerc\":\"0.01\",\"callConversionPerc\":\"12.50\"}\n{\"metricDate\":\"2013-05-06\",\"pageCountTotal\":\"25175\",\"landCountTotal\":\"10019\",\"newLandCountTotal\":\"7082\",\"returnLandCountTotal\":\"2937\",\"spiderCountTotal\":\"62\",\"goalCountTotal\":\"24.000000\",\"callGoalCountTotal\":\"24.000000\",\"callCountTotal\":\"47.000000\",\"onlineGoalCountTotal\":\"0.000000\",\"conversionPerc\":\"0.24\",\"callConversionPerc\":\"51.06\"}\n{\"metricDate\":\"2013-05-07\",\"pageCountTotal\":\"35892\",\"landCountTotal\":\"12615\",\"newLandCountTotal\":\"8391\",\"returnLandCountTotal\":\"4224\",\"spiderCountTotal\":\"62\",\"goalCountTotal\":\"239.000000\",\"callGoalCountTotal\":\"239.000000\",\"callCountTotal\":\"321.000000\",\"onlineGoalCountTotal\":\"0.000000\",\"conversionPerc\":\"1.89\",\"callConversionPerc\":\"74.45\"}\n{\"metricDate\":\"2013-05-08\",\"pageCountTotal\":\"34106\",\"landCountTotal\":\"12391\",\"newLandCountTotal\":\"8389\",\"returnLandCountTotal\":\"4002\",\"spiderCountTotal\":\"90\",\"goalCountTotal\":\"221.000000\",\"callGoalCountTotal\":\"221.000000\",\"callCountTotal\":\"295.000000\",\"onlineGoalCountTotal\":\"0.000000\",\"conversionPerc\":\"1.78\",\"callConversionPerc\":\"74.92\"}\n{\"metricDate\":\"2013-05-09\",\"pageCountTotal\":\"32721\",\"landCountTotal\":\"12447\",\"newLandCountTotal\":\"8541\",\"returnLandCountTotal\":\"3906\",\"spiderCountTotal\":\"54\",\"goalCountTotal\":\"207.000000\",\"callGoalCountTotal\":\"207.000000\",\"callCountTotal\":\"280.000000\",\"onlineGoalCountTotal\":\"0.000000\",\"conversionPerc\":\"1.66\",\"callConversionPerc\":\"73.93\"}\n{\"metricDate\":\"2013-05-10\",\"pageCountTotal\":\"29724\",\"landCountTotal\":\"11616\",\"newLandCountTotal\":\"8063\",\"returnLandCountTotal\":\"3553\",\"spiderCountTotal\":\"139\",\"goalCountTotal\":\"207.000000\",\"callGoalCountTotal\":\"207.000000\",\"callCountTotal\":\"301.000000\",\"onlineGoalCountTotal\":\"0.000000\",\"conversionPerc\":\"1.78\",\"callConversionPerc\":\"68.77\"}\n{\"metricDate\":\"2013-05-11\",\"pageCountTotal\":\"22061\",\"landCountTotal\":\"9660\",\"newLandCountTotal\":\"6971\",\"returnLandCountTotal\":\"2689\",\"spiderCountTotal\":\"52\",\"goalCountTotal\":\"3.000000\",\"callGoalCountTotal\":\"3.000000\",\"callCountTotal\":\"40.000000\",\"onlineGoalCountTotal\":\"0.000000\",\"conversionPerc\":\"0.03\",\"callConversionPerc\":\"7.50\"}\n{\"metricDate\":\"2013-05-12\",\"pageCountTotal\":\"23341\",\"landCountTotal\":\"9935\",\"newLandCountTotal\":\"6960\",\"returnLandCountTotal\":\"2975\",\"spiderCountTotal\":\"45\",\"goalCountTotal\":\"0.000000\",\"callGoalCountTotal\":\"0.000000\",\"callCountTotal\":\"12.000000\",\"onlineGoalCountTotal\":\"0.000000\",\"conversionPerc\":\"0.00\",\"callConversionPerc\":\"0.00\"}\n{\"metricDate\":\"2013-05-13\",\"pageCountTotal\":\"36565\",\"landCountTotal\":\"13583\",\"newLandCountTotal\":\"9277\",\"returnLandCountTotal\":\"4306\",\"spiderCountTotal\":\"69\",\"goalCountTotal\":\"246.000000\",\"callGoalCountTotal\":\"246.000000\",\"callCountTotal\":\"324.000000\",\"onlineGoalCountTotal\":\"0.000000\",\"conversionPerc\":\"1.81\",\"callConversionPerc\":\"75.93\"}\n{\"metricDate\":\"2013-05-14\",\"pageCountTotal\":\"35260\",\"landCountTotal\":\"13797\",\"newLandCountTotal\":\"9375\",\"returnLandCountTotal\":\"4422\",\"spiderCountTotal\":\"59\",\"goalCountTotal\":\"212.000000\",\"callGoalCountTotal\":\"212.000000\",\"callCountTotal\":\"283.000000\",\"onlineGoalCountTotal\":\"0.000000\",\"conversionPerc\":\"1.54\",\"callConversionPerc\":\"74.91\"}\n{\"metricDate\":\"2013-05-15\",\"pageCountTotal\":\"35836\",\"landCountTotal\":\"13792\",\"newLandCountTotal\":\"9532\",\"returnLandCountTotal\":\"4260\",\"spiderCountTotal\":\"94\",\"goalCountTotal\":\"187.000000\",\"callGoalCountTotal\":\"187.000000\",\"callCountTotal\":\"258.000000\",\"onlineGoalCountTotal\":\"0.000000\",\"conversionPerc\":\"1.36\",\"callConversionPerc\":\"72.48\"}\n{\"metricDate\":\"2013-05-16\",\"pageCountTotal\":\"33136