Implementing a scalable multiroom chat system - html

I've been looking into sockjs-tornado recently and am working on a chat function for a social networking site. I'm trying to get a feel for common methods used in building scalable multiroom chat functionality. I'll outline a couple of the methods I've thought of and I'd like to get feedback. What methods are used in the real world? What are the advantages and disadvantages to these methods?
Prereqs:
running tornado
using sockjs-tornado lib
sockjs-client lib for js
Everything else is open.
Methods I've considered:
For loop
This seems like the simplest way to go. You create a user class that subscribes to certain room classes. The user sends a message class that contains a room id and the server redirects the message in the loop only to users that have subscribed to that room. This seems to me to be by far the worst because the complexity is obviously at least linear. (Imagine 500 users connected at once to 5 chat rooms each.)
Multi-tasking/multiple server instances
This also seems like a bad idea because you could have 500 server instances running at any time on... different ports? I'm really not sure on the implementation of this method.
Native support
Now granted, a lot of libraries have this built in such as socketio. However that's not an option due to the sole node.js support. (I'm on tornado server.) Socks in particular does not have built in support for multiple "rooms".
Conclusion
I'm looking for resources/case studies, and industry standards. Any help would be appreciated.

I would just use a message queue server like RabbitMQ with a fanout exchange as each "chat room".
You can see an example of using a fanout exchange in Python here.
The Pika AMQP library works with Tornado, too.
The advantage with using a message queueing system is that you can have users connected to different Tornado processes on different servers while still being in the same "room", giving you high availability on the HTTP layer.
RabbitMQ also has HA capabilities (although not the greatest).

Related

Is there a standard PubSub protocol over WebSocket?

I'm looking for a way to implement basic Publish / Subscribe between applications written in different languages, to exchange events with JSON payloads.
WebSocket seems like the obvious choice for the transport, but you need an (arguably small) layer on top to implement some of the plumbing:
aggreeing on messages representing the pubsub domain "subscribe to a topic", "publish a message"
aggreeing on messages for the infra ("heartbeat", "authentication")
I was expecting to find an obvious standard for this, but there does not seem to be any.
WAMP is often refered to, but in my (short) experience, the implementations of server / clients libraries are not great
STOMP is often refered to, but in my (even shorter) experience, it's even worse
Phoenix Channels are nice, but they're restricted to Phoenix/Elixir world, and not standard (so the messages can be changed at any phoenix version without notice.)
So, is everyone using MQTT/WS (which require another broker components, rather than simple servers ?) Or gRPC ?
Is everyone just re-implementing it from scratch ? (It's one of those things that seems easy enough to do oneselves, but I guess you just end up with an half-baked, poorly-specified, broken version of the thing I'm looking for...)
Or is there something fundamentally broken with the idea of serving streams of data from a server over WS ?
There are two primary classes of WebSocket libraries; those that implement the protocol and leave the rest to the developer, and those that build on top of the protocol with various additional features commonly required by realtime messaging applications, such as restoring lost connections, pub/sub, and channels, authentication, authorization, etc.
The latter variety often requires that their own libraries be used on the client-side, rather than just using the raw WebSocket API provided by the browser. As such, it becomes crucial to make sure you’re happy with how they work and what they’re offering. You may find yourself locked into your chosen solution’s way of doing things once it has been integrated into your architecture, and any issues with reliability, performance, and extensibility may come back to bite you.
ws, faye-websockets, socket.io, μWebSockets and SocketCluster are some good open-source options.
The number of concurrent connections a server can handle is rarely the bottleneck when it comes to server load. Most decent WebSocket servers can support thousands of concurrent connections, but what’s the workload required to process and respond to messages once the WebSocket server process has handled receipt of the actual data?
Typically there will be all kinds of potential concerns, such as reading and writing to and from a database, integration with a game server, allocation and management of resources for each client, and so forth.
As soon as one machine is unable to cope with the workload, you’ll need to start adding additional servers, which means now you’ll need to start thinking about load-balancing, synchronization of messages among clients connected to different servers, generalized access to client state irrespective of connection lifespan or the specific server that the client is connected to – the list goes on and on.
There’s a lot involved when implementing support for the WebSocket protocol, not just in terms of client and server implementation details, but also with respect to support for other transports to ensure robust support for different client environments, as well as broader concerns, such as authentication and authorization, guaranteed message delivery, reliable message ordering, historical message retention, and so forth. A data stream network such as Ably Realtime would be a good option to use in such cases if you'd rather avoid re-inventing the wheel.
There's a nice piece on WebSockets, Pub/Sub, and all issues related to scaling that I'd recommend reading.
Full disclosure: I'm a Developer Advocate for Ably but I hope this genuinely answers your question.

