Apparently wrong results in CUDA emulation - cuda

This is the code below:
#include <stdio.h>
#include <cuda.h>
#include <device_launch_parameters.h>
#include <cuda_runtime.h>
#define _crt_nonstdc_no_deprecate
__global__ void Kernel(float *d_arr_i,float *d_arr_o)
{
int i = threadIdx.x;
int j = threadIdx.y;
int k = threadIdx.z;
float f = d_arr_i[i];
d_arr_o[i] = f * f;
printf("%d \n",f);
printf("x = %d & y = %d & z = %d \n",i,j,k);
}
int main ()
{
//printf("Hello C..!");
const unsigned int arr_s = 12;
float h_arr_i[arr_s];
for (int i = 0;i < arr_s;i++)
{
h_arr_i[i] = float(i);
}
for (int i = 0;i<arr_s;i++)
{
printf("input arr %d : %e \n",(int)i,h_arr_i[i]);
}
float h_arr_o[arr_s];
float* d_arr_i;
float* d_arr_o;
const unsigned int d_arr_s = arr_s*sizeof(float);
cudaMalloc((void**)&d_arr_i,d_arr_s);
cudaMalloc((void**)&d_arr_o,d_arr_s);
cudaMemcpy(d_arr_i,h_arr_i,d_arr_s,cudaMemcpyHostToDevice);
Kernel<<<1,arr_s>>>(d_arr_i,d_arr_o);
cudaMemcpy(h_arr_o,d_arr_o,d_arr_s,cudaMemcpyDeviceToHost);
printf("\n");
for (int i = 0;i < arr_s;i++)
{
printf("output arr : %d \n",h_arr_o[i]);
}
int d;
cudaDeviceProp c;
int e;
cudaGetDeviceProperties(&c,e);
printf("\n %e",e);
cudaGetDeviceCount(&d);
printf("\n %d \n",d);
cudaFree(d_arr_i);
cudaFree(d_arr_o);
system("Pause");
return 0;
}
In the above code "output arr " should give out the square of the numbers in the array, but it does not.
Can somebody please explain why is this error taking place ?
some details , I'm running the code on :
CUDA 2.3 / Emulation mode/without a NVIDIA GPU
OS : Windows 7 64bit
Visual Studio 2005 SP1

You are using the wrong printf format specifier. This error occurs twice, once in the kernel, and once at the end of your code for the output printout.
Instead of %d you should use %f. When I make that change to your code, I get the correct results when running on a real GPU using CUDA 5.0:
$ ./t212
input arr 0 : 0.000000e+00
input arr 1 : 1.000000e+00
input arr 2 : 2.000000e+00
input arr 3 : 3.000000e+00
input arr 4 : 4.000000e+00
input arr 5 : 5.000000e+00
input arr 6 : 6.000000e+00
input arr 7 : 7.000000e+00
input arr 8 : 8.000000e+00
input arr 9 : 9.000000e+00
input arr 10 : 1.000000e+01
input arr 11 : 1.100000e+01
0.000000
1.000000
2.000000
3.000000
4.000000
5.000000
6.000000
7.000000
8.000000
9.000000
10.000000
11.000000
x = 0 & y = 0 & z = 0
x = 1 & y = 0 & z = 0
x = 2 & y = 0 & z = 0
x = 3 & y = 0 & z = 0
x = 4 & y = 0 & z = 0
x = 5 & y = 0 & z = 0
x = 6 & y = 0 & z = 0
x = 7 & y = 0 & z = 0
x = 8 & y = 0 & z = 0
x = 9 & y = 0 & z = 0
x = 10 & y = 0 & z = 0
x = 11 & y = 0 & z = 0
output arr : 0.000000
output arr : 1.000000
output arr : 4.000000
output arr : 9.000000
output arr : 16.000000
output arr : 25.000000
output arr : 36.000000
output arr : 49.000000
output arr : 64.000000
output arr : 81.000000
output arr : 100.000000
output arr : 121.000000

Related

how to avoid thread divergence in this CUDA kernel?

for the CUDA kernel function, get branching divergence shown below, how to optimize it?
int gx = threadIdx.x + blockDim.x * blockIdx.x;
val = g_data[gx];
if (gx % 4 == 0)
val = op1(val);
else if (gx % 4 == 1)
val = op2(val);
else if (gx % 4 == 2)
val = op3(val);
else if (gx % 4 == 3)
val = op4(val);
g_data[gx] = val;
If I were programming in CUDA, I certainly wouldn't do any of this. However to answer your question:
how to avoid thread divergence in this CUDA kernel?
You could do something like this:
int gx = threadIdx.x + blockDim.x * blockIdx.x;
val = g_data[gx];
int gx_bit_0 = gx & 1;
int gx_bit_1 = (gx & 2) >> 1;
val = (1-gx_bit_1)*(1-gx_bit_0)*op1(val) + (1-gx_bit_1)*(gx_bit_0)*op2(val) + (gx_bit_1)*(1-gx_bit_0)*op3(val) + (gx_bit_1)*(gx_bit_0)*op4(val);
g_data[gx] = val;
Here is a full test case:
$ cat t1914.cu
#include <iostream>
__device__ float op1(float val) { return val + 1.0f;}
__device__ float op2(float val) { return val + 2.0f;}
__device__ float op3(float val) { return val + 3.0f;}
__device__ float op4(float val) { return val + 4.0f;}
__global__ void k(float *g_data){
int gx = threadIdx.x + blockDim.x * blockIdx.x;
float val = g_data[gx];
int gx_bit_0 = gx & 1;
int gx_bit_1 = (gx & 2) >> 1;
val = (1-gx_bit_1)*(1-gx_bit_0)*op1(val) + (1-gx_bit_1)*(gx_bit_0)*op2(val) + (gx_bit_1)*(1-gx_bit_0)*op3(val) + (gx_bit_1)*(gx_bit_0)*op4(val);
g_data[gx] = val;
}
const int N = 32;
int main(){
float *data;
cudaMallocManaged(&data, N*sizeof(float));
for (int i = 0; i < N; i++) data[i] = 1.0f;
k<<<1,N>>>(data);
cudaDeviceSynchronize();
for (int i = 0; i < N; i++) std::cout << data[i] << std::endl;
}
$ nvcc -o t1914 t1914.cu
$ compute-sanitizer ./t1914
========= COMPUTE-SANITIZER
2
3
4
5
2
3
4
5
2
3
4
5
2
3
4
5
2
3
4
5
2
3
4
5
2
3
4
5
2
3
4
5
========= ERROR SUMMARY: 0 errors
$
Solution by changing the work per thread
The best solution with the existing data layout is to let every thread compute 4 consecutive values. It's better to have fewer threads that can work properly than have more that can't.
float* g_data;
int gx = threadIdx.x + blockDim.x * blockIdx.x;
g_data[4 * gx] = op1(g_data[4 * gx]);
g_data[4 * gx + 1] = op2(g_data[4 * gx + 1]);
g_data[4 * gx + 2] = op3(g_data[4 * gx + 2]);
g_data[4 * gx + 3] = op4(g_data[4 * gx + 3]);
If the size of g_data is not a multiple of 4, put an if around the index operations. If it is always a multiple of 4 and properly aligned, load and store 4 values as a float4 for better performance.
