In the autoconf manual, it is noted that
AC_INIT (package, version, [bug-report], [tarname], [url])
defines multiple macro names such as AC_PACKAGE_NAME and PACKAGE_NAME.
Running configure also generates a config file with definition like the following:
define HAVE_LIBGMP 1
As I am writing C++ code, I find these macros annoying yet useful. In fact, it happened many times that I needed to link with a library that uses the autotools and thus has these macros in its headers. So the situation is that there is conflict on headers macros such as:
define PACKAGE_NAME "library"
define PACKAGE_NAME "mine"
So, I was wondering if there was a way to tell the autotools to define at least some of these macros inside some kind of structure as follows:
`struct header_information{
static string package_name;
static bug_report;
....
}`
and then initialize it with the right macro names.
This solution would keep these informations encapsulated and does not pollute the global namespace ?
It seems to me like you want to abuse a package-private, build-system-ony configuration header file (config.h) that just so happens to define a convenient macro name that you'd like to use. I think the pretty obvious answer is "don't do that", or else you're on your own.
Unless I'm misunderstanding you?
Those defines are there so that the particular library can use them. It's not meant for other things to include. In fact, the majority of the things in config.h are completely useless outside of the particular package.
That doesn't mean that the library that config.h file belongs to couldn't provide what you're looking for, by defining a public struct in a header that uses those variables. Or perhaps a library that uses pkg-config (if you're just looking for package names) can provide some of information for you. But I don't think that autotools would or should provide that information to you.
Related
I'm using reagent to build several alternate root components, only one of which will be mounted on any given page; definitely either/or. These have a degree of commonality in their makeup, hence it will be convenient to move what is common among them to a common namespace.
What would be ideal is if in the file for each of these components I had the option to switch namespace into common, and add defs particular to the component, then switch back, thus avoiding circular dependencies nor needing any kind of inheritance.
I recalled this being possible in common lisp, how wonderful it was, and it also seems possible in clojure.
From Clojurescript docs: ns must be the first form and can only be used once, and in-ns is only usable from the repl.
I'm wondering if there's a way to achieve this kind of thing in clojurescript which is still eluding me.
If not I may need to reconsider my assumptions behind multiple alternate root components; the "many builds within one build" kind of idea, if that makes sense.
Update after some futher experimentation and confusion:
another option might be to split a single namespace across multiple files (is this possible?). Not sure what direction to turn in here.
The fact that in reagent I am using atoms in the global namespace is what's creating the need for circular dependencies if I use a separate namespace for common. Hence, wonder about one global namespace, in which case multiple files might help. Or is the way forward one giant file and one namespace??
Update: I've realised there is a great tension between keeping all app state globally (in my current case, multiple atoms), and passing app state around. My pattern currently is everything global, don't pass any of it around. Passing the necessary state as parameters to fns in the common namespace would solve the problem here (duh!), but then there's the question of what principles are being followed here regarding app state. If I just added a param whenever I needed one, but started with the idea that everything was global, there'd be no real principle to it...
In ClojureScript, everything is pre-compiled into a single static JavaScript "executable", so there is nothing like the repl you are used to in Clojure. Indeed, in CLJS the "Var" concept doesn't really after the compiler, they are just static (constant) variables and cannot be rebound.
Having said that, CLJS does emulate the behavior of Clojure dynamic variables via the binding form, so that may help you to reach your goal. As in CLJ, it creates what amounts to a (thread-local) global variable. This is a degenerate case in CLJS since there is only one thread. However, the source code looks identical to the CLJ case.
Another way to accomplish this is to just use a plain atom as a global variable so you don't have to pass a parameter around.
As always, when using a global variable, it reduces the number of parameters in function call trees, but it creates invisible dependencies between different parts of the code. Somethimes convenient, but usually a bad tradeoff.
I have defined list_t in my project that got list module API like list_pop(). But now I have to use MySQL lib to communicate with DB, but the MySQL lib still got its list implements, and also defined a list_pop() API. In my other modules, I have to link both of them, and comes the conflict.
One of my solution is, separately include header file for different list API calling, this works well, but while some function need to call both of MySQL::list_pop() and local::list_pop(), how to notify the compiler the correct link point? Is there some GCC trick that can do these without any changes to local::list_pop()?
For most practical purposes, you are going to have to rename one or the other set of functions. It is probably easier to rename your own than those of MySQL.
The simplest approach is to simply add a prefix that has a higher probability of being unique (enough), such as your initials, or the codename of your project, or something. Or you can rename everything to avoid collisions, being aware that MySQL might add a new function in the future.
This is exactly why namespaces were invented for C++, and why C projects usually have systematic prefixes on sets of functions.
There is a way to solve this. Refactor your list_pop() to, say, my_list_pop().
There is one other way to solve this,
Looking at the header of the MySQL my_list.h here, https://github.com/lgsonic/mysql-trigger/blob/master/mysql/my_list.h you can see that list_pop is just a macro, and its binded at compile time, not at runtime(hence not a real library function). Changing list_pop of MySQL to list_pop_my(just in the #define) can make it do what you want it to do.
How can I tell if a method will never be used ?
I know that for dll files and libraries you can't really know if someone else (another project) will ever use the code.
In general I assume that anything public might be used somewhere else.
But what about private methods ? Is it safe to assume that if I don't see an explicit call to that method, it won't be used ?
I assume that for private methods it's easier to decide. But is it safe to decide it ONLY for private methods ?
Depends on the language, but commonly, a name that occurs once in the program and is not public/exported is not used. There are exceptions, such as constructors and destructors, operator overloads (in C++ and Python, where the name at the point of definition does not match the name at the call site) and various other methods.