Connect Sproutcore App to MySQL Database

I'm trying to build my first Sproutcore App and I struggle to connect it to a MySQL-Database or any datasource other than fixture. I can't seem to find ANY tutorial except this one from 2009 which is marked as deprecated: http://wiki.sproutcore.com/w/page/12413058/Todos%2007-Hooking%20Up%20to%20the%20Backend .
Do people usually not connect SC-Apps to a Database? If they do so, how do they find out how to? Or does the above mentioned tutorial still work? A lot of gem-commands in the introduction seems to already differ from the official Sproutcore getting-started-guide.
SproutCore apps, as client-side "in-browser" apps, cannot connect directly to a MySQL or any other non-browser database. The application itself runs only within the user's browser (it's just HTML, CSS & JavaScript once built and deployed) and typically accesses any external data via XHR requests to an API or APIs. Therefore, you will need to create a service wrapper around your MySQL database in order for your client-side app to be able to load and update data.
There are two things worth mentioning. The first is that since the SproutCore app contains all of your user interface and a great deal of business logic, your API can be quite simple and should only return raw data (such as JSON). The second is that, I should mention that the client-server design, while more tedious to implement, is absolutely necessary in practice, because you can never trust the client side code, which is in the hands of a possibly nefarious user. Therefore, your API should also act as the final gatekeeper to validate all requests from the client.
This tutorial I found helped me a lot. Its very brief and demonstrates how to implement a very simple login-app, how to send post-requests (triggered by the login-button-action) to the backend-server and how to asynchronously process the response inside the Sproutcore-App:
http://hawkins.io/2011/04/sproutcore_login_tutorial/

When using WebRTC, is a peer-to-peer architecture redundant to build a video chat service like Skype?

We're playing around with WebRTC and trying to understand its benefits.
One reason Skype can serve hundreds of millions of people is because of its decentralized, peer-to-peer architecture, which keeps server costs down.
Does WebRTC allow people to build a video chat application similar to Skype in that the architecture can be decentralized (i.e., video streams are not routed from a broadcaster through a central server to listeners but rather routed directly from broadcaster to listener)?
Or, put another way, does WebRTC allow someone to essentially replicate the benefits of a P2P architecture similar to Skype's?
Or do you still need something similar to Skype's P2P architecture?
Yes, that's basically what WebRTC does. Calls using the getPeerConnection() API don't send voice/video data through a centralized server, but rather use firewall traversal protocols like ICE, STUN and TURN to allow a direct, peer-to-peer connection. However, the initial call setup still requires a server (most likely something running a WebSocket implementation, but it could be anything that you can figure out how to get JavaScript to talk to), so that the two clients can figure out that they're both online, signal that they want to connect, and then figure out how to do it (this is where the ICE/STUN/TURN bit comes in).
However, there's more to Skype's P2P architecture than just passing voice/video data back and forth. The majority of Skype's IP isn't in the codecs or protocols (much of which they licensed from Global IP Solutions, which Google purchased two years ago and then open-sourced, and which forms of the basis of Chrome's WebRTC implementation). Skype's real IP is all in the piece of WebRTC which still depends on a server: figuring out which people are online, and where they are, and how to get a hold of them, and doing that in a massively decentralized fashion. (See here for some rough details.) I think that you could probably use the DataStream portion of the getPeerConnection() API to do that sort of thing, if you were really, really smart - but it would be complicated, and would most likely stomp on a few Skype patents. Unless you want to be really, really huge, you'd probably just want to run your own centralized presence and location servers and handle all that stuff through standard WebSockets.
I should note that Skype's network architecture has changed since it was created; it no longer (from what I hear) uses random users as supernodes to relay data from client 1 to client 2; it didn't scale well and caused rampant variability in results (and annoyed people who had non-firewalled connections and bandwidth).
You definitely can build something SKype-like with WebRTC - and more. :-)

How do I create a multiplayer shooter in ActionScript for Blackberry Playbook?