\",\"landCountTotal\":\"12821\",\"newLandCountTotal\":\"8755\",\"returnLandCountTotal\":\"4066\",\"spiderCountTotal\":\"65\",\"goalCountTotal\":\"192.000000\",\"callGoalCountTotal\":\"192.000000\",\"callCountTotal\":\"260.000000\",\"onlineGoalCountTotal\":\"0.000000\",\"conversionPerc\":\"1.50\",\"callConversionPerc\":\"73.85\"}\n{\"metricDate\":\"2013-05-17\",\"pageCountTotal\":\"29564\",\"landCountTotal\":\"11721\",\"newLandCountTotal\":\"8191\",\"returnLandCountTotal\":\"3530\",\"spiderCountTotal\":\"213\",\"goalCountTotal\":\"166.000000\",\"callGoalCountTotal\":\"166.000000\",\"callCountTotal\":\"222.000000\",\"onlineGoalCountTotal\":\"0.000000\",\"conversionPerc\":\"1.42\",\"callConversionPerc\":\"74.77\"}\n{\"metricDate\":\"2013-05-18\",\"pageCountTotal\":\"23686\",\"landCountTotal\":\"9916\",\"newLandCountTotal\":\"7335\",\"returnLandCountTotal\":\"2581\",\"spiderCountTotal\":\"56\",\"goalCountTotal\":\"5.000000\",\"callGoalCountTotal\":\"5.000000\",\"callCountTotal\":\"34.000000\",\"onlineGoalCountTotal\":\"0.000000\",\"conversionPerc\":\"0.05\",\"callConversionPerc\":\"14.71\"}\n{\"metricDate\":\"2013-05-19\",\"pageCountTotal\":\"23528\",\"landCountTotal\":\"9952\",\"newLandCountTotal\":\"7184\",\"returnLandCountTotal\":\"2768\",\"spiderCountTotal\":\"57\",\"goalCountTotal\":\"1.000000\",\"callGoalCountTotal\":\"1.000000\",\"callCountTotal\":\"14.000000\",\"onlineGoalCountTotal\":\"0.000000\",\"conversionPerc\":\"0.01\",\"callConversionPerc\":\"7.14\"}\n{\"metricDate\":\"2013-05-20\",\"pageCountTotal\":\"37391\",\"landCountTotal\":\"13488\",\"newLandCountTotal\":\"9024\",\"returnLandCountTotal\":\"4464\",\"spiderCountTotal\":\"69\",\"goalCountTotal\":\"227.000000\",\"callGoalCountTotal\":\"227.000000\",\"callCountTotal\":\"291.000000\",\"onlineGoalCountTotal\":\"0.000000\",\"conversionPerc\":\"1.68\",\"callConversionPerc\":\"78.01\"}\n{\"metricDate\":\"2013-05-21\",\"pageCountTotal\":\"36299\",\"landCountTotal\":\"13174\",\"newLandCountTotal\":\"8817\",\"returnLandCountTotal\":\"4357\",\"spiderCountTotal\":\"77\",\"goalCountTotal\":\"164.000000\",\"callGoalCountTotal\":\"164.000000\",\"callCountTotal\":\"221.000000\",\"onlineGoalCountTotal\":\"0.000000\",\"conversionPerc\":\"1.24\",\"callConversionPerc\":\"74.21\"}\n{\"metricDate\":\"2013-05-22\",\"pageCountTotal\":\"34201\",\"landCountTotal\":\"12433\",\"newLandCountTotal\":\"8388\",\"returnLandCountTotal\":\"4045\",\"spiderCountTotal\":\"76\",\"goalCountTotal\":\"195.000000\",\"callGoalCountTotal\":\"195.000000\",\"callCountTotal\":\"262.000000\",\"onlineGoalCountTotal\":\"0.000000\",\"conversionPerc\":\"1.57\",\"callConversionPerc\":\"74.43\"}\n{\"metricDate\":\"2013-05-23\",\"pageCountTotal\":\"32951\",\"landCountTotal\":\"11611\",\"newLandCountTotal\":\"7757\",\"returnLandCountTotal\":\"3854\",\"spiderCountTotal\":\"68\",\"goalCountTotal\":\"167.000000\",\"callGoalCountTotal\":\"167.000000\",\"callCountTotal\":\"231.000000\",\"onlineGoalCountTotal\":\"0.000000\",\"conversionPerc\":\"1.44\",\"callConversionPerc\":\"72.29\"}\n{\"metricDate\":\"2013-05-24\",\"pageCountTotal\":\"28967\",\"landCountTotal\":\"10821\",\"newLandCountTotal\":\"7396\",\"returnLandCountTotal\":\"3425\",\"spiderCountTotal\":\"106\",\"goalCountTotal\":\"167.000000\",\"callGoalCountTotal\":\"167.000000\",\"callCountTotal\":\"203.000000\",\"onlineGoalCountTotal\":\"0.000000\",\"conversionPerc\":\"1.54\",\"callConversionPerc\":\"82.27\"}\n{\"metricDate\":\"2013-05-25\",\"pageCountTotal\":\"19741\",\"landCountTotal\":\"8393\",\"newLandCountTotal\":\"6168\",\"returnLandCountTotal\":\"2225\",\"spiderCountTotal\":\"78\",\"goalCountTotal\":\"0.000000\",\"callGoalCountTotal\":\"0.000000\",\"callCountTotal\":\"28.000000\",\"onlineGoalCountTotal\":\"0.000000\",\"conversionPerc\":\"0.00\",\"callConversionPerc\":\"0.00\"}\n{\"metricDate\":\"2013-05-26\",\"pageCountTotal\":\"19770\",\"landCountTotal\":\"8237\",\"newLandCountTotal\":\"6009\",\"returnLandCountTotal\":\"2228\",\"spiderCountTotal\":\"79\",\"goalCountTotal\":\"0.000000\",\"callGoalCountTotal\":\"0.000000\",\"callCountTotal\":\"8.000000\",\"onlineGoalCountTotal\":\"0.000000\",\"conversionPerc\":\"0.00\",\"callConversionPerc\":\"0.00\"}\n{\"metricDate\":\"2013-05-27\",\"pageCountTotal\":\"26208\",\"landCountTotal\":\"9755\",\"newLandCountTotal\":\"6779\",\"returnLandCountTotal\":\"2976\",\"spiderCountTotal\":\"82\",\"goalCountTotal\":\"26.000000\",\"callGoalCountTotal\":\"26.000000\",\"callCountTotal\":\"40.000000\",\"onlineGoalCountTotal\":\"0.000000\",\"conversionPerc\":\"0.27\",\"callConversionPerc\":\"65.00\"}\n{\"metricDate\":\"2013-05-28\",\"pageCountTotal\":\"36980\",\"landCountTotal\":\"12463\",\"newLandCountTotal\":\"8226\",\"returnLandCountTotal\":\"4237\",\"spiderCountTotal\":\"132\",\"goalCountTotal\":\"208.000000\",\"callGoalCountTotal\":\"208.000000\",\"callCountTotal\":\"276.000000\",\"onlineGoalCountTotal\":\"0.000000\",\"conversionPerc\":\"1.67\",\"callConversionPerc\":\"75.36\"}\n{\"metricDate\":\"2013-05-29\",\"pageCountTotal\":\"34190\",\"landCountTotal\":\"12014\",\"newLandCountTotal\":\"8279\",\"returnLandCountTotal\":\"3735\",\"spiderCountTotal\":\"90\",\"goalCountTotal\":\"179.000000\",\"callGoalCountTotal\":\"179.000000\",\"callCountTotal\":\"235.000000\",\"onlineGoalCountTotal\":\"0.000000\",\"conversionPerc\":\"1.49\",\"callConversionPerc\":\"76.17\"}\n{\"metricDate\":\"2013-05-30\",\"pageCountTotal\":\"33867\",\"landCountTotal\":\"11965\",\"newLandCountTotal\":\"8231\",\"returnLandCountTotal\":\"3734\",\"spiderCountTotal\":\"63\",\"goalCountTotal\":\"160.000000\",\"callGoalCountTotal\":\"160.000000\",\"callCountTotal\":\"219.000000\",\"onlineGoalCountTotal\":\"0.000000\",\"conversionPerc\":\"1.34\",\"callConversionPerc\":\"73.06\"}\n{\"metricDate\":\"2013-05-31\",\"pageCountTotal\":\"27536\",\"landCountTotal\":\"10302\",\"newLandCountTotal\":\"7333\",\"returnLandCountTotal\":\"2969\",\"spiderCountTotal\":\"108\",\"goalCountTotal\":\"173.000000\",\"callGoalCountTotal\":\"173.000000\",\"callCountTotal\":\"226.000000\",\"onlineGoalCountTotal\":\"0.000000\",\"conversionPerc\":\"1.68\",\"callConversionPerc\":\"76.55\"}\n\r\n"
and here is my R output
metricDate
"2013-05-01"
pageCountTotal
"33682"
landCountTotal
"11838"
newLandCountTotal
"8023"
returnLandCountTotal
"3815"
spiderCountTotal
"84"
goalCountTotal
"177.000000"
callGoalCountTotal
"177.000000"
callCountTotal
"237.000000"
onlineGoalCountTotal
"0.000000"
conversionPerc
"1.50"
callConversionPerc
"74.68\"}{\"metricDate\":\"2013-05-02\",\"pageCountTotal\":\"32622\",\"landCountTotal\":\"11626\",\"newLandCountTotal\":\"7945\",\"returnLandCountTotal\":\"3681\",\"spiderCountTotal\":\"58\",\"goalCountTotal\":\"210.000000\",\"callGoalCountTotal\":\"210.000000\",\"callCountTotal\":\"297.000000\",\"onlineGoalCountTotal\":\"0.000000\",\"conversionPerc\":\"1.81\",\"callConversionPerc\":\"70.71\"}{\"metricDate\":\"2013-05-03\",\"pageCountTotal\":\"28467\",\"landCountTotal\":\"11102\",\"newLandCountTotal\":\"7786\",\"returnLandCountTotal\":\"3316\",\"spiderCountTotal\":\"56\",\"goalCountTotal\":\"186.000000\",\"callGoalCountTotal\":\"186.000000\",\"callCountTotal\":\"261.000000\",\"onlineGoalCountTotal\":\"0.000000\",\"conversionPerc\":\"1.68\",\"callConversionPerc\":\"71.26\"}{\"metricDate\":\"2013-05-04\",\"pageCountTotal\":\"20884\",\"landCountTotal\":\"9031\",\"newLandCountTotal\":\"6670\",\"returnLandCountTotal\":\"2361\",\"spiderCountTotal\":\"51\",\"goalCountTotal\":\"7.000000\",\"callGoalCountTotal\":\"7.000000\",\"callCountTotal\":\"44.000000\",\"onlineGoalCountTotal\":\"0.000000\",\"conversionPerc\":\"0.08\",\"callConversionPerc\":\"15.91\"}{\"metricDate\":\"2013-05-05\",\"pageCountTotal\":\"20481\",\"landCountTotal\":\"8782\",\"newLandCountTotal\":\"6390\",\"returnLandCountTotal\":\"2392\",\"spiderCountTotal\":\"58\",\"goalCountTotal\":\"1.000000\",\"callGoalCountTotal\":\"1.000000\",\"callCountTotal\":\"8.000000\",\"onlineGoalCountTotal\":\"0.000000\",