Cuda measurement of loop - cuda

I launch a very simple kernel <<<1,512>>> on a CUDA Fermi GPU.
__global__ void kernel(){
int x1,x2;
x1=5;
x2=1;
for (int k=0;k<=1000000;k++)
{
x1+=x2;
}
}
The kernel is very simple, it does 10^6 additions and does not transfer anything back to global memory. The result is correct, i.e. after the loop x1 (in all its 512 thread instances) contains 10^6 + 5
I am trying to measure the execution time of the kernel. using both visual studio parallel nsight and nvvp. Nsight measures 2.5 microseconds and nvvp measures 4 microseconds.
The issue is the following: I may increase largely the size of the loop eg to 10^8 and the time remains constant. Same if I decrease the loop size a lot. Why does this happen?
Please note that if I use shared memory or global memory inside the loop, the measurements reflect the work being performed (i.e. there is proportionality).

As noted, CUDA compiler optimisation is very aggressive at removing dead code. Because x2 doesn't participate in a value which is written to memory, it and the loop can be removed. The compiler will also pre-calculate any results which can be deduced at compile time, so if all the constants in the loop are known to the compiler, it can compute the final result and replace it with a constant.
To get around both of these problems, rewrite your code like this:
__global__
void kernel(int *out, int x0, bool flag)
{
int x1 = x0, x2 = 1;
for (int k=0; k<=1000000; k++) {
x1+=x2;
}
if (flag) out[threadIdx.x + blockIdx.x*blockDim.x] = x1;
}
and then run it like this:
kernel<<<1,512>>>((int *)0, 5, false);
By passing the initial value of x1 as an argument to the kernel, you ensure that the loop result isn't available to the compiler. The flag makes the memory store conditional, and then memory store makes the whole calculation unsafe to remove. As long as the flag is set to false at runtime, there is no store performed, so that doesn't effect the timing of the loop.

Because compiler eliminates the dead paths. You code doesn't actually do anything. Look at the assembly.
If you are actually seeing the value, then the compiler may have just optimized out the loop as it can know the value during compile time.
When you write out the register contents to shared memory, compiler cannot guarantee that the result will not be used, and hence the value will actually be computed. In other words, the value you compute must be used somewhere eventually or written to memory otherwise its computation will be dropped.

Related

How to debug numba error involving synchronization [duplicate]

I'm having trouble here. I launch two kernels , check if some value is the one expected (memcpy to the host), if it is I stop, if it isn't I launch the two kernels again.
the first kernel:
__global__ void aco_step(const KPDeviceData* data)
{
int obj = threadIdx.x;
int ant = blockIdx.x;
int id = threadIdx.x + blockIdx.x * blockDim.x;
*(data->added) = 1;
while(*(data->added) == 1)
{
*(data->added) = 0;
//check if obj fits
int fits = (data->obj_weights[obj] + data->weight[ant] <= data->max_weight);
fits = fits * !(getElement(data->selections, data->selections_pitch, ant, obj));
if(obj == 0)
printf("ant %d going..\n", ant);
__syncthreads();
...
The code goes on after this. But that printf never gets printed, that syncthreads is there just for debugging purposes.
The "added" variable was shared, but since shared memory is a PITA and usually throws bugs in the code, i just removed it for now. This "added" variable isn't the smartest thing to do but it's faster than the alternative, which is checking if any variable within an array is some value on the host and deciding to keep iterating or not.
The getElement, simply does the matrix memory calculation with the pitch to access the right position and returns the element there:
int* el = (int*) ((char*)mat + row * pitch) + col;
return *el;
The obj_weights array has the right size, n*sizeof(int). So does the weight array, ants*sizeof(float). So they aren't out of bounds.
The kernel after this one has a printf right on the beginning, and it doesn't get printed either and after the printf it sets a variable on the device memory, and this memory is copied to the CPU after the kernel finished, and it isn't the right value when I print it in the CPU code. So I think this kernel is doing something illegal and the second one doesn't even get launched.
I'm testing some instances, when I launch 8 blocks and 512 threads, it runs OK. 32 blocks, 512 threads, OK. But 8 blocks and 1024 threads, and this happens, the kernel doesn't work, neither 32 blocks and 1024 threads.
Am I doing something wrong? Memory access? Am I launching too many threads?
edit: tried removing the "added" variable and the while loop, so it should execute just once. Still doesnt work, nothing gets printed, even if the printf is right after the three initial lines and the next kernel also doesn't print anything.
edit: another thing, I'm using a GTX 570, so the "Maximum number of threads per block" is 1024 according to http://en.wikipedia.org/wiki/CUDA. Maybe I'll just stick with 512 maximum or check on how higher I can put this value.
__syncthreads() inside conditional code is only allowed if the condition evaluates identically on all threads of a block.
In your case the condition suffers a race condition and is nondeterministic, so it most probably evaluates to different results for different threads.
printf() output is only displayed after the kernel finishes successfully. In this case it doesn't due to the problem mentioned above, so the output never shows up. You could have figured out this by testing the return codes all CUDA function calls for errors.