What is a good framework to build a multiplayer game in Actionscript?
I want to create a multiplayer 2D shooter like Asteroids on the Blackberry Playbook; my main concern is latency - a shooter wouldn't be fun if the bullets are super-jerky and unexpectedly hit people.
I'm guessing that a UDP-based framework would be the best. Can anyone point me to the right direction?
There are many things you can use off the shelf but the basic setup is very simple but you have a few options.
The most common is server push, things like Flash Media Server, LiveCycle Data Services from Adobe or other tools like SmartFoxServer can do this. With this setup the server saves the connections to everyone that connects to the server and passes or "pushes" applications state to the people connected every time the data changes in the application.
Another option is called long pulling, this can be done with any web server really. How this works is the data stores the state of the application, when the application starts it calls the server, when it responds the client calls the server again.
There are a few other ways to do it but these are the most common. But this has nothing to do with protocol like HTTP, UDP, AMF, XMPP, or whatever else. The protocol is the format that the data is sent. With these out of the box servers they normally output a few of these but the fastest formats are binary like AMF but not always the best, there are advantages to each, because each gives you different features for keeping track of things.
If you are talking about have a game that takes over the world that has millions of users then you need to think about scaling and what happens when you need two or 100 servers and how do they talk to each other. But for now keep in mind that the more the server does the slower it will get, if you are sending small amounts of data it will be able to handle more users. Stick with making one efficient server and worry about that later if you get there.
You also need to thing about what server side programming language you want to mess with if any. Some services don't let you do anything, these normally cost money and don't do as much. Adobe likes Java but there are servers that output all of these protocols in most every language. My favorit lately has been Node.js a super fast way to run JavaScript on the server. Node.js has a built in HTTP server but it is just as easy to create a simple server that sends basic text through a Socket or XMLSocket. A server like this will easily handle many thousands of users. There are many games that use Socket.IO and if you want to see a simple example of what I'm talking about you can check out this.
Assuming you want to use Flash/Flex and not Java (Blackberry/Android) or native SDKs for Playbook -
There is a book as an inspiration: http://www.packtpub.com/flash-10-multiplayer-game-essentials/book it uses Pulse SDK at the server side. But you could use an own sockets-program on the server side. I use Perl as TCP-sockets server (sends gzipped XML around) in a small card game but this wouldn't work for your shooter.
Flash does not support UDP out of the box
But there is peer-to-peer networking protocol RTMFP in the upcoming Flash Media Server Enterprise 4 (price is out of reach for mere mortals)
So your best bet is to buy an Amazon-service for RTMFP then you can pay-per-use and stay scalable...
You can either do a constant post/get request with the server to get data for the game, but for a multiplayer shooter i'd surgest SmartFoxServer: http://www.smartfoxserver.com/
Out of the box, Adobe AIR supports UDP through datagram packets.
http://help.adobe.com/en_US/air/reference/html/flash/net/DatagramSocket.html
I couldn't find a particular networking API for flash, but perhaps you can build one. Libgren is open source and you can use that for reference.
You can also look into RTMFP though it's focus is on transmitting audio/video and some messages (through TCP I think).

In which domains are message oriented middleware like AMQP useful?