\"conversionPerc\":\"0.01\",\"callConversionPerc\":\"12.50\"}{\"metricDate\":\"2013-05-06\",\"pageCountTotal\":\"25175\",\"landCountTotal\":\"10019\",\"newLandCountTotal\":\"7082\",\"returnLandCountTotal\":\"2937\",\"spiderCountTotal\":\"62\",\"goalCountTotal\":\"24.000000\",\"callGoalCountTotal\":\"24.000000\",\"callCountTotal\":\"47.000000\",\"onlineGoalCountTotal\":\"0.000000\",\"conversionPerc\":\"0.24\",\"callConversionPerc\":\"51.06\"}{\"metricDate\":\"2013-05-07\",\"pageCountTotal\":\"35892\",\"landCountTotal\":\"12615\",\"newLandCountTotal\":\"8391\",\"returnLandCountTotal\":\"4224\",\"spiderCountTotal\":\"62\",\"goalCountTotal\":\"239.000000\",\"callGoalCountTotal\":\"239.000000\",\"callCountTotal\":\"321.000000\",\"onlineGoalCountTotal\":\"0.000000\",\"conversionPerc\":\"1.89\",\"callConversionPerc\":\"74.45\"}{\"metricDate\":\"2013-05-08\",\"pageCountTotal\":\"34106\",\"landCountTotal\":\"12391\",\"newLandCountTotal\":\"8389\",\"returnLandCountTotal\":\"4002\",\"spiderCountTotal\":\"90\",\"goalCountTotal\":\"221.000000\",\"callGoalCountTotal\":\"221.000000\",\"callCountTotal\":\"295.000000\",\"onlineGoalCountTotal\":\"0.000000\",\"conversionPerc\":\"1.78\",\"callConversionPerc\":\"74.92\"}{\"metricDate\":\"2013-05-09\",\"pageCountTotal\":\"32721\",\"landCountTotal\":\"12447\",\"newLandCountTotal\":\"8541\",\"returnLandCountTotal\":\"3906\",\"spiderCountTotal\":\"54\",\"goalCountTotal\":\"207.000000\",\"callGoalCountTotal\":\"207.000000\",\"callCountTotal\":\"280.000000\",\"onlineGoalCountTotal\":\"0.000000\",\"conversionPerc\":\"1.66\",\"callConversionPerc\":\"73.93\"}{\"metricDate\":\"2013-05-10\",\"pageCountTotal\":\"29724\",\"landCountTotal\":\"11616\",\"newLandCountTotal\":\"8063\",\"returnLandCountTotal\":\"3553\",\"spiderCountTotal\":\"139\",\"goalCountTotal\":\"207.000000\",\"callGoalCountTotal\":\"207.000000\",\"callCountTotal\":\"301.000000\",\"onlineGoalCountTotal\":\"0.000000\",\"conversionPerc\":\"1.78\",\"callConversionPerc\":\"68.77\"}{\"metricDate\":\"2013-05-11\",\"pageCountTotal\":\"22061\",\"landCountTotal\":\"9660\",\"newLandCountTotal\":\"6971\",\"returnLandCountTotal\":\"2689\",\"spiderCountTotal\":\"52\",\"goalCountTotal\":\"3.000000\",\"callGoalCountTotal\":\"3.000000\",\"callCountTotal\":\"40.000000\",\"onlineGoalCountTotal\":\"0.000000\",\"conversionPerc\":\"0.03\",\"callConversionPerc\":\"7.50\"}{\"metricDate\":\"2013-05-12\",\"pageCountTotal\":\"23341\",\"landCountTotal\":\"9935\",\"newLandCountTotal\":\"6960\",\"returnLandCountTotal\":\"2975\",\"spiderCountTotal\":\"45\",\"goalCountTotal\":\"0.000000\",\"callGoalCountTotal\":\"0.000000\",\"callCountTotal\":\"12.000000\",\"onlineGoalCountTotal\":\"0.000000\",\"conversionPerc\":\"0.00\",\"callConversionPerc\":\"0.00\"}{\"metricDate\":\"2013-05-13\",\"pageCountTotal\":\"36565\",\"landCountTotal\":\"13583\",\"newLandCountTotal\":\"9277\",\"returnLandCountTotal\":\"4306\",\"spiderCountTotal\":\"69\",\"goalCountTotal\":\"246.000000\",\"callGoalCountTotal\":\"246.000000\",\"callCountTotal\":\"324.000000\",\"onlineGoalCountTotal\":\"0.000000\",\"conversionPerc\":\"1.81\",\"callConversionPerc\":\"75.93\"}{\"metricDate\":\"2013-05-14\",\"pageCountTotal\":\"35260\",\"landCountTotal\":\"13797\",\"newLandCountTotal\":\"9375\",\"returnLandCountTotal\":\"4422\",\"spiderCountTotal\":\"59\",\"goalCountTotal\":\"212.000000\",\"callGoalCountTotal\":\"212.000000\",\"callCountTotal\":\"283.000000\",\"onlineGoalCountTotal\":\"0.000000\",\"conversionPerc\":\"1.54\",\"callConversionPerc\":\"74.91\"}{\"metricDate\":\"2013-05-15\",\"pageCountTotal\":\"35836\",\"landCountTotal\":\"13792\",\"newLandCountTotal\":\"9532\",\"returnLandCountTotal\":\"4260\",\"spiderCountTotal\":\"94\",\"goalCountTotal\":\"187.000000\",\"callGoalCountTotal\":\"187.000000\",\"callCountTotal\":\"258.000000\",\"onlineGoalCountTotal\":\"0.000000\",\"conversionPerc\":\"1.36\",\"callConversionPerc\":\"72.48\"}{\"metricDate\":\"2013-05-
(I've truncated the output a little).