How can I make sure the compiler parallelizes my loads from global memory?

I've written a CUDA kernel that looks something like this:
int tIdx = threadIdx.x; // Assume a 1-D thread block and a 1-D grid
int buffNo = 0;
for (int offset=buffSz*blockIdx.x; offset<totalCount; offset+=buffSz*gridDim.x) {
// Select which "page" we're using on this iteration
float *buff = &sharedMem[buffNo*buffSz];
// Load data from global memory
if (tIdx < nLoadThreads) {
for (int ii=tIdx; ii<buffSz; ii+=nLoadThreads)
buff[ii] = globalMem[ii+offset];
}
// Wait for shared memory
__syncthreads();
// Perform computation
if (tIdx >= nLoadThreads) {
// Perform some computation on the contents of buff[]
}
// Switch pages
buffNo ^= 0x01;
}
Note that there's only one __syncthreads() in the loop, so the first nLoadThreads threads will start loading the data for the 2nd iteration while the rest of the threads are still computing the results for the 1st iteration.
I was thinking about how many threads to allocate for loading vs. computing, and I reasoned that I would only need a single warp for loading, regardless of buffer size, because that inner for loop consists of independent loads from global memory: they can all be in flight at the same time. Is this a valid line of reasoning?
And yet when I try this out, I find that (1) increasing the # of load warps dramatically increases performance, and (2) the disassembly in nvvp shows that buff[ii] = globalMem[ii+offset] was compiled into a load from global memory followed 2 instructions later by a store to shared memory, indicating that the compiler is not applying instruction-level parallelism here.
Would additional qualifiers (const, __restrict__, etc) on buff or globalMem help ensure the compiler does what I want?
I suspect the problem has to do with the fact that buffSz is not known at compile-time (the actual data is 2-D and the appropriate buffer size depends on the matrix dimensions). In order to do what I want, the compiler will need to allocate a separate register for each LD operation in flight, right? If I manually unroll the loop, the compiler re-orders the instructions so that there are a few LD in flight before the corresponding ST needs to access that register. I tried a #pragma unroll but the compiler only unrolled the loop without reordering the instructions, so that didn't help. What else can I do?
The compiler has no chance to reorder stores to shared memory away from loads from global memory, because a __syncthreads() barrier is immediately following.
As all off the threads have to wait at the barrier anyway, it is faster to use more threads for loading. This means that more global memory transactions can be in flight at any time, and each load thread has to incur global memory latency less often.
All CUDA devices so far do not support out-of-order execution, so the load loop will incur exactly one global memory latency per loop iteration, unless the compiler can unroll it and reorder loads before stores.
To allow full unrolling, the number of loop iterations needs to be known at compile time. You can use talonmies' suggestion of templating the loop trips to achieve this.
You can also use partial unrolling. Annotating the load loop with #pragma unroll 2 will allow the compiler to issue two loads, then two stores for every two loop iterations, thus achieve a similar effect to doubling nLoadThreads. Replacing 2 with higher numbers is possible, but you will hit the maximum number of transactions in flight at some point (use float2 or float4 moves to transfer more data with the same number of transactions). Also it is difficult to predict whether the compiler will prefer reordering instructions over the cost of more complex code for the final, potentially partial, trip through the unrolled loop.
So the suggestions are:
Use as many load threads as possible.
Unroll the load loop by templating the number of loop iterations and instantiating it for all possible number of loop trips (or the most common ones, with a generic fallback), or by using partial loop unrolling.
If the data is suitably aligned, move it as float2 or float4 to move more data with the same number of transactions.