Solution by reordering the work
As all my talk about float4 may have suggested, your input data appears to be some form of 2D structure where one every four elements share a similar function. Maybe it is an array of structs or an array of vectors -- in other words, a matrix.
For the purpose of explaining what I mean, I consider it a Nx4 matrix. If you transpose this into a 4xN matrix and apply a kernel to this, most of your problems disappear. Because then entries for which the same operation has to be done are placed next to each other in memory and that makes writing an efficient kernel easier. Something like this:
float* g_data;
int rows_in_g;
int gx = threadIdx.x + blockDim.x * blockIdx.x;
int gy = threadIdx.y;
float& own_g = g_data[gx + rows_in_g * gy];
switch(gy) {
case 0: own_g = op1(own_g); break;
case 1: own_g = op2(own_g); break;
case 2: own_g = op3(own_g); break;
case 3: own_g = op4(own_g); break;
default: break;
}
Start this as a 2D kernel with blocksize x=32, y=4 and gridsize x=N/32, y=1.
Now your kernel is still divergent, but all threads within a warp will execute the same case and access consecutive floats in memory. That's the best you can achieve. Of course this all depends on whether you can change the data layout.

Nested loops modulo permutation in cuda

I need to perform a function on triplets taken from an array and add the result to a Histogram, but I want to avoid permutations since the function is invariant under those [F(i,j,k) = F(j,i,k) and so on].
Normally I would code something like this:
def F(int i, int j, int k){
int temp_index;
/* Do something */
return temp_index;
}
for(int i=0;i<N;i++){
for(int j=i+1;j<N;j++){
for(int k=j+1;k<N;k++){
hist[F(i,j,k)]++;
}
}
}
As N is quite big (approx. 10^5), I would like to call perform this on a GPU using cuda.
I have written a code to call this function on the GPU, but I have no idea how to prevent multiple calls of the same triple of indices. So far I call cuda with a 3-dimensional grid, like:
__global__ void compute_3pcf(float *theta, float *hist) {
int i,j,k;
i = blockIdx.x*blockDim.x + threadIdx.x;
j = blockIdx.y*blockDim.y + threadIdx.y;
k = blockIdx.z*blockDim.z + threadIdx.z;
if(i>=j || j>=k) return;
atomicAdd(&hist[F(i,j,k)],1);
}
int main(){
/*
Allocation of memory and cudaMemcpy
*/
dim3 grid((N+15)/16,(N+7)/8,(N+7)/8);
dim3 block(16,8,8);
//Launch on GPU
compute_3pcf<<<grid,block>>>(d_theta, d_hist);
}
However, now for each combination (i,j,k) a new thread is launched and then aborted, which seems very inefficient to me, as then only 1/6 of the threads perform the actual computation. What I would like to have is something like this:
__global__ void compute_3pcf(float *theta, float *hist) {
int i,j,k,idx;
idx = blockIdx.x*blockDim.x + threadIdx.x;
i = H_i(idx);
j = H_j(idx,i);
k = H_k(idx,j);
atomicAdd(&hist[F(i,j,k)],1);
}
int main(){
/*
Allocation of memory and cudaMemcpy
*/
long long int N_combinations = N*(N-1)*(N-2)/6;
long int grid = (N_combinations+1023)/1024;
int block = 1024;
//Launch on GPU
compute_3pcf<<<grid,block>>>(d_theta, d_hist);
}
However, I am unable to find the functions H_i, H_j, H_k. If anyone can tell me how I could solve or avoid this problem, I would be very thankful.
Edit: The histogram contains about 10^6 bins, so that I can not have one histogram per block in a shared memory, like in the example code for cuda. Instead, it lies in the global memory of the GPU.
[Disclaimer -- this is only a partial answer and a work in progress and answers a related problem, while only hinting at a solution to the actual question]
Before thinking about algorithms and code it is useful to understand the mathematical character of your problem. If we look at the output of your pseudocode in Python (and note that this includes the diagonal entries where the original question does not), we see this for the 5x5x5 case:
N = 5
x0 = np.zeros((N,N,N), dtype=np.int)
idx = 1
for i in range(0,N):
for j in range(i,N):
for k in range(j,N):
x0[i,j,k] = idx
idx += 1
print(x0)
we get:
[[[ 1 2 3 4 5]
[ 0 6 7 8 9]
[ 0 0 10 11 12]
[ 0 0 0 13 14]
[ 0 0 0 0 15]]
[[ 0 0 0 0 0]
[ 0 16 17 18 19]
[ 0 0 20 21 22]
[ 0 0 0 23 24]
[ 0 0 0 0 25]]
[[ 0 0 0 0 0]
[ 0 0 0 0 0]
[ 0 0 26 27 28]
[ 0 0 0 29 30]
[ 0 0 0 0 31]]
[[ 0 0 0 0 0]
[ 0 0 0 0 0]
[ 0 0 0 0 0]
[ 0 0 0 32 33]
[ 0 0 0 0 34]]
[[ 0 0 0 0 0]
[ 0 0 0 0 0]
[ 0 0 0 0 0]
[ 0 0 0 0 0]
[ 0 0 0 0 35]]]
i.e. the unique entries form a series of stacked upper triangular matrices of decreasing sizes. As identified in comments, the number of non-zero entries is a tetrahedral number, in this case for n = 5, the tetrahedral number Tr[5] = 5*(5+1)*(5+2)/6 = 35 entries, and the non zero entries fill a tetrahedral shaped region of the hypermatrix in three dimensions (best illustration here) And as noted in the original question, all the permutations of indices are functionally identical in the problem, meaning that there are six (3P3) functionally identical symmetric tetrahedral regions in the cubic hypermatrix. You can confirm this yourself:
x1 = np.zeros((N,N,N), dtype=np.int)
idx = 1
for i in range(0,N):
for j in range(0,N):
for k in range(0,N):
if (i <= j) and (j <= k):
x1[i,j,k] = idx
x1[i,k,j] = idx
x1[j,i,k] = idx
x1[j,k,i] = idx
x1[k,i,j] = idx
x1[k,j,i] = idx
idx += 1
print(x1)
which gives:
[[[ 1 2 3 4 5]
[ 2 6 7 8 9]
[ 3 7 10 11 12]
[ 4 8 11 13 14]
[ 5 9 12 14 15]]
[[ 2 6 7 8 9]
[ 6 16 17 18 19]
[ 7 17 20 21 22]
[ 8 18 21 23 24]
[ 9 19 22 24 25]]
[[ 3 7 10 11 12]
[ 7 17 20 21 22]
[10 20 26 27 28]
[11 21 27 29 30]
[12 22 28 30 31]]
[[ 4 8 11 13 14]
[ 8 18 21 23 24]
[11 21 27 29 30]
[13 23 29 32 33]
[14 24 30 33 34]]
[[ 5 9 12 14 15]
[ 9 19 22 24 25]
[12 22 28 30 31]
[14 24 30 33 34]
[15 25 31 34 35]]]
Here it should be obvious that you can slice the hypermatrix along any plane and get a symmetric matrix, and that it can be constructed by a set of reflections from any of the six permutations of the same basic tetrahedral hypermatrix.