The R output has been read properly up until "callConversionPerc" and after that the JSON parsing seems to break. Is there some default parameter that I've missed that could couse this behaviour? I have checked for unmasked speechmarks and anything obvious like that I didn't see any.
Surely it wouldn't be the new line operator that occurs shortly after, would it?
EDIT: So this does appear to be a new line issue.
Here's another 'JSON' string I've pulled into R, again the double quote marks are all escaped
"{\"modelId\":\"7\",\"igrp\":\"1\",\"modelName\":\"Equally Weighted\",\"modelType\":\"spread\",\"status\":200,\"matchCriteria\":\"\",\"lookbackDays\":90}\n{\"modelId\":\"416\",\"igrp\":\"1\",\"modelName\":\"First and Last Click Weighted \",\"modelType\":\"spread\",\"status\":200,\"matchCriteria\":\"\",\"lookbackDays\":90,\"firstWeight\":3,\"lastWeight\":3}\n{\"modelId\":\"5\",\"igrp\":\"1\",\"modelName\":\"First Click\",\"modelType\":\"first\",\"status\":200,\"matchCriteria\":\"\",\"lookbackDays\":90}\n{\"modelId\":\"8\",\"igrp\":\"1\",\"modelName\":\"First Click Weighted\",\"modelType\":\"spread\",\"status\":200,\"matchCriteria\":\"\",\"lookbackDays\":90,\"firstWeight\":3}\n{\"modelId\":\"128\",\"igrp\":\"1\",\"modelName\":\"First Click Weighted across PPC\",\"modelType\":\"spread\",\"status\":200,\"matchCriteria\":\"\",\"lookbackDays\":90,\"firstWeight\":3,\"channelsMode\":\"include\",\"channels\":[5]}\n{\"modelId\":\"6\",\"igrp\":\"1\",\"modelName\":\"Last Click\",\"modelType\":\"last\",\"status\":200,\"matchCriteria\":\"\",\"lookbackDays\":90}\n{\"modelId\":\"417\",\"igrp\":\"1\",\"modelName\":\"Last Click Weighted \",\"modelType\":\"spread\",\"status\":200,\"matchCriteria\":\"\",\"lookbackDays\":90,\"lastWeight\":3}\n\r\n"
When I try to parse this using fromJSON I get the same problem, it gets to the last term on the first line and then stop parsing properly. Note that in this new case the output is slightly different from before returning NULL for the last item (instead of the messy string from the previous example.
$modelId
[1] "7"
$igrp
[1] "1"
$modelName
[1] "Equally Weighted"
$modelType
[1] "spread"
$status
[1] 200
$matchCriteria
[1] ""
$lookbackDays
NULL
As you can see, the components now use the "$" convention as if they are naming components and the last item is null.
I am wondering if this is to do with the way that fromJSON is parsing the strings, and when it is asked to create a variable with the same name as a variable that already exists it then fails and just returns a string or a NULL.
I would have thought that dealing with that sort of case would be coded into RJSONIO as it's pretty standard for JSON data to have repeating names.
I'm stumped as to how to fix this.
There are two aspects of the JSON that seem to be causing trouble. The first is the trailing "\n\r\n", so get rid of that
contJSON = sub("\n\r\n$, "", contJSON)
The second is that the string is actually a series of valid JSON lines rather than a single JSON object. So either split it into valid JSON objects and process each individually
lapply(strsplit(contJSON, "\n"), fromJSON, asText=TRUE)
or create a string representing a single valid JSON object and process that
fromJSON(sprintf("[%s]", gsub("\n", ",", contJSON)), asText=TRUE)
Both of these rely on details of the data so are not generally useful.