Counting registers/thread in Cuda kernel

The nSight profiler tells me that the following kernel uses 52 registers per thread:
//Just the first lines of the kernel.
__global__ void voles_kernel(float *params, int *ctrl_params,
float dt, float currTime,
float *dev_voles, float *dev_weasels,
curandStateMtgp32 *state)
{
__shared__ float dev_params[9];
__shared__ int BuYeSimStep[4];
if(threadIdx.x < 4)
{
BuYeSimStep[threadIdx.x] = ctrl_params[threadIdx.x];
}
if(threadIdx.x < 9){
dev_params[threadIdx.x] = params[threadIdx.x];
}
__syncthreads();
float currVole = curand_uniform(&state[blockIdx.x]) + 3.0;
float currWeas = curand_uniform(&state[blockIdx.x]) + 0.1;
float oldVole = currVole;
float oldWeas = currWeas;
int jj;
if (blockIdx.x * blockDim.x + threadIdx.x < BuYeSimStep[2])
{
int dayIndex = 0;
/* Not declaring any new variable from here on, just doing arithmetics.
....... */
If each register has 4 bytes I don't understand how we get to 52 registers, even
assuming that the arrays params[9] and ctrl_params[4] end up in registers (in which
case using shared memory as I did doesn't make sense). I would
like to increase occupancy, but I don't get why I'm using so many registers.
Any ideas?
It's generally difficult to look at C code and predict the register usage from it. The compiler may aggressively optimize code by increasing register usage, perhaps to save an instruction here or there. You seem to be making an assumption that register usage can be predicted from your C code variable allocations, and while there is some connection between the two, you cannot assume register usage can be computed directly from C code variable allocations.
Since you haven't provided your code, nobody can actually help with the register usage. If you want to better understand the register usage, you will need to look at the PTX code directly. To do this, compile your code using nvcc with the -ptx switch, and inspect the resultant .ptx file directly. To do this you may wish to refer to the PTX documentation as well as the nvcc documentation to look at the various compiler options.
You haven't provided your code, so it's not really possible to make any direct suggestions, but you may be able to reduce register usage by reducing constant usage, reducing or refactoring arithmetic usage, switching from double to float, and I'm sure there are many other suggestions as well. Register usage will also be affected if you are passing the -G switch to the compiler.
You can limit the compiler's usage of registers per thread by passing the -maxrregcount switch to nvcc with an appropriate parameter, such as -maxrregcount 20 which will instruct the compiler to limit itself to 20 registers per thread. This tactic may not give good results, however, or you may need to tune the parameter to a value which doesn't sacrifice too much performance. However you may find an optimum choice which doesn't sacrifice too much basic performance but allows you to improve occupancy. If you constrain the compiler too much, it will begin to spill it's needed register usage to local memory, which will generally reduce performance.
You should also be aware that you can pass -Xptxas -v to nvcc which will give useful output about the compiler's register usage and other related data (spilling, etc.) at compile time.
If you want to increase the occupancy, a direct way is using compiler flag: maxregcount to restrict the usage of registers, but it may suffer a performance loss because some registers will be spilled to local memory, which is very slow.
I suggest you debug your code with Eclipse Nsight.
Create a breakpoint at the first line of your kernel and step to there.
In Debug Perspective, inside the CUDA Thread, you have the current stack trace. Right-click on the stack and click on "Instruction Stepping Mode". The window "Disassembly" will open your kernel PTX Assembly. You can continue stepping in your kernel to track the correlation of your source code and the assembly. So you can discover which register is used for.