What problem do MOM (Message Oriented Middleware) solve? Scalability? Integration?
In which domain are they typically used and in which domains are they typically not used?
For example, say, is Google using such solution for it's main search engine or to power GMail?
What about big websites like Walmart, eBay, FedEx (pretty much a Java shop) and buy.com (pretty much an MS shop)? Does MOM solve a need there?
Does it make any sense when you're writing a Webapp where you control the server-side and have an homogenous environment (say tens of Amazon EC2 instances all running Linux + Java JVMs) there and where the clients are, well, Web browsers?
Does it make sense for desktop apps that need to communicate with a server?
Or is it 'only' for big enterprise stuff where you typically have a happy mix of countless of different systems that needs to communicate in a way or another?
I'm a bit confused as to what they're useful for and I think that with example of where they're appropriate and where they're not appropriate I could better understand their use.
This is a great question.
The main uses of messaging are: scaling, offloading work, integration, monitoring, event handling, routing, networking, push, mobility, buffering, queueing, task sharing, alerts, management, logging, batch, data delivery, pubsub, multicast, audit, scheduling, ... and more. Basically: anything where you need data but don't want to make a database request. (Caching is another, longer story).
Another way of looking at this is to notice that many applications used to be built by assuming that users (people) would perform actions that would be fulfilled by executing a transaction on a database (including reads, writes). But today, many actions are not user-initiated. Instead they are application-initiated. For example "tell me when the book that I want to buy is in stock". The best way to solve this class of problems is with messaging of some sort. Whether you call it middleware or web push or real time salad dressing does not matter. It's all messaging.
When you enable applications to initiate or react to events, then it is much easier to scale because your architecture can be based on loosely coupled components. It is also much easier to integrate those components if your messaging is based on a stable, scalable, serviceable tool, preferably using open standard APIs and protocols.
I hope this helps. We try to maintain a list of useful links about messaging here
Please get in touch with questions and comments on any of this, we are dead easy to find.
To address your specific questions:
In which domain are they typically used and in which domains are they typically not used?
Like databases, messaging systems crop up everywhere.
For example, say, is Google using such solution for it's main search engine or to power GMail?
Google uses a lot of home grown technology, but a lot of their open source contributions and known use cases suggest that messaging is (or should be) central to some of the main services.
What about big websites like Walmart, eBay, FedEx (pretty much a Java shop) and buy.com (pretty much an MS shop)? Does MOM solve a need there?
Very much so.
An example use case is scaling web page requests. When the user makes a web request, the web server puts it onto a queue for background processing. This means that the web server can keep working while the request is processed. It also means that the web server does not need to know how the request is handled, making system maintenance, upgrade and rollback much simpler because the main parts are 'decoupled'.
So, anyway, the web request gets processed by a back end service, or possibly by many services, eg 'look up book titles', 'draw shopping cart', 'get advertisement', 'check user account'... Finally all the results get put onto another queue, ready for collection and user response by the web server. Typically the system will include a timeout of around 100ms so that any late requests just get thrown away. The user sees anything that got processed in the time interval. This is one reason why some large ecommerce sites have pages that appear to load in stages.
There are many more use cases...
Does it make any sense when you're writing a Webapp where you control the server-side and have an homogenous environment (say tens of Amazon EC2 instances all running Linux + Java JVMs) there and where the clients are, well, Web browsers?
Definitely. If you have an unknown, or unbounded, number of users, server side instances, and application latencies, then it makes sense to use messaging, even if just as a scalable substrate for non-blocking RPC.
Does it make sense for desktop apps that need to communicate with a server?
In lots of cases. One very common case is when the server pushes events to the desktop app, eg game event, tweets, price feeds in finance, system alerts....
Or is it 'only' for big enterprise stuff where you typically have a happy mix of countless of different systems that needs to communicate in a way or another?
Definitely not only for those 'legacy integration' cases but they are important too. At RabbitMQ, the biggest customers we have in terms of pure scale or message volume are cloud providers and big web application providers.