It's clear that asText is an argument for fromJSON
> args(RJSONIO::fromJSON)
function (content, handler = NULL, default.size = 100, depth = 150L,
allowComments = TRUE, asText = isContent(content), data = NULL,
maxChar = c(0L, nchar(content)), simplify = Strict, nullValue = NULL,
simplifyWithNames = TRUE, encoding = NA_character_, stringFun = NULL,
...)
NULL
So if R is complaining about an unused parameter it's likely that you're actually accessing a different function, in particular rjson::fromJSON. Perhaps search() shows that rjson appears before RJSONIO?
Related
Redshift JSON Parsing
I have some JSON data in Redshift table of type character varying. An example entry is: [{"value":["*"], "key":"testData"}, {"value":"["GGG"], key: "differentData"}] I want to return vales based on keys, how can i do this? I'm attempting to do something like json_extract_path_text(column, 'value') but unfortunately it errors out. Any ideas?
So the first issue is that your string isn't valid JSON. There are mismatched and missing quotes. I think you mean: [{"value":["*"], "key":"testData"}, {"value":["GGG"], "key": "differentData"}] I don't know if this is a data issue or a transcription error but these functions won't work unless the json text is valid. The next thing to consider is that at the top level this json is an array so you will need to use json_extract_array_element_text() function to pick up an element of the array. For example: json_extract_array_element_text('json string', 0) So putting this together we can extract the first "value" with (untested): json_extract_path_text( json_extract_array_element_text( '[{"value":["*"], "key":"testData"}, {"value":["GGG"], "key": "differentData"}]', 0 ), 'value' ) Should return the string ["*"].
How to parse invalid JSON contianing invalid number
I work with a legacy customer who sends me webhook events. Sometimes their system sends me a value that looks like this [{"id":"LXKhRA3RHtaVBhnczVRJLdr","ecc":"0X6","cph":"X1X4X77074", "ts":16XX445656000}] I am using python's json.loads to parse the data sent to me. Here the ts is an invalid number and python gives json.decoder.JSONDecodeError whenever I try to parse this string. It is okay with me to get None in ts field if I can not parse it. What would be a smart (& possibly generic) way to solve this problem?
This may not be so generic, but you can try using yaml to load: import yaml s = '[{"id":"LXKhRA3RHtaVBhnczVRJLdr","ecc":"0X6","cph":"X1X4X77074","ts":16XX445656000}]' yaml.safe_load(s) Output: [{'id': 'LXKhRA3RHtaVBhnczVRJLdr', 'ecc': '0X6', 'cph': 'X1X4X77074', 'ts': '16XX445656000'}]
If the problem is always in the ts key, and this value is always a string of numbers and letters, you could just remove it before trying to parse: import re jstr = """[{"id":"LXKhRA3RHtaVBhnczVRJLdr","ecc":"0X6","cph":"X1X4X77074", "ts":16XX445656000}]""" jstr_sanitized = re.sub(r',?\s*\"ts\":[A-Z0-9]+', "", jstr) jobj = json.loads(jstr_sanitized) # [{'id': 'LXKhRA3RHtaVBhnczVRJLdr', 'ecc': '0X6', 'cph': 'X1X4X77074'}] Regex explanation (try online): ,?\s*\"ts\":[A-Z0-9]+ ,? Zero or one commas \s* Any number of whitespace characters \"ts\": Literally "ts": [A-Z0-9]+ One or more uppercase letters or numbers Alternatively, you could catch the JSONDecodeError and look at its pos attribute for the offending character. Then, you could either remove just that character and try again, or look for the next space, comma, or bracket and remove characters until that point before you try again. jstr = """[{"id":"LXKhRA3RHtaVBhnczVRJLdr","ecc":"0X6","cph":"X1X4X77074", "ts":16XX445656000}]""" while True: try: jobj = json.loads(jstr) break except json.JSONDecodeError as ex: jstr = jstr[:ex.pos] + jstr[ex.pos+1:] This mangles the output so that the ts key is now a valid integer (after removing the Xs) but since you don't care about that anyway, it should be fine: [{'id': 'LXKhRA3RHtaVBhnczVRJLdr', 'ecc': '0X6', 'cph': 'X1X4X77074', 'ts': 16445656000}] Since you'd end up repeatedly re-parsing the initial valid part, this is probably not a great idea if you have a huge json string, or there are lots of places that could throw an error, but it should be fine for the kind of example you have shown.
