Embedding cryptographic keys into software - html

The proposal for inclusion of DRM on html5 is hitting the news lately. It's only predictable that the key storage mechanism will eventually be cracked, as it was on dvd playback software. This is also known as the trusted client problem
My question is simple: is there a way to encrypt data such that only a specific piece of executable code is able to decrypt it?
Normally, a private (asymmetric) key is included in the software code, and used to decrypt the symmetric key (distributed with the content) that the content was encrypted with. This makes it trivial to extract the said private key from the software and bypass it.
I was wondering if it was possible to have decryption depend on the integrity of the software itself.
I can't see any obvious solution with existing cryptographic primitives. The must obvious one would be to take a hash of some internal program state on runtime, and pass it through a key derivation function, but this will still fail on memory inspection
Is this possible at all? If it's not, is there a mathematical proof?
I'm not looking for definitive answers here, just pointers to existing work.

DRM is basically impossible without some kind of trusted device or service. It may be possible with quantum physics, but that is mostly because anything seems a possibility when you just point to quantum physics :)
Many motherboards already have a TPM module installed on it. If the market allows for such kind of devices then secure DRM may become a reality. Even then TPM modules have been broken already, as such a device in the hands of hackers is some kind of hardware DRM.

I don't believe you will find a mathematical proof, as you say.
There is a fairly well understood approach, which is commonly called 'Whitebox cryptography'.
The usual key question with white box cryptography is the difference between it and obfuscation. There is a good discussion around this here: https://crypto.stackexchange.com/a/392

Related

How to make a good anti-crack protection?

I will start off with saying I know that it is impossible to prevent your software from reverse engineering.
But, when I take a look at crackmes.de, there are crackmes with a difficulty grade of 8 and 9 (on a scale of 1 to 10). These crackmes are getting cracked by genius brains, who write a tutorial on how to crack it. Some times, such tutorials are 13+ pages long!
When I try to make a crackme, they crack it in 10 minutes. Followed by a "how-to-crack" tutorial with a length of 20 lines.
So the questions are:
How can I make a relatively good anti-crack protection.
Which techniques should I use?
How can I learn it?
...
Disclaimer: I work for a software-protection tools vendor (Wibu-Systems).
Stopping cracking is all we do and all we have done since 1989. So we thoroughly understand how SW gets cracked and how to avoid it. Bottom line: only with a secure hardware dongle, implemented correctly, can you guarantee against cracking.
Most strong anti-cracking relies on encryption (symmetric or public key). The encryption can be very strong, but unless the key storage/generation is equally strong it can be attacked. Lots of other methods are possible too, even with good encryption, unless you know what you are doing. A software-only solution will have to store the key in an accessible place, easily found or vulnerable to a man-in-the-middle attack. Same thing is true with keys stored on a web server. Even with good encryption and secure key storage, unless you can detect debuggers the cracker can just take a snapshot of memory and build an exe from that. So you need to never completely decrypt in memory at any one time and have some code for debugger detection. Obfuscation, dead code, etc, won't slow them down for long because they don't crack by starting at the beginning and working through your code. They are far more clever than that. Just look at some of the how-to cracking videos on the net to see how to find the security detection code and crack from there.
Brief shameless promotion: Our hardware system has NEVER been cracked. We have one major client who uses it solely for anti-reverse engineering. So we know it can be done.
Languages like Java and C# are too high-level and do not provide any effective structures against cracking. You could make it hard for script kiddies through obfuscation, but if your product is worth it it will be broken anyway.
I would turn this round slightly and think about:
(1) putting in place simple(ish) measures so that your program isn't trivial to hack, so e.g. in Java:
obfuscate your code so at least make your enemy have to go to the moderate hassle of looking through a decompilation of obfuscated code
maybe write a custom class loader to load some classes encrypted in a custom format
look at what information your classes HAVE to expose (e.g. subclass/interface information can't be obfuscated away) and think about ways round that
put some small key functionality in a DLL/format less easy to disassemble
However, the more effort you go to, the more serious hackers will see it as a "challenge". You really just want to make sure that, say, an average 1st year computer science degree student can't hack your program in a few hours.
(2) putting more subtle copyright/authorship markers (e.g. metadata in images, maybe subtly embed a popup that will appear in 1 year's time to all copies that don't connect and authenticate with your server...) that hackers might not bother to look for/disable because their hacked program "works" as it is.
(3) just give your program away in countries where you don't realistically have a chance of making a profit from it and don't worry about it too much-- if anything, it's a form of viral marketing. Remember that in many countries, what we see in the UK/US as "piracy" of our Precious Things is openly tolerated by government/law enforcement; don't base your business model around copyright enforcement that doesn't exist.
I have a pretty popular app (which i won't specify here, to avoid crackers' curiosity, of course) and suffered with cracked versions some times in the past, fact that really caused me many headaches.
After months struggling with lots of anti-cracking techniques, since 2009 i could establish a method that proved to be effective, at least in my case : my app has not been cracked since then.
My method consists in using a combination of three implementations :
1 - Lots of checks in the source code (size, CRC, date and so on : use your creativity. For instance, if my app detects tools like OllyDbg being executed, it will force the machine to shutdown)
2 - CodeVirtualizer virutalization in sensitive functions in source code
3 - EXE encryption
None of these are really effective alone : checks can be passed by a debugger, virtualization can be reversed and EXE encryption can be decrypted.
But when you used altogether, they will cause BIG pain to any cracker.
It's not perfect although : so many checks makes the app slower and the EXE encrypt can lead to false positive in some anti-virus software.
Even so there is nothing like not be cracked ;)
Good luck.
Personaly I am fan of server side check.
It can be as simple as authentication of application or user each time it runs. However that can be easly cracked. Or puting some part of code to server side and that would requere a lot more work.
However your program will requere internet connection as must have and you will have expenses for server. But that the only way to make it relatively good protected. Any stand alone application will be cracked relatively fast.
More logic you will move to server side more hard to crack it will get. But it will if it will be worth it. Even large companies like Blizzrd can't prevent theyr server side being reversed engineered.
I purpose the following:
Create in home a key named KEY1 with N bytes randomly.
Sell the user a "License number" with the Software. Take note of his/her name and surname and tell him/her that those data are required to activate the Software, also an Internet conection.
Upload within the next 24 hours to your server the "License number", and the name and surname, also the KEY3 = (KEY1 XOR hash_N_bytes(License_number, name and surname) )
The installer asks for a "Licese_number" and the name and surname, then it sends those data to the server and downloads the key named "KEY3" if those data correspond to a valid sell.
Then the installer makes KEY1 = KEY3 XOR hash_N_bytes(License_number, name and surname)
The installer checks KEY1 using a "Hash" of 16 bits. The application is encrypted with the KEY1 key. Then it decrypts the application with the key and it's ready.
Both the installer and application must have a CRC content check.
Both could check is being debugged.
Both could have encrypted parts of code during execution time.
What do you think about this method?