Benefit of splitting a big CUDA kernel and using dynamic parallelism

I have a big kernel in which an initial state is evolved using different techniques. That is, I have a loop in the kernel, in this loop a certain predicate is evaluated on the current state and on the result of this predicate, a certain action is taken.
The kernel needs a bit of temporary data and shared memory, but since it is big it uses 63 registers and the occupancy is very very low.
I would like to split the kernel in many little kernels, but every block is totally independent from the others and I (think I) can't use a single thread on the host code to launch multiple small kernels.
I am not sure if streams are adequate for this kind of work, I never used them, but since I have the option to use the dynamic parallelism, I would like if that is a good option to implement this kind of job.
Is it fast to launch a kernel from a kernel?
Do I need to copy data in global memory to make them available to a sub-kernel?
If I split my big kernel in many little ones, and leave the first kernel with a main loop which calls the required kernel when necessary (which allows me to move temporary variables in every sub-kernel), will help me increase the occupancy?
I know it is a bit generic question, but I do not know this technology and I would like if it fits my case or if streams are better.
EDIT:
To provide some other details, you can imagine my kernel to have this kind of structure:
__global__ void kernel(int *sampleData, int *initialData) {
__shared__ int systemState[N];
__shared__ int someTemp[N * 3];
__shared__ int time;
int tid = ...;
systemState[tid] = initialData[tid];
while (time < TIME_END) {
bool c = calc_something(systemState);
if (c)
break;
someTemp[tid] = do_something(systemState);
c = do_check(someTemp);
if (__syncthreads_or(c))
break;
sample(sampleData, systemState);
if (__syncthreads_and(...)) {
do_something(systemState);
sync();
time += some_increment(systemState);
}
else {
calcNewTemp(someTemp, systemState);
sync();
do_something_else(someTemp, systemState);
time += some_other_increment(someTemp, systemState);
}
}
do_some_stats();
}
this is to show you that there is a main loop, that there are temporary data which are used somewhere and not in other points, that there are shared data, synchronization points, etc.
Threads are used to compute vectorial data, while there is, ideally, one single loop in each block (well, of course it is not true, but logically it is)... One "big flow" for each block.
Now, I am not sure about how to use streams in this case... Where is the "big loop"? On the host I guess... But how do I coordinate, from a single loop, all the blocks? This is what leaves me most dubious. May I use streams from different host threads (One thread per block)?
I am less dubious about dynamic parallelism, because I could easily keep the big loop running, but I am not sure if I could have advantages here.
I have benefitted from dynamic parallelism for solving an interpolation problem of the form:
int i = threadIdx.x + blockDim.x * blockIdx.x;
for(int m=0; m<(2*K+1); m++) {
PP1 = calculate_PP1(i,m);
phi_cap1 = calculate_phi_cap1(i,m);
for(int n=0; n<(2*K+1); n++) {
PP2 = calculate_PP2(i,m);
phi_cap2 = calculate_phi_cap2(i,n);
atomicAdd(&result[PP1][PP2],data[i]*phi_cap1*phi_cap2); } } }
where K=6. In this interpolation problem, the computation of each addend is independent of the others, so I have split them in a (2K+1)x(2K+1) kernel.
From my (possibly incomplete) experience, dynamic parallelism will help if you have a few number of independent iterations. For larger number of iterations, perhaps you could end up by calling the child kernel several times and so you should check if the overhead in kernel launch will be the limiting factor.

CUDA memory allocation - is it efficient

This is my code. I have lot of threads so that those threads calling this function many times.
Inside this function I am creating an array. It is an efficient implementation?? If it is not please suggest me the efficient implementation.
__device__ float calculate minimum(float *arr)
{
float vals[9]; //for each call to this function I am creating this arr
// Is it efficient?? Or how can I implement this efficiently?
// Do I need to deallocate the memory after using this array?
for(int i=0;i<9;i++)
vals[i] = //call some function and assign the values
float min = findMin(vals);
return min;
}
There is no "array creation" in that code. There is a statically declared array. Further, the standard CUDA compilation model will inline expand __device__functions, meaning that the vals will be compiled to be in local memory, or if possible even in registers.
All of this happens at compile time, not run time.
Perhaps I am missing something, but from the code you have posted, you don't need the temporary array at all. Your code will be (a little) faster if you do something like this:
#include "float.h" // for FLT_MAX
__device__ float calculate minimum(float *arr)
{
float minVal = FLT_MAX:
for(int i=0;i<9;i++)
thisVal = //call some function and assign the values
minVal = min(thisVal,minVal);
return minVal;
}
Where an array is actually required, there is nothing wrong with declaring it in this way (as many others have said).
Regarding the "float vals[9]", this will be efficient in CUDA. For arrays that have small size, the compiler will almost surely allocate all the elements into registers directly. So "vals[0]" will be a register, "vals[1]" will be a register, etc.
If the compiler starts to run out of registers, or the array size is larger than around 16, then local memory is used. You don't have to worry about allocating/deallocating local memory, the compiler/driver do all that for you.
Devices of compute capability 2.0 and greater do have a call stack to allow things like recursion. For example you can set the stack size to 6KB per thread with:
cudaStatus = cudaThreadSetLimit(cudaLimitStackSize, 1024*6);
Normally you won't need to touch the stack yourself. Even if you put big static arrays in your device functions, the compiler and driver will see what's there and make space for you.