Parse complex Json string contained in Hadoop
I want to parse a string of complex JSON in Pig. Specifically, I want Pig to understand my JSON array as a bag instead of as a single chararray. I found that complex JSON can be parsed by using Twitter's Elephant Bird or Mozilla's Akela library. (I found some additional libraries, but I cannot use 'Loader' based approach since I use HCatalog Loader to load data from Hive.) But, the problem is the structure of my data; each value of Map structure contains value part of complex JSON. For example, 1. My table looks like (WARNING: type of 'complex_data' is not STRING, a MAP of <STRING, STRING>!) TABLE temp_table ( user_id BIGINT COMMENT 'user ID.', complex_data MAP <STRING, STRING> COMMENT 'complex json data' ) COMMENT 'temp data.' PARTITIONED BY(created_date STRING) STORED AS RCFILE; 2. And 'complex_data' contains (a value that I want to get is marked with two *s, so basically #'d'#'f' from each PARSED_STRING(complex_data#'c') ) { "a": "[]", "b": "\"sdf\"", "**c**":"[{\"**d**\":{\"e\":\"sdfsdf\" ,\"**f**\":\"sdfs\" ,\"g\":\"qweqweqwe\"}, \"c\":[{\"d\":21321,\"e\":\"ewrwer\"}, {\"d\":21321,\"e\":\"ewrwer\"}, {\"d\":21321,\"e\":\"ewrwer\"}] }, {\"**d**\":{\"e\":\"sdfsdf\" ,\"**f**\":\"sdfs\" ,\"g\":\"qweqweqwe\"}, \"c\":[{\"d\":21321,\"e\":\"ewrwer\"}, {\"d\":21321,\"e\":\"ewrwer\"}, {\"d\":21321,\"e\":\"ewrwer\"}] },]" } 3. So, I tried... (same approach for Elephant Bird) REGISTER '/path/to/akela-0.6-SNAPSHOT.jar'; DEFINE JsonTupleMap com.mozilla.pig.eval.json.JsonTupleMap(); data = LOAD temp_table USING org.apache.hive.hcatalog.pig.HCatLoader(); values_of_map = FOREACH data GENERATE complex_data#'c' AS attr:chararray; -- IT WORKS -- dump values_of_map shows correct chararray data per each row -- eg) ([{"d":{"e":"sdfsdf","f":"sdfs","g":"sdf"},... }, {"d":{"e":"sdfsdf","f":"sdfs","g":"sdf"},... }, {"d":{"e":"sdfsdf","f":"sdfs","g":"sdf"},... }]) ([{"d":{"e":"sdfsdf","f":"sdfs","g":"sdf"},... }, {"d":{"e":"sdfsdf","f":"sdfs","g":"sdf"},... }, {"d":{"e":"sdfsdf","f":"sdfs","g":"sdf"},... }]) ... attempt1 = FOREACH data GENERATE JsonTupleMap(complex_data#'c'); -- THIS LINE CAUSE AN ERROR attempt2 = FOREACH data GENERATE JsonTupleMap(CONCAT(CONCAT('{\\"key\\":', complex_data#'c'), '}'); -- IT ALSO DOSE NOT WORK I guessed that "attempt1" was failed because the value doesn't contain full JSON. However, when I CONCAT like "attempt2", I generate additional \ mark with. (so each line starts with {\"key\": ) I'm not sure that this additional marks breaks the parsing rule or not. In any case, I want to parse the given JSON string so that Pig can understand. If you have any method or solution, please Feel free to let me know.
I finally solved my problem by using jyson library with jython UDF. I know that I can solve it by using JAVA or other languages. But, I think that jython with jyson is the most simplist answer to this issue.
How can I identify where or why a JSON is invalid (RJSONIO)
I'm dealing with a data column that is just massive JSON columns. Each row value is ~50,000 characters. After spending some time trying to fiddle with fromJSON to go from JSON -> dataframe where columns = JSON keys, and getting numerous errors in doing so, I used isValidJSON() across the column and found that about 75% of my JSON is "invalid". Now, I'm fully confident based on the source that this data is in fact valid JSON straight from the DB, so I would love to be able to identify where in the 50,000 characters the fromJSON function is running into trouble. I've tried debug() but it just tells me at which function call the error occurs. I'd share sample rows if they weren't all so cumbersome, but it's a healthy mix of values, imagine a df with df$features: {"names":["bob","alice"],"ages":{"bob":20,"alice":21}, "id":54, "isTrue":false}... ad infinitum Code I'm trying to run: iValid <- function(x){return(isValidJSON(I(x)))} sapply(df$features,iValid) [1] TRUE FALSE FALSE FALSE TRUE TRUE FALSE TRUE TRUE FALSE... > fromJSON(df$features[2]) debugging in: fromJSON(df$features[2]) debug: standardGeneric("fromJSON") Browse[2]> n debugging in: fromJSON(content, handler, default.size, depth, allowComments, asText = FALSE, data, maxChar, simplify = simplify, ..., nullValue = nullValue, simplifyWithNames = simplifyWithNames, encoding = encoding, stringFun = stringFun) debug: standardGeneric("fromJSON") Browse[3]> n Error in fromJSON(content, handler, default.size, depth, allowComments, : invalid JSON input >
Importing and converting specific attributes of JSON files in R