That last part is important because I am now going to focus on another permutation from the one in your question. It is functionally the same (as shown above) but mathematically and graphically easier to visualize compared to the upper tetrahedron calculated by the original pseudocode in the question. Again some Python:
N = 5
nmax = N * (N+1) * (N+2) // 6
x= np.empty(nmax, dtype=object)
x2 = np.zeros((N,N,N), dtype=np.int)
idx = 1
for i in range(0,N):
for j in range(0,i+1):
for k in range(0,j+1):
x2[i,j,k] = idx
x[idx-1] = (i,j,k)
idx +=1
print(x)
print(x2)
which produces
[(0, 0, 0) (1, 0, 0) (1, 1, 0) (1, 1, 1) (2, 0, 0) (2, 1, 0) (2, 1, 1)
(2, 2, 0) (2, 2, 1) (2, 2, 2) (3, 0, 0) (3, 1, 0) (3, 1, 1) (3, 2, 0)
(3, 2, 1) (3, 2, 2) (3, 3, 0) (3, 3, 1) (3, 3, 2) (3, 3, 3) (4, 0, 0)
(4, 1, 0) (4, 1, 1) (4, 2, 0) (4, 2, 1) (4, 2, 2) (4, 3, 0) (4, 3, 1)
(4, 3, 2) (4, 3, 3) (4, 4, 0) (4, 4, 1) (4, 4, 2) (4, 4, 3) (4, 4, 4)]
[[[ 1 0 0 0 0]
[ 0 0 0 0 0]
[ 0 0 0 0 0]
[ 0 0 0 0 0]
[ 0 0 0 0 0]]
[[ 2 0 0 0 0]
[ 3 4 0 0 0]
[ 0 0 0 0 0]
[ 0 0 0 0 0]
[ 0 0 0 0 0]]
[[ 5 0 0 0 0]
[ 6 7 0 0 0]
[ 8 9 10 0 0]
[ 0 0 0 0 0]
[ 0 0 0 0 0]]
[[11 0 0 0 0]
[12 13 0 0 0]
[14 15 16 0 0]
[17 18 19 20 0]
[ 0 0 0 0 0]]
[[21 0 0 0 0]
[22 23 0 0 0]
[24 25 26 0 0]
[27 28 29 30 0]
[31 32 33 34 35]]]
You can see it is a transformation of the original code, with each "layer" of the tetrahedron built from a lower triangular matrix of increasing size, rather than upper triangular matrices of successively smaller size.
When you look at tetrahedron produced by this permutation, it should be obvious that each lower triangular slice starts at a tetrahedral number within the linear array of indices and each row within the lower triangular matrix starts at a triangular number offset relative to the start of the matrix. The indexing scheme is, therefore:
idx(i,j,k) = (i*(i+1)*(i+2)/6) + (j*(j+1)/2) + k
when data is arranged so that the kth dimension is the fastest varying in memory, and ith the slowest.
Now to the actual question. To calculate (i,j,k) from a given idx value would require calculating the integer cube root for i and the integer square root for j, which isn't particularly easy or performant and I would not imagine that it would offer any advantage over what you have now. However, if your implementation has a finite and known dimension a priori, you can use precalculated tetrahedral and triangular numbers and perform a lookup to replace the need to calculate roots.
A toy example:
#include <cstdio>
__constant__ unsigned int tetdata[100] =
{ 0, 1, 4, 10, 20, 35, 56, 84, 120, 165, 220, 286, 364, 455, 560, 680, 816, 969, 1140,
1330, 1540, 1771, 2024, 2300, 2600, 2925, 3276, 3654, 4060, 4495, 4960, 5456, 5984,
6545, 7140, 7770, 8436, 9139, 9880, 10660, 11480, 12341, 13244, 14190, 15180, 16215,
17296, 18424, 19600, 20825, 22100, 23426, 24804, 26235, 27720, 29260, 30856, 32509,
34220, 35990, 37820, 39711, 41664, 43680, 45760, 47905, 50116, 52394, 54740, 57155,
59640, 62196, 64824, 67525, 70300, 73150, 76076, 79079, 82160, 85320, 88560, 91881,
95284, 98770, 102340, 105995, 109736, 113564, 117480, 121485, 125580, 129766, 134044,
138415, 142880, 147440, 152096, 156849, 161700, 166650 };
__constant__ unsigned int tridata[100] =
{ 0, 1, 3, 6, 10, 15, 21, 28, 36, 45, 55, 66, 78, 91, 105, 120,
136, 153, 171, 190, 210, 231, 253, 276, 300, 325, 351, 378, 406,
435, 465, 496, 528, 561, 595, 630, 666, 703, 741, 780, 820, 861,
903, 946, 990, 1035, 1081, 1128, 1176, 1225, 1275, 1326, 1378, 1431,
1485, 1540, 1596, 1653, 1711, 1770, 1830, 1891, 1953, 2016, 2080, 2145,
2211, 2278, 2346, 2415, 2485, 2556, 2628, 2701, 2775, 2850, 2926, 3003,
3081, 3160, 3240, 3321, 3403, 3486, 3570, 3655, 3741, 3828, 3916, 4005,
4095, 4186, 4278, 4371, 4465, 4560, 4656, 4753, 4851, 4950 };
__device__ unsigned int lookup(unsigned int&x, unsigned int n, const unsigned int* data)
{
int i=0;
while (n >= data[i]) i++;
x = data[i-1];
return i-1;
}
__device__ unsigned int tetnumber(unsigned int& x, unsigned int n) { return lookup(x, n, tetdata); }
__device__ unsigned int trinumber(unsigned int& x, unsigned int n) { return lookup(x, n, tridata); }
__global__ void kernel()
{
unsigned int idx = threadIdx.x + blockIdx.x * blockDim.x;
unsigned int x;
unsigned int k = idx;
unsigned int i = tetnumber(x, k); k -= x;
unsigned int j = trinumber(x, k); k -= x;
printf("idx = %d, i=%d j=%d k=%d\n", idx, i, j, k);
}
int main(void)
{
cudaSetDevice(0);
kernel<<<1,35>>>();
cudaDeviceSynchronize();
cudaDeviceReset();
return 0;
}
which does the same thing as the python (note the out-of-order print output):
$ nvcc -o tetrahedral tetrahedral.cu
avidday#marteil2:~/SO$ cuda-memcheck ./tetrahedral
========= CUDA-MEMCHECK
idx = 32, i=4 j=4 k=2
idx = 33, i=4 j=4 k=3
idx = 34, i=4 j=4 k=4
idx = 0, i=0 j=0 k=0
idx = 1, i=1 j=0 k=0
idx = 2, i=1 j=1 k=0
idx = 3, i=1 j=1 k=1
idx = 4, i=2 j=0 k=0
idx = 5, i=2 j=1 k=0
idx = 6, i=2 j=1 k=1
idx = 7, i=2 j=2 k=0
idx = 8, i=2 j=2 k=1
idx = 9, i=2 j=2 k=2
idx = 10, i=3 j=0 k=0
idx = 11, i=3 j=1 k=0
idx = 12, i=3 j=1 k=1
idx = 13, i=3 j=2 k=0
idx = 14, i=3 j=2 k=1
idx = 15, i=3 j=2 k=2
idx = 16, i=3 j=3 k=0