Taxonomy/Ontology of software bugs?

Is there a taxonomy of ontology of software bugs?
There's the beginnings of one on the Wikipedia page for Software Bugs. It lists them by their cause though. Personally I find that less useful than a system that would list them by their manefestation, because you don't really know the cause until you've debugged it.
Also, that causal approach by defintion leaves off my two favorite bugs, the Heisenbug and the Schrodenbug.
Many bugs are rather specific to the language.
If you're looking for cross-language errors/mistakes, you may start from anti-patterns
Security-wise, a well known taxonomy of software bugs (introduced to a wider audience by Gary McGraw in his series of books on software security) distinguishes between an implementation bug and a design flaw. An implementation bug is a low-level defect lurking in your implementation. A typical example for an implementation bug is a buffer overflow. A design flaw, on the other hand, is a 'logic' bug within your implementation that allows a malicious person to break or circumvent your system or some security mechanism you implemented simply by using it in a manner you didn't anticipate. A good example for this are flaws in API design which allow an attacker to combine specific calls to the API to force the system to do things that the designers of the system did not anticipate.

What factors do I need to consider to determine whether I should "trust the defaults" with respect to encryption

Background
With respect to cryptography in general, the following advice is so common that it may even be platform and language-agnostic.
Cryptography is an incredibly complex subject which developers should leave to security experts`
I understand and agree with the reasoning behind this statement, and therefore follow the advice when using cryptography in an application.
That being said, because cryptography is tread upon so lightly in all but crypto-specific reference material, I do not know enough about how cryptography works in order to be able to determine whether the default provided to me is adequate for the situation I'm in.There are thousands of crypto frameworks out there in a myriad of different languages, I refuse to believe that every one of those implementations is secure because I don't believe every crypto implementation was created by a crypto expert, principally because if popular opinion is to be believed there just aren't that many of them.
Question:
What information do I need to know about a given encryption algorithm to be able to determine for myself whether an algorithm is a reasonable choice?
You need to know the current estimates of time-to-break for each algorithm variant.
You need to know the certifications for particular libraries.
You need to know the required effective security level for the data you are encrypting. Health information in the USA has particular requirements, for example. So do electric utilities.
The more technical you want to get with crypto algorithm evaluation, the more you are wanting the services of an expert. :-/
Consider http://www.cryptopp.com as an example of information provided. For instance, it is certified by NIST.
What information do I need to know
about a given encryption algorithm to
be able to determine for myself
whether an algorithm is a reasonable
choice?
Once you identify what you do need, there are very few peer-reviewed solutions you can trust. For example:
Symmetric Encryption: AES (Rijndael), Triple DES
Asymmetric Encryption: Diffie-Hellman, RSA
Hashing: The SHA family of functions
These are proven, battle-tested solutions. Until someone proves otherwise, they can be used safely. It's been a while since cryptography departed from security through obscurity and "roll your own" implementations.
There's a lot of cryptographic quackery out there, just be careful when choosing your solution. Make sure it's built on proven technologies, and if it sounds too good or has words like "unbreakable," "revolutionary" or the like, you can be 99% sure that it's bogus.
The effective methods are well documented and extensively used. I tend to think of three situations relative to cryptography:
If a government sized entity wants your stuff, they'll get it.
For confidential personal or business stuff, social engineering and non-cryptographic means are almost always more effective than code-breaking for almost any imaginable situation.
For hiding stuff from friends, relations, and mere interlopers, anything off the shelf is sufficient. In these scenarios that you have hidden stuff is typically more damning than the stuff itself might be.
There was a time when railroad boxcars switched from heavy-duty padlocks to easily defeated but hard to forge loops of wire. Make the lock stronger and they just go in through the walls. Turn the lock into an intrusion detector and you've gained something.
Signing and authentication are turning out to be better uses of cryptography than mere encryption.

How to make sure that your code is secure?

I am a programmer. I have about 5 years experience of programming in different kind of languages. I was concerning about my code speed, about optimizing the memory that uses my code, and about good coding style and so on. But have never thought how secure my code is. So I have disassembled my code to see what can do a hacker. Would it be easy to crack my code?
And I saw that it is! It is very easy, because I was storing
serial number as a string
encryption-decryption codes as well