I will answer only one answer, from prior experience - take a look at this middle-ware that is employed by big companies here - middle-ware has one purpose - to glue dis-connected systems (written in disparate languages) together so that they can interact with one another and streamline the business process - Entera as I have had experience with, creates a middle layer in which the unix box using processes written in C, interact with the mainframe system (DB2, COBOL) via a front-end written in PowerBuilder (I am not naming the company!).
From the description I have given, Entera is a middle-ware which hosts a number of things - smooth integration of the flow of data regardless of the endian format, ability for different languages to talk to the middle-ware broker (a broker is a CORBA or DCE like process, that conforms to 'The Open Group) that listens on a particular port) and is specified by an IDL which makes a process appear to be local - if you understand the terminology used in Remoting under Microsoft's .NET Framework, you are not far off the mark! The middle-ware generates stubs which are linked at compile-time and manages the creation of the process, hosting it off a port, multi-threading at run-time, and also, the modern front-ends (such as .NET, Java, PowerBuilder even the unspeakable VB6...ok...VB.NET for the purists out there) can interact by opening a connection to the specified port on a particular IP address, and using the stubs generated, can interact with it directly.
Obviously, from what was described you can see how the legacy systems can have new life breathed into it and thus scalability of the process, the major downside of this is the cost factor which can run into thousdands of dollars. Big companies who uses mainframes as their back-end processing systems for billing/invoicing, who generate a huge revenue can obviously afford such an expensive product - to them it would seem like throwing pennies into a pool of water...because of the use of middle-ware which prolongs the business process, and breathe new life into it, can extend the business by a good number of years into the future without worrying about 'legacy' tag attached to it.
Incidentally, I carried this out as part of my thesis for my BSc. in Information Systems which covered this commercial front-end. There was an open source version of the middle-ware available on sourceforge called FreeDCE, but development efforts have declined or stopped.
Edit:
#cocotwo: That is exactly what middle-ware does as you said it is a plumbing tool...message oriented middle-ware is not really heard of AFAIK because I would imagine, the processes (functions) would need to be called as if they are locally visible within the application domain of the front-end to make it easy to interact with.
Using messages may have its advantages over RPC calls in that the messages are queued in a safe-holding area in the event that a network disconnection occurs - there may be some data caching going on within that aspect to allow the front-end to continue regardless...it would be useful in the instances of 'updating a status of a particular billing/invoice number' - a one-way write-data to the back-end via the middle-ware.
Ok, big companies would have advanced systems infrastructure in that technicians are constantly around the clock to ensure a smooth delivery of data-flow so that would have to be factored in. The company that I worked with had IBM Global Support contract to fulfill in order to ensure a maximum uptime 99% with 6 nine's after the decimal point...with hot-swapping/balanced-clusters/mirroring systems in place...
Whereas with RPC, if the disconnection occurs, the front-end would have to be restarted or would have to handle the disconnection event. It really depends if the message-queueing middle-ware handles each message in real-time and pass back results to the front-end immediately...
This is where each (Message-queueing and RPC related middle-ware) have their strengths and weaknesses...and also the cost mitigation factor such as support, maximum up-time, development efforts and training - that's a biggie here as middle-ware are really proprietary (despite following the 'The Open Group' layout/standards) and complex to setup and to glue the whole thing together via scripts.
Good answers and discussion here. Our consulting team has two preferred "messaging" solutions: RabittMQ and NXTera a high speed RPC middleware, the contemporary version of Entera mentioned above. My partners and I have developed several solutions using RabittMQ, it is the best tool available in that space right now. Additionally, I happen to work for the company that makes NXTera/Entera.
From experience I can clearly say that both of these products meet the need for reliability and low maintenance as discussed above. There are situations where a messaging service, like RabittMQ, is the right choice -- where Publish and subscribe, certified delivery, Queuing or store-and-forward are required.
In other cases, RPC's (remote procedure calls) are the best and fastest solutions for transactional and distributed processing for enterprise or cloud-based applications. When it is right to use an RPC, but SOAP/.NET (yes these are RPC implementations) are too slow, expensive or complex, a lightwieght high speed RPC middleware like NXTera/Entera is the right choice for us.
There is some use case overlap between RPC middleware and message oriented middleware, and where there are you can use either successfully. But both are strong and dependable choices.
The large companies I work with use both RPC and MoM side-by-side. As far as Internet companies, Google (Protocol Buffers) and Facebook (Thrift) show that RPC's have a roll to play in modern web and cloud-based development.