idx = 17, i=3 j=3 k=1
idx = 18, i=3 j=3 k=2
idx = 19, i=3 j=3 k=3
idx = 20, i=4 j=0 k=0
idx = 21, i=4 j=1 k=0
idx = 22, i=4 j=1 k=1
idx = 23, i=4 j=2 k=0
idx = 24, i=4 j=2 k=1
idx = 25, i=4 j=2 k=2
idx = 26, i=4 j=3 k=0
idx = 27, i=4 j=3 k=1
idx = 28, i=4 j=3 k=2
idx = 29, i=4 j=3 k=3
idx = 30, i=4 j=4 k=0
idx = 31, i=4 j=4 k=1
========= ERROR SUMMARY: 0 errors
Obviously the lookup function is only for demonstration purposes. At large sizes either a binary array or hash based look-up would be much faster. But this at least demonstrates that it seems possible to do what you envisaged, even if the problem solved and approach are subtly different from what you probably had in mind.
Note I have no formal mathemtical proofs for anything in this answer and don't claim that any of the code or propositions here are correct. Buyer beware.
After some more thought, it is trivial to extend this approach via a hybrid search/calculation routine which is reasonably efficient:
#include <iostream>
#include <vector>
#include <cstdio>
typedef unsigned int uint;
__device__ __host__ ulong tetnum(uint n) { ulong n1(n); return n1 * (n1 + 1ull) * (n1 + 2ull) / 6ull; }
__device__ __host__ ulong trinum(uint n) { ulong n1(n); return n1 * (n1 + 1ull) / 2ull; }
typedef ulong (*Functor)(uint);
template<Functor F>
__device__ __host__ uint bounded(ulong& y, ulong x, uint n1=0, ulong y1=0)
{
uint n = n1;
y = y1;
while (x >= y1) {
y = y1;
n = n1++;
y1 = F(n1);
}
return n;
}
__constant__ uint idxvals[19] = {
0, 1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048, 4096, 8192, 16384,
32768, 65536, 131072 };
__constant__ ulong tetvals[19] = {
0, 1, 4, 20, 120, 816, 5984, 45760, 357760, 2829056, 22500864, 179481600, 1433753600,
11461636096, 91659526144, 733141975040, 5864598896640, 46914643623936, 375308558925824 };
__constant__ ulong trivals[19] = {
0, 1, 3, 10, 36, 136, 528, 2080, 8256, 32896, 131328, 524800, 2098176, 8390656, 33558528,
134225920, 536887296, 2147516416, 8590000128 };
__device__ __host__ uint lookup(ulong& x, uint n, const uint* abscissa, const ulong* data)
{
uint i=0;
while (n >= data[i]) i++;
x = data[i-1];
return abscissa[i-1];
}
__device__ uint tetnumber(ulong& x, uint n)
{
ulong x0;
uint n0 = lookup(x0, n, idxvals, tetvals);
return bounded<tetnum>(x, n, n0, x0);
}
__device__ uint trinumber(ulong& x, uint n)
{
ulong x0;
uint n0 = lookup(x0, n, idxvals, trivals);
return bounded<trinum>(x, n, n0, x0);
}
__global__ void kernel(uint3 *results, ulong Nmax)
{
ulong idx = threadIdx.x + blockIdx.x * blockDim.x;
ulong gridStride = blockDim.x * gridDim.x;
for(; idx < Nmax; idx += gridStride) {
ulong x, k1 = idx;
uint3 tuple;
tuple.x = tetnumber(x, k1); k1 -= x;
tuple.y = trinumber(x, k1); k1 -= x;
tuple.z = (uint)k1;
results[idx] = tuple;
}
}
int main(void)
{
cudaSetDevice(0);
uint N = 500;
ulong Nmax = tetnum(N);
uint3* results_d; cudaMalloc(&results_d, Nmax * sizeof(uint3));
int gridsize, blocksize;
cudaOccupancyMaxPotentialBlockSize(&gridsize, &blocksize, kernel);
kernel<<<gridsize, blocksize>>>(results_d, Nmax);
cudaDeviceSynchronize();
std::vector<uint3> results(Nmax);
cudaMemcpy(&results[0], results_d, Nmax * sizeof(uint3), cudaMemcpyDeviceToHost);
cudaDeviceReset();
// Only uncomment this if you want to see 22 million lines of output
//for(auto const& idx : results) {
// std::cout << idx.x << " " << idx.y << " " << idx.z << std::endl;
//}
return 0;
}
which does this (be aware it will emit 21 million lines of output if you uncomment the last loop):
$ module load use.own cuda9.2
$ nvcc -std=c++11 -arch=sm_52 -o tetrahedral tetrahedral.cu
$ nvprof ./tetrahedral
==20673== NVPROF is profiling process 20673, command: ./tetrahedral
==20673== Profiling application: ./tetrahedral
==20673== Profiling result:
Type Time(%) Time Calls Avg Min Max Name
GPU activities: 78.85% 154.23ms 1 154.23ms 154.23ms 154.23ms kernel(uint3*, unsigned long)
21.15% 41.361ms 1 41.361ms 41.361ms 41.361ms [CUDA memcpy DtoH]
API calls: 41.73% 154.24ms 1 154.24ms 154.24ms 154.24ms cudaDeviceSynchronize
30.90% 114.22ms 1 114.22ms 114.22ms 114.22ms cudaMalloc
15.94% 58.903ms 1 58.903ms 58.903ms 58.903ms cudaDeviceReset
11.26% 41.604ms 1 41.604ms 41.604ms 41.604ms cudaMemcpy
0.11% 412.75us 96 4.2990us 275ns 177.45us cuDeviceGetAttribute
0.04% 129.46us 1 129.46us 129.46us 129.46us cuDeviceTotalMem
0.02% 55.616us 1 55.616us 55.616us 55.616us cuDeviceGetName
0.01% 32.919us 1 32.919us 32.919us 32.919us cudaLaunchKernel
0.00% 10.211us 1 10.211us 10.211us 10.211us cudaSetDevice
0.00% 5.7640us 1 5.7640us 5.7640us 5.7640us cudaFuncGetAttributes
0.00% 4.6690us 1 4.6690us 4.6690us 4.6690us cuDeviceGetPCIBusId
0.00% 2.8580us 4 714ns 393ns 1.3680us cudaDeviceGetAttribute
0.00% 2.8050us 3 935ns 371ns 2.0030us cuDeviceGetCount
0.00% 2.2780us 1 2.2780us 2.2780us 2.2780us cudaOccupancyMaxActiveBlocksPerMultiprocessorWithFlags
0.00% 1.6720us 1 1.6720us 1.6720us 1.6720us cudaGetDevice
0.00% 1.5450us 2 772ns 322ns 1.2230us cuDeviceGet
That code calculates and stores the unique (i,j,k) pairs for a 500 x 500 x 500 search space (about 21 million values) in 150 milliseconds on my GTX970. Perhaps that is some use to you.