So if someone has the minimal knowledge of assembler he/she can just simple dissembler and after 10-20 minutes of debugging my code is cracked!!! Even it could be done by opening the exe with notepad I guess! :-)
So what I am asking are the following:
Where I should store that kind of secure information’s?
What are the common strategies of delivering a secure code?
First thing you must realize is that you'll never prevent a determined reverser from cracking any protection schemes because anything that the code can do, the reverser will eventually find out how to replicate it. The only way you can achieve any sort of reliable protection is to have the shipped program be nothing more than a dumb client and have the brunt of the software on some server the reverser has no access to.
With that out of the way, you can certainly make it harder for a would be reverser to break your protections. Obfuscation is the sort of first step in achieving this. I have no experience using obfuscators but I'm sure you can find some suggestions for some on SO. Also if you're using a lower level language like C/C++, simply compiling the code with full optimization and stripping all debugging symbols gets you a decent amount of obfuscation.
I read this article a few years ago, but I still think it's techniques hold up today. It's one of the developers of a video game called Spyro talking about the set of techniques they used to prevent piracy. They claim it wasn't until 3 months after the release that a cracked version became available, which is fairly impressive.
If you are concerned about piracy, then there are many avenues you can take. Making the code security tighter (obfuscation, license codes, binding the software to a particular PC, hardware/dongle protection, etc) is one, but it's worth bearing in mind that every piece of software can be cracked if someone sufficiently talented can be bothered.
Another approach is to consider the pricing model for your software. If you charge $1000 a copy, then there is a big incentive for someone to have a go at cracking it. If you only charge $5 then why should anyone bother to crack it?
So what is needed is a balance. Even the most basic protection will stop ordinary people making casual copies. Beyond that, simple techniques (obfuscation and license codes) and a sensible pricing strategy will hold most would-be crackers at bay by making it not worth the bother of cracking. After that, you start getting into ever more sophisticated techniques (dongles/CDs needing to be present to run the software, only being able to run the software after logging on to an online licensing system) that take a lot of effort/cost to implement and significantly increase the risk of annoying genuine customers (remember how annoyed everyone got when they bought half life but it wouldn't let them play the game?) - unless you have a popular mainstream product (i.e. a huge revenue stream to protect), there probably isn't much point going to that much effort.
Make it web app.
It will generally not be well-protected unless there's an external service doing the checking that you are in control of - and that service can still be spoofed by those who really wants to "crack" it. Instead, trust the customer and provide only minimal copyright protection. I'm sure there was an article or podcast about this by Joel Spolsky somewhere... here's another related SO question.
I have no idea if it will help but Windows provides (since 2000) a mechanism to retrieve and store encrypted information and you can also salt this storage on a per-application basis if needed: Data Protection API (DPAPI)
This is on a machine or a user level but storing serials and perhaps some keys using it might be better than having them hidden in the application?
What sort of secure are you talking about?
Secure from the perspective that you are guarding your users data well? If so, study some real cryptography and utilize Existing libraries to encrypt your data. The win32 API is pretty good for this.
But if you're talking about stopping a cracker from stealing your application? There are many methods, but just give up. They slow crackers down, they don't stop them.
Look at How to hide a string in binary code? question
First you have to define what your code should be secure against, being secure as such is meaningless.
You seem to be worried about reverse engineering and users generating license codes without paying, though you don't say so. To make this harder you can obfuscate your code and key information in various ways. There area also techniques to make the use of debuggers harder, to prevent the reverse engineer from stepping through the code and seeing the information in clear.
But this only makes reverse engineering somewhat harder, not impossible
Another common security threat is execution of unwanted code, for example via buffer overflows.
A simple technique for doing this is to xor over all your code and xor back when you need it... but this needs an innate knowledge of assembly... I'm not sure, but you could try this:
void (*encryptionFunctn)(void);
void hideEncryptnFunctn(void)
{
volatile char * i;
while(*i!=0xC0) // 0xC0 is the opcode for ret
{
*i++^=0x45; // or any other code
}
}
To prevent against hackers viewing your code, you should use an obfuscator. An obfuscator will use various techniques which make it extremely difficult to make sense of the obfuscated code. Some techniques used are string encryption, symbol renaming, control flow obfuscation, etc. Check out Crypto Obfuscator which additionally also has external method call hiding, Anti-Reflector, Anti-Debugging, etc
The goal is to erect as many obstacles as possible in the path of a would-be hacker.