I have been given a rather large corpus of conversational data with which to import the relevant information into R and run some statistical analysis. The problem is I do not need half the information provided in each entry. Each line in a specific JSON file from the dataset relates to a particular conversation of the nature A->B->A. The attributes provided are contained within a nested array for each of the respective statements in the conversation. This is best illustrated diagrammatically: What I need is to simply extract the 'actual_sentence' attribute from each turn (turn_1,turn_2,turn_3 - aka A->B->A) and remove the rest. So far my efforts have been in vain as I have been using the jsonlite package which seems to import the JSON fine but lacks the 'tree depth' to discern between the specific attributes of each turn. An example: The following is an example of one row/record of a provided JSON formatted .txt file: {"semantic_distance_1": 0.375, "semantic_distance_2": 0.6486486486486487, "turn_2": "{\"sentence\": [\"A\", \"transmission\", \"?\"], \"script_filename\": \"Alien.txt\", \"postag\": [\"AT\", null, \".\"], \"semantic_set\": [\"infection.n.04\", \"vitamin_a.n.01\", \"angstrom.n.01\", \"transmittance.n.01\", \"transmission.n.05\", \"transmission.n.02\", \"transmission.n.01\", \"ampere.n.02\", \"adenine.n.01\", \"a.n.07\", \"a.n.06\", \"deoxyadenosine_monophosphate.n.01\"], \"additional_info\": [], \"original_sentence\": \"A transmission?\", \"actual_sentence\": \"A transmission?\", \"dependency_grammar\": null, \"actor\": \"standard\", \"sentence_type\": null, \"ner\": {}, \"turn_in_file\": 58}", "turn_3": "{\"sentence\": [\"A\", \"voice\", \"transmission\", \".\"], \"script_filename\": \"Alien.txt\", \"postag\": [\"AT\", \"NN\", null, \".\"], \"semantic_set\": [\"vitamin_a.n.01\", \"voice.n.10\", \"voice.n.09\", \"angstrom.n.01\", \"articulation.n.03\", \"deoxyadenosine_monophosphate.n.01\", \"a.n.07\", \"a.n.06\", \"infection.n.04\", \"spokesperson.n.01\", \"transmittance.n.01\", \"voice.n.02\", \"voice.n.03\", \"voice.n.01\", \"voice.n.06\", \"voice.n.07\", \"voice.n.05\", \"voice.v.02\", \"voice.v.01\", \"part.n.11\", \"transmission.n.05\", \"transmission.n.02\", \"transmission.n.01\", \"ampere.n.02\", \"adenine.n.01\"], \"additional_info\": [], \"original_sentence\": \"A voice transmission.\", \"actual_sentence\": \"A voice transmission.\", \"dependency_grammar\": null, \"actor\": \"computer\", \"sentence_type\": null, \"ner\": {}, \"turn_in_file\": 59}", "turn_1": "{\"sentence\": [\"I\", \"have\", \"intercepted\", \"a\", \"transmission\", \"of\", \"unknown\", \"origin\", \".\"], \"script_filename\": \"Alien.txt\", \"postag\": [\"PPSS\", \"HV\", \"VBD\", \"AT\", null, \"IN\", \"JJ\", \"NN\", \".\"], \"semantic_set\": [\"i.n.03\", \"own.v.01\", \"receive.v.01\", \"consume.v.02\", \"accept.v.02\", \"rich_person.n.01\", \"vitamin_a.n.01\", \"have.v.09\", \"have.v.07\", \"nameless.s.01\", \"have.v.01\", \"obscure.s.04\", \"have.v.02\", \"stranger.n.01\", \"angstrom.n.01\", \"induce.v.02\", \"hold.v.03\", \"wiretap.v.01\", \"give_birth.v.01\", \"a.n.07\", \"a.n.06\", \"deoxyadenosine_monophosphate.n.01\", \"infection.n.04\", \"unknown.n.03\", \"unknown.s.03\", \"get.v.03\", \"origin.n.03\", \"origin.n.02\", \"transmittance.n.01\", \"origin.n.05\", \"origin.n.04\", \"one.s.01\", \"have.v.17\", \"have.v.12\", \"have.v.10\", \"have.v.11\", \"take.v.35\", \"experience.v.03\", \"intercept.v.01\", \"unknown.n.01\", \"iodine.n.01\", \"strange.s.02\", \"suffer.v.02\", \"beginning.n.04\", \"one.n.01\", \"transmission.n.05\", \"transmission.n.02\", \"transmission.n.01\", \"ampere.n.02\", \"lineage.n.01\", \"unknown.a.01\", \"adenine.n.01\"], \"additional_info\": [], \"original_sentence\": \"I have intercepted a transmission of unknown origin.\", \"actual_sentence\": \"I have intercepted a transmission of unknown origin.\", \"dependency_grammar\": null, \"actor\": \"computer\", \"sentence_type\": null, \"ner\": {}, \"turn_in_file\": 57}", "syntax_distance_1": null, "syntax_distance_2": null} As you can see there is a great deal of information that I do not need and given my poor knowledge of R, importing it (and the rest of the file it is contained within) in this form leads me to the following in R: The command used for this was: json = fromJSON(paste("[",paste(readLines("JSONfile.txt"),collapse=","),"]")) Essentially it is picking up on syntax_distance_1, syntax_distance_2, semantic_distance_1,semantic_distance_2 and then lumping all of the turn data into three enormous and unstructured arrays. What I would like to know is if I can somehow either: Specify a tree depth that enables R to discern between each of the 'turn' variables OR Simply cherry pick the turn$actual_sentence information from the outset and remove all the rest in the import process. Hope that is enough information, please let me know if there is anything else I can add to clear it up.
Since in this case you know that you need to go one level deeper, what you can do is use one of the apply functions to parse the turn_x strings. The following snippet of code illustrates the basic idea: # Read the json file json_file <- fromJSON("JSONfile.json") # use the apply function to parse the turn_x strings. # Checking that the element is a character helps avoid # issues with numerical values and nulls. pjson_file <- lapply(json_file, function(x) {if (is.character(x)){fromJSON(x)}}) If we look at the results, we see that the whole data structure has been parsed this time. To access the actual_sentence field, what you can do is: > pjson_file$turn_1$actual_sentence [1] "I have intercepted a transmission of unknown origin." > pjson_file$turn_2$actual_sentence [1] "A transmission?" > pjson_file$turn_3$actual_sentence [1] "A voice transmission." If you want to scale this logic so that it works with a large dataset, you can encapsulate it in a function that would return the three sentences as a character vector or a dataframe if you wish.