One possible approach is given on this wikipedia page ("Finding the k-combination for a given number") for a closed-form solution to convert a linear index into a unique C(n,3) combination.
However it will involve calculating square roots and cube roots, so its "non-trivial". My rationale for even mentioning it is two-fold:
If the amount of work to be saved per-thread is substantial, then the additional burden this method proposes may be offset by that. However, for the example given, the amount of work per thread saved is just a few simple if-tests.
Processor trends are such that computation cost is dropping more rapidly than e.g. memory access cost. Since this approach involves no memory access, if future processor trends continue in this vein, this approach may become more palatable.
This approach is also distinguished by the fact that there is no iterative exhaustive table searching. However as indicated in the other answer, for the stipulations given there, it is almost certainly preferable to this approach, currently.
As indicated on the previously mentioned wiki page, the general approach will be to:
Find the largest C(n,3) number that is less than the current index (N). The n value associated with this C(n,3) number becomes the ordinal value of our first "choice" index n1.
Subtract the C(n,3) number from the current index. The process is repeated with the remainder and C(n,2). The n value associated with the maximum C(n,2) number that fits within our remainder becomes our second "choice" index n2.
The remainder is found from step 2, and this then identifies our final C(n,1) choice (C(n,1) = n = n3).
In order to come up with a closed-form solution to step 1, we must:
identify the cubic equation associated with the relationship between
N and C(N,3)
Use the solution of the cubic polynomial to identify N (in floating
point).
Truncate the value N, to get our "largest" N.
perform an integer search around this point, for the correct solution, to address floating point issues
A similar process can be repeated for step 2 (quadratic) and step 3 (linear).
I don't intend to cover all the math in particular detail, however the solution of a cubic polynomial equation in closed form can be readily found on the web (such as here) and the derivation of the governing cubic equation for step 1 is straightforward. We simply use the formula for the total number of choices already given in the question, coupled with the particular thread index:
n(n-1)(n-2)/6 = N -> n(n-1)(n-2)/6 - N = 0
rearranging:
(n^3)/6 - (n^2)/2 + n/3 - N = 0
from this we can acquire the a,b,c,d coefficients to feed into our cubic solution method.
a = 1/6, b = -1/2, c = 1/3, d = -N
(Note that N here is effectively our globally unique 1D thread index. We are solving for n, which gives us our first "choice" index.)
Studying the formula for the solution of the cubic, we note that the only item that varies among threads is the d coefficient. This allows for reduction of some arithmetic at run-time.
What follows then is a worked example. It is not thoroughly tested, as my aim here is to identify a solution method, not a fully tested solution:
$ cat t1485.cu
#include <stdio.h>
#include <math.h>
typedef float ct;
const int STEP_DOWN = 2;
// only float or double template types allowed
template <typename ft>
struct CN3{
__host__ __device__
int3 operator()(size_t N){
int3 n;
if (N == 0) {n.x = 2; n.y = 1; n.z = 0; return n;}
if (N == 1) {n.x = 3; n.y = 1; n.z = 0; return n;}
if (N == 2) {n.x = 3; n.y = 2; n.z = 0; return n;}
if (N == 3) {n.x = 3; n.y = 2; n.z = 1; return n;}
if (N == 4) {n.x = 4; n.y = 1; n.z = 0; return n;}
ft x, x1;
// identify n.x from cubic
// compiler computed
const ft a = 1.0/6;
const ft b = -1.0/2;
const ft c = 1.0/3;
const ft p1 = (-1.0)*(b*b*b)/(27.0*a*a*a) + b*c/(6.0*a*a);
const ft p2 = c/(3.0*a) - (b*b)/(9.0*a*a);
const ft p3 = p2*p2*p2;
const ft p4 = b/(3.0*a);
// run-time computed
//const ft d = -N;
const ft q0 = N/(2.0*a); // really should adjust constant for float vs. double
const ft q1 = p1 + q0;
const ft q2 = q1*q1;
if (sizeof(ft)==4){
x1 = sqrtf(q2+p3);
x = cbrtf(q1+x1) + cbrtf(q1-x1) - p4;
n.x = truncf(x);}
else {
x1 = sqrt(q2+p3);
x = cbrt(q1+x1) + cbrt(q1-x1) - p4;
n.x = trunc(x);}
/// fix floating-point errors
size_t tn = n.x - STEP_DOWN;
while ((tn)*(tn-1)*(tn-2)/6 <= N) tn++;
n.x = tn-1;
// identify n.y from quadratic
// compiler computed
const ft qa = 1.0/2;
//const ft qb = -qa;
const ft p5 = 1.0/4;
const ft p6 = 2.0;
// run-time computed
N = N - (((size_t)n.x)*(n.x-1)*(n.x-2))/6;
if (sizeof(ft)==4){
x = qa + sqrtf(p5+p6*N);
n.y = truncf(x);}
else {
x = qa + sqrt(p5+p6*N);
n.y = trunc(x);}
/// fix floating-point errors
if ((n.y - STEP_DOWN) <= 0) tn = 0;
else tn = n.y - STEP_DOWN;
while ((((tn)*(tn-1))>>1) <= N) tn++;
n.y = tn-1;
// identify n3
n.z = N - ((((size_t)n.y)*(n.y-1))>>1);
return n;
}
};
template <typename T>
__global__ void test(T f, size_t maxn, int3 *res){
size_t idx = threadIdx.x+((size_t)blockDim.x)*blockIdx.x;