Have you ever used code virtualizer or vmprotect to protect from reverse engineering?

I know that there is no way to fully protect our code.
I also know that if a user wants to crack our app, then he or she is not a user that would buy our app.
I also know that it is better to improve our app.. instead of being afraid of anticracking techniques.
I also know that there is no commercial tool that can protec our app....
I also know that....
Ok. Enough. I've heard everything.
I really think that adding a little protection won't hurt.
So.... have you ever used code virtulizer from oreans or vmprotect?
I've heard that they are sometimes detected as virus by some antivirus.
Any experiences that I should be aware of before buying it.
I know it creates some virtual machines and obfuscates a little the code to make it harder to find the weaknesses of our registration routines.
Is there any warning I should know?
Thanks.
Any advice would be appreciated.
Jag
In my humble opinion, you should be lucky or even eager to be pirated, because that means your product is successful and popular.
That's plain incorrect. My software that I worked many months on was cracked the moment it was released. There are organised cracking groups that feed off download.com's RSS channel etc and crack each app that appears. It's a piece of cake to extract the keygen code of any app, so my response was to:
a) resort to digital certificate key files which are impossible to forge as they are signed by a private AES key and validated by a public one embedded in the app (see: aquaticmac.com - I use the stl c++ implementation which is cross-platform), along with.
b) The excellent Code Virtualizer™. I will say that the moment I started using Code Virtualizer™ I was getting some complaints from one or two users about app crashes. When I removed it from their build the crashes ceased. Still, I'm not sure whether it was a problem with CV per se as it could have been an obscure bug in my code, but I since reshuffled my code and I have since heard no complaints.
After the above, no more cracks. Some people look at being cracked as a positive thing, as it's a free publicity channel, but those people usually haven't spent months/years on an idea only to find you're being ripped off. Quite hard to take.
Unfortunately, VM-protected software is more likely to get affected by false positives than conventional packing software. The reason for that is that since AV protection is so complicated, AV software are often unable to analyze the protected code, and may rely on either pattern libraries or may issue generic warnings for any files protected by a system it can't analyze. If your priority is to eliminate false positives, I suggest picking a widely-used protection solution, e.g. AsProtect (although Oreans' products are becoming quite popular as well).
Software VM protection is quite popular today, especially as it's now available at an accessible price for small companies and independent software developers. It also takes a considerable amount of effort to crack in comparison to non-VM techniques - the wrappers usually have the standard anti-debugging tricks that other protections have, as well as the VM protection. Since the virtual machine is generated randomly on each build, the crackers will need to analyze the VM instruction set and reverse engineer the protected code back to machine code.
The main disadvantage of VM protection is that if it's overused (used to protect excessive parts of the code), it can slow down your application considerably - so you'll need to protect just the critical parts (registration checks, etc). It also doesn't apply to certain application types - it likely won't work on DLLs that are used for injection, as well as device drivers.
I've also heard that StrongBit EXECryptor is a decent protection package at a decent price. (I'm not affiliated with said company nor guarantee any quality what-so-ever, it's just word of mouth and worth checking out IMO).