if (idx < maxn)
res[idx] = f(idx);
}
int3 get_next_C3(int3 prev){
int3 res = prev;
res.z++;
if (res.z >= res.y){
res.y++; res.z = 0;
if (res.y >= res.x){res.x++; res.y = 1; res.z = 0;}}
return res;
}
int main(int argc, char* argv[]){
size_t n = 1000000000;
if (argc > 1) n *= atoi(argv[1]);
const int nTPB = 256;
int3 *d_res;
cudaMalloc(&d_res, n*sizeof(int3));
test<<<(n+nTPB-1)/nTPB,nTPB>>>(CN3<ct>(), n, d_res);
int3 *h_gpu = new int3[n];
int3 temp;
temp.x = 2; temp.y = 1; temp.z = 0;
cudaMemcpy(h_gpu, d_res, n*sizeof(int3), cudaMemcpyDeviceToHost);
for (int i = 0; i < n; i++){
if ((temp.x != h_gpu[i].x) || (temp.y != h_gpu[i].y) || (temp.z != h_gpu[i].z))
{printf("mismatch at index %d: cpu: %d,%d,%d gpu: %d,%d,%d\n", i, temp.x,temp.y,temp.z, h_gpu[i].x, h_gpu[i].y, h_gpu[i].z); return 0;}
temp = get_next_C3(temp);}
}
$ nvcc -arch=sm_70 -o t1485 t1485.cu
$ cuda-memcheck ./t1485 2
========= CUDA-MEMCHECK
========= ERROR SUMMARY: 0 errors
[user2#dc10 misc]$ nvprof ./t1485
==6128== NVPROF is profiling process 6128, command: ./t1485
==6128== Profiling application: ./t1485
==6128== Profiling result:
Type Time(%) Time Calls Avg Min Max Name
GPU activities: 99.35% 4.81251s 1 4.81251s 4.81251s 4.81251s [CUDA memcpy DtoH]
0.65% 31.507ms 1 31.507ms 31.507ms 31.507ms void test<CN3<float>>(float, int, int3*)
API calls: 93.70% 4.84430s 1 4.84430s 4.84430s 4.84430s cudaMemcpy
6.09% 314.89ms 1 314.89ms 314.89ms 314.89ms cudaMalloc
0.11% 5.4296ms 4 1.3574ms 691.18us 3.3429ms cuDeviceTotalMem
0.10% 4.9644ms 388 12.794us 317ns 535.35us cuDeviceGetAttribute
0.01% 454.66us 4 113.66us 103.24us 134.26us cuDeviceGetName
0.00% 65.032us 1 65.032us 65.032us 65.032us cudaLaunchKernel
0.00% 24.906us 4 6.2260us 3.2890us 10.160us cuDeviceGetPCIBusId
0.00% 8.2490us 8 1.0310us 533ns 1.5980us cuDeviceGet
0.00% 5.9930us 3 1.9970us 381ns 3.8870us cuDeviceGetCount
0.00% 2.8160us 4 704ns 600ns 880ns cuDeviceGetUuid
$
Notes:
as indicated above I have tested it for accuracy up through the first 2 billion results
The implementation above accounts for the fact that the solution of the cubic and quadratic equations in floating point introduces errors. These errors are "fixed" by creating a local integer search around the starting point given by the floating-point calculations, to produce the correct answer.
As indicated, the kernel above runs in ~30ms on my Tesla V100 for 1 billion results (10^9). If the methodology could correctly scale to 10^15 results, I have no reason to assume it would not take at least 0.03*10^6 seconds, or over 8 hours(!)
I haven't run the test, but I suspect that a quick benchmark of the simple case proposed in the question of simply generating the full domain (10^15) and then throwing away the ~5/6 of the space that did not apply, would be quicker.
Out of curiosity, I created an alternate test case that tests 31 out of each 32 values, across a larger space.
Here is the code and test:
$ cat t1485.cu
#include <stdio.h>
#include <math.h>
typedef float ct;
const int nTPB = 1024;
const int STEP_DOWN = 2;
// only float or double template types allowed
template <typename ft>
struct CN3{
__host__ __device__
int3 operator()(size_t N){
int3 n;
if (N == 0) {n.x = 2; n.y = 1; n.z = 0; return n;}
if (N == 1) {n.x = 3; n.y = 1; n.z = 0; return n;}
if (N == 2) {n.x = 3; n.y = 2; n.z = 0; return n;}
if (N == 3) {n.x = 3; n.y = 2; n.z = 1; return n;}
if (N == 4) {n.x = 4; n.y = 1; n.z = 0; return n;}
ft x, x1;
// identify n.x from cubic
// compiler computed
const ft a = 1.0/6;
const ft b = -1.0/2;
const ft c = 1.0/3;
const ft p1 = (-1.0)*(b*b*b)/(27.0*a*a*a) + b*c/(6.0*a*a);
const ft p2 = c/(3.0*a) - (b*b)/(9.0*a*a);
const ft p3 = p2*p2*p2;
const ft p4 = b/(3.0*a);
// run-time computed
//const ft d = -N;
const ft q0 = N/(2.0*a); // really should adjust constant for float vs. double
const ft q1 = p1 + q0;
const ft q2 = q1*q1;
if (sizeof(ft)==4){
x1 = sqrtf(q2+p3);
x = cbrtf(q1+x1) + cbrtf(q1-x1) - p4;
n.x = truncf(x);}
else {
x1 = sqrt(q2+p3);
x = cbrt(q1+x1) + cbrt(q1-x1) - p4;
n.x = trunc(x);}
/// fix floating-point errors
size_t tn = n.x - STEP_DOWN;
while ((tn)*(tn-1)*(tn-2)/6 <= N) tn++;
n.x = tn-1;
// identify n.y from quadratic
// compiler computed
const ft qa = 1.0/2;
//const ft qb = -qa;
const ft p5 = 1.0/4;
const ft p6 = 2.0;
// run-time computed
N = N - (((size_t)n.x)*(n.x-1)*(n.x-2))/6;
if (sizeof(ft)==4){
x = qa + sqrtf(p5+p6*N);
n.y = truncf(x);}
else {
x = qa + sqrt(p5+p6*N);
n.y = trunc(x);}
/// fix floating-point errors
if ((n.y - STEP_DOWN) <= 0) tn = 0;
else tn = n.y - STEP_DOWN;
while ((((tn)*(tn-1))>>1) <= N) tn++;
n.y = tn-1;
// identify n3
n.z = N - ((((size_t)n.y)*(n.y-1))>>1);
return n;
}
};
__host__ __device__
int3 get_next_C3(int3 prev){
int3 res = prev;
res.z++;
if (res.z >= res.y){
res.y++; res.z = 0;
if (res.y >= res.x){res.x++; res.y = 1; res.z = 0;}}
return res;
}
template <typename T>
__global__ void test(T f){
size_t idx = threadIdx.x+((size_t)blockDim.x)*blockIdx.x;
size_t idy = threadIdx.y+((size_t)blockDim.y)*blockIdx.y;
size_t id = idx + idy*gridDim.x*blockDim.x;
int3 temp = f(id);
int3 temp2;
temp2.x = __shfl_up_sync(0xFFFFFFFF, temp.x, 1);
temp2.y = __shfl_up_sync(0xFFFFFFFF, temp.y, 1);
temp2.z = __shfl_up_sync(0xFFFFFFFF, temp.z, 1);
temp2 = get_next_C3(temp2);
if ((threadIdx.x & 31) != 0)
if ((temp.x != temp2.x) || (temp.y != temp2.y) || (temp.z != temp2.z)) printf("%lu,%d,%d,%d,%d,%d,%d\n", id, temp.x, temp.y, temp.z, temp2.x, temp2.y, temp2.z);
}
int main(int argc, char* argv[]){
const size_t nbx = 200000000ULL;
const int nby = 100;
dim3 block(nbx, nby, 1);
test<<<block,nTPB>>>(CN3<ct>());
cudaDeviceSynchronize();
cudaError_t e = cudaGetLastError();
if (e != cudaSuccess) {printf("CUDA error %s\n", e); return 0;}
printf("tested space of size: %lu\n", nbx*nby*nTPB);
}
$ nvcc -arch=sm_70 -o t1485 t1485.cu
$ time ./t1485
tested space of size: 20480000000000
real 25m18.133s
user 18m4.804s
sys 7m12.782s
Here we see that the Tesla V100 took about 30 minutes to accuracy test a space of 20480000000000 results (about 2 * 10^13).

Implementing Dijkstra's algorithm with C++ STL

I have implemented the Dijkstra's algorithm as follows
#include <iostream>
#include <bits/stdc++.h>
#include<cstdio>
#define ll long long int
#define mod 1000000007
#define pi 3.141592653589793
#define f first
#define s second
#define pb push_back
#define pf push_front
#define pob pop_back
#define pof pop_front
#define vfor(e, a) for (vector<ll> :: iterator e = a.begin(); e != a.end(); e++)
#define vfind(a, e) find(a.begin(), a.end(), e)
#define forr(i, n) for (ll i = 0; i < n; i++)
#define rfor(i, n) for (ll i = n - 1; i >= 0; i--)
#define fors(i, b, e, steps) for(ll i = b; i < e; i += steps)
#define rfors(i, e, b, steps) for(ll i = e; i > b; i -= steps)
#define mp make_pair
using namespace std;
void up(pair<ll, ll> a[], ll n, ll i, ll indArray[]) {
ll ind = (i - 1) / 2;
while (ind >= 0 && a[ind].s > a[i].s) {
swap(a[ind], a[i]);
indArray[a[ind].f] = ind;
indArray[a[i].f] = i;
i = ind;
ind = (i - 1) / 2;
}
}
void down(pair<ll, ll> a[], ll n, ll i, ll indArray[]) {
ll left = 2 * i + 1;
ll right = 2 * i + 2;
ll m = a[i].s;
ll ind = i;
if (left < n && a[left].s < m) {
ind = left;
m = a[left].s;
}
if (right < n && a[right].s < m) {
ind = right;
}
if (ind != i) {
swap(a[i], a[ind]);
indArray[a[i].f] = i;
indArray[a[ind].f] = ind;
}
}
int main() {
ios_base::sync_with_stdio(false);
cin.tie(NULL);
cout.tie(NULL);
// cout << setprecision(10);
ll n, m;
cin >> n >> m;
vector<pair<ll, ll>> a[n];
forr(i, m) {
ll u, v, w;
cin >> u >> v >> w;
a[u].pb(mp(v, w));
a[v].pb(mp(u, w));
}
ll parent[n];
parent[0] = -1;
pair<ll, ll> dist[n];
forr(i, n) {
dist[i] = mp(i, INT_MAX);
}
dist[0].s = 0;
ll ind[n];
iota(ind, ind + n, 0);
ll ans[n];
ans[0] = 0;
bool visited[n];
fill(visited, visited + n, false);
ll size = n;
forr(i, n) {
ll u = dist[0].f;
visited[u] = true;
ll d1 = dist[0].s;
ans[u] = dist[0].s;
swap(dist[0], dist[size - 1]);
size--;
down(dist, size, 0, ind);
for (auto e : a[u]) {
if (visited[e.f]){
continue;
}
ll v = e.f;
ll j = ind[v];
if (dist[j].s > d1 + e.s) {
dist[j].s = d1 + e.s;
up(dist, size, j, ind);
parent[v] = u;
}
}
}
stack<ll> st;
forr(i, n) {
ll j = i;
while (j != -1) {
st.push(j);
j = parent[j];
}
while (!st.empty()) {
cout << st.top() << "->";
st.pop();
}
cout << " Path length is " << ans[i];
cout << '\n';
}
}
This implementation is correct and giving correct output.
As it can be seen every time I select the node with lowest key value(distance from source) and then I update the keys on all the adjacent nodes of the selected node. After updating the keys of the adjacent nodes I am calling the 'up' function as to maintain the min heap properties. But priority queue is present in the c++ stl. How can I use them to avoid the functions up and down.
The thing is I need to be able to find the index of the node-key pair in the mean heap whose key needs to be updated. Here in this code I have used a seperate ind array which is updated every time the min heap is updated.
But how to make use of c++ stl
Like you implied, we cannot random-access efficiently with std::priority_queue. For this case I would suggest that you use std::set. It is not actually a heap but a balanced binary search tree. However it works the desired way you wanted. find, insert and erase methods are all O(log n) so you can insert/erase/update a value with desired time since update can be done with erase-then-insert. And accessing minimum is O(1).
You may refer to this reference implementation like the exact way I mentioned. With your adjacency list, the time complexity is O(E log V) where E is number of edges, V is number of vertices.
And please note that
With default comparator, std::set::begin() method returns the min element if non-empty
In this code, it puts the distance as first and index as second. By doing so, the set elements are sorted with distance in ascending order
% I did not look into the implementation of up and down of your code in detail.

Wrong results cufft 3D in-place

I write because I'm facing problems with the cufft 3D transform in-place, while I have no problems for the out-of-place version. I tried to follow Robert Crovella's answer here but I'm not obtaining the correct results when I make a FFT+IFT.
This is my code:
#include <stdio.h>
#include <stdlib.h>
#include <cuda_runtime.h>
#include <complex.h>
#include <cuComplex.h>
#include <cufft.h>
// Main function
int main(int argc, char **argv){
int N = 4;
double *in = NULL, *d_in = NULL;
cuDoubleComplex *out = NULL, *d_out = NULL;
cufftHandle plan_r2c, plan_c2r;
unsigned int out_mem_size = sizeof(cuDoubleComplex) * N*N*(N/2 + 1);
unsigned int in_mem_size = out_mem_size;
in = (double *) malloc (in_mem_size);
out = (cuDoubleComplex *)in;
cudaMalloc((void **)&d_in, in_mem_size);
d_out = (cuDoubleComplex *)d_in;
cufftPlan3d(&plan_r2c, N, N, N, CUFFT_D2Z);
cufftPlan3d(&plan_c2r, N, N, N, CUFFT_Z2D);
memset(in, 0, in_mem_size);
unsigned int idx;
for (int z = 0; z < N; z++){
for (int y = 0; y < N; y++){
for (int x = 0; x < N; x++){
idx = z + N * ( y + x * N);
in[idx] = idx;
}
}
}
printf("\nStart: \n");
for (int z = 0; z < N; z++){
printf("plane = %d ----------------------------\n", z);
for (int x = 0; x < N; x++){
for (int y = 0; y < N; y++){
idx = z + N * ( y + x * N);
printf("%.3f \t", in[idx]);
}
printf("\n");
}
}
cudaMemcpy(d_in, in, in_mem_size, cudaMemcpyHostToDevice);
cufftExecD2Z(plan_r2c, (cufftDoubleReal *)d_in, (cufftDoubleComplex *)d_out);
cufftExecZ2D(plan_c2r, (cufftDoubleComplex *)d_out, (cufftDoubleReal *)d_in);
memset(in, 0, in_mem_size);
CU_ERR_CHECK( cudaMemcpy(in, d_in, in_mem_size, cudaMemcpyDeviceToHost) );
printf("\nAfter FFT+IFT: \n");
for (int z = 0; z < N; z++){
printf("plane = %d ----------------------------\n", z);
for (int x = 0; x < N; x++){
for (int y = 0; y < N; y++){
idx = z + N * ( y + x * N);
// Normalisation
in[idx] /= (N*N*N);
printf("%.3f \t", in[idx]);
}
printf("\n");
}
}
return 0;
}
The program outputs the following data:
Starting file
plane = 0 ----------------------------
0.000 4.000 8.000 12.000
16.000 20.000 24.000 28.000
32.000 36.000 40.000 44.000
48.000 52.000 56.000 60.000
plane = 1 ----------------------------
1.000 5.000 9.000 13.000
17.000 21.000 25.000 29.000
33.000 37.000 41.000 45.000
49.000 53.000 57.000 61.000
plane = 2 ----------------------------
2.000 6.000 10.000 14.000
18.000 22.000 26.000 30.000
34.000 38.000 42.000 46.000
50.000 54.000 58.000 62.000
plane = 3 ----------------------------
3.000 7.000 11.000 15.000
19.000 23.000 27.000 31.000
35.000 39.000 43.000 47.000
51.000 55.000 59.000 63.000
After FFT+IFT
plane = 0 ----------------------------
-0.000 -0.344 8.000 12.000
-0.031 20.000 24.000 -0.031
32.000 36.000 0.031 44.000
48.000 -0.094 56.000 60.000
plane = 1 ----------------------------
1.000 -0.000 9.000 13.000
-0.000 21.000 25.000 0.125
33.000 37.000 0.000 45.000
49.000 0.000 57.000 61.000
plane = 2 ----------------------------
2.000 6.000 -0.000 14.000
18.000 0.000 26.000 30.000
0.000 38.000 42.000 -0.000
50.000 54.000 -0.000 62.000
plane = 3 ----------------------------
3.000 7.000 0.031 15.000
19.000 -0.031 27.000 31.000
-0.031 39.000 43.000 0.031
51.000 55.000 0.031 63.000
I even tried to pad the data this way:
// With padding
unsigned int idx;
for (int x = 0; x < N; x++){
for (int y = 0; y < N; y++){
for (int z = 0; z < 2*(N/2+1); z++){
idx = z + N * ( y + x * N);
if (z < 4) in[idx] = idx;
else in[idx] = 0;
}
}
}
What am I doing wrong?
As you already found out, you need padding if you use the CUFFT_COMPATIBILITY_FFTW_PADDINGcompatibility mode which is default. For your code to work you could use cufftSetCompatibilityMode() to set CUFFT_COMPATIBILITY_NATIVE. However, this mode is marked as deprecated in the current version of CUDA.
Therefore, I recommend to use the default compatibility mode and use padding. Your try to implement padding is wrong. The formula to calculate a linear index for 3 dimension x, y, z where z is the fastest running index is idx = z + Nz*(y + Ny*x). The size Nz of the z dimension including padding is Nz = (N/2+1)*2. Then, the correct initialization of the array is:
unsigned int idx;
for (int z = 0; z < N; z++){
for (int y = 0; y < N; y++){
for (int x = 0; x < N; x++){
idx = z + (N/2+1)*2 * ( y + x * N);
in[idx] = idx;
}
}
}
Accordingly for the print loops.

Convert a list of commands into a function

I have made this
f[x_] := x - 2
x0 = 999.; imax = 5;
Module[{i, x}, x[0] = x0;
For[i = 0, i < imax, x[i + 1] = x[i] - f[x[i]]/f'[x[i]];
Print[x[i]];
i++]]
and am trying to turn this into a newton rhapson function. I need to be able to input the Function F[x],an initial guess,and imax.
A little bit more Mathematica-ish:
newt[f_, x0_, imax_] := NestList[# - f##/f'## &, x0, imax];
f[x_] := x - 2
x0 = 999; imax = 5;
newt[f, x0, imax]
(*
-> {999, 2, 2, 2, 2, 2}
*)
Mathematica is that simple:
newtonraph = Function[{f,x0,imax},Module[{i,x},
x[0] = x0;
For[i=0, i < imax, x[i+1] = x[i] - f[x[i]]/f'[x[i]];
Print[x[i]];
i++
];
];
];
and call the function:
func[t_] = 23 + t + 2*(t^2)
newtonraph[func,10,100]