For example, in Python, to allow indexing (foo[x]) to work, you define a method __getitem__ in the class to which foo belongs. But hardly ever would you call __getitem__ explicitly.
What you need to know is the (or all possible) entry point(s) to your code:
For a simple command line program, this is the "main" method or, in the most simple case, the top of your script.
For libraries, in fact, it is everything visible from outside.
The situation turns more complicated if methods can be referenced from outside by means of introspection. This is language specific and requires knowledge into details of the techniques used.
What you need to do is follow all references from all entry points recursively to mark up all used methods. Whatever remains unmarked can safely - and should - be removed.
Since this is a diligent but routine piece of work, there are tools available which do that for various programming languages. Examples include ReSharper for C# or ProGuard for Java.
what is the purpose of namespaces ?
and, more important, should they be used as objects in java (things that have data and functions and that try to achieve encapsulation) ? is this idea to far fetched ? :)
or should they be used as packages in java ?
or should they be used more generally as a module system or something ?
Given that you use the Clojure tag, I suppose that you'll be interested in a Clojure-specific answer:
what is the purpose of namespaces ?
Clojure namespaces, Java packages, Haskell / Python / whatever modules... At a very high level, they're all different names for the same basic mechanism whose primary purpose is to prevent name clashes in non-trivial codebases. Of course, each solution has its own little twists and quirks which make sense in the context of a given language and would not make sense outside of it. The rest of this answer will deal with the twists and quirks specific to Clojure.
A Clojure namespace groups Vars, which are containers holding functions (most often), macro functions (functions used by the compiler to generate macroexpansions of appropriate forms, normally defined with defmacro; actually they are just regular Clojure functions, although there is some magic to the way in which they are registered with the compiler) and occasionally various "global parameters" (say, clojure.core/*in* for standard input), Atoms / Refs etc. The protocol facility introduced in Clojure 1.2 has the nice property that protocols are backed by Vars, as are the individual protocol functions; this is key to the way in which protocols present a solution to the expression problem (which is however probably out of the scope of this answer!).
It stands to reason that namespaces should group Vars which are somehow related. In general, creating a namespace is a quick & cheap operation, so it is perfectly fine (and indeed usual) to use a single namespace in early stages of development, then as independent chunks of functionality emerge, factor those out into their own namespaces, rinse & repeat... Only the things which are part of the public API need to be distributed between namespaces up front (or rather: prior to a stable release), since the fact that function such-and-such resides in namespace so-and-so is of course a part of the API.
and, more important, should they be used as objects in java (things that have data and functions and that try to achieve encapsulation) ? is this idea to far fetched ? :)
Normally, the answer is no. You might get a picture not too far from the truth if you approach them as classes with lots of static methods, no instance methods, no public constructors and often no state (though occasionally there may be some "class data members" in the form of Vars holding Atoms / Refs); but arguably it may be more useful not to try to apply Java-ish metaphors to Clojure idioms and to approach a namespace as a group of functions etc. and not "a class holding a group of functions" or some such thing.
There is an important exception to this general rule: namespaces which include :gen-class in their ns form. These are meant precisely to implement a Java class which may later be instantiated, which might have instance methods and per-instance state etc. Note that :gen-class is an interop feature -- pure Clojure code should generally avoid it.
or should they be used as packages in java ?
They serve some of the same purposes packages were designed to serve (as already mentioned above); the analogy, although it's certainly there, is not that useful, however, just because the things which packages group together (Java classes) are not at all like the things which Clojure namespaces group together (Clojure Vars), the various "access levels" (private / package / public in Java, {:private true} or not in Clojure) work very differently etc.
That being said, one has to remember that there is a certain correspondence between namespaces and packages / classes residing in particular packages. A namespace called foo.bar, when compiled, produces a class called bar in the package foo; this means, in particular, that namespace names should contain at least one dot, as so-called single-segment names apparently lead to classes being put in the "default package", leading to all sorts of weirdness. (E.g. I find it impossible to have VisualVM's profiler notice any functions defined in single-segment namespaces.)
Also, deftype / defrecord-created types do not reside in namespaces. A (defrecord Foo [...] ...) form in the file where namespace foo.bar is defined creates a class called Foo in the package foo.bar. To use the type Foo from another namespace, one would have to :import the class Foo from the foo.bar package -- :use / :require would not work, since they pull in Vars from namespaces, which records / types are not.
So, in this particular case, there is a certain correspondence between namespaces and packages which Clojure programmers who wish to take advantage of some of the newer language features need to be aware of. Some find that this gives an "interop flavour" to features which are not otherwise considered to belong in the realm of interop (defrecord / deftype / defprotocol are a good abstraction mechanism even if we forget about their role in achieving platform speed on the JVM) and it is certainly possible that in some future version of Clojure this flavour might be done away with, so that the namespace name / package name correspondence for deftype & Co. can be treated as an implementation detail.
or should they be used more generally as a module system or something ?
They are a module system and this is indeed how they should be used.
A package in Java has its own namespace, which provides a logical grouping of classes. It also helps prevent naming collisions. For example in java you will find java.util.Date and java.sql.Date - two different classes with the same name differentiated by their namespace. If you try an import both into a java file, you will see that it wont compile. At least one version will need to use its explicit namespace.
From a language independant view, namespaces are a way to isolate things (i.e. encapsulate in a sens). It's a more general concept (see xml namespaces for example). You can "create" namespaces in several ways, depending on the language you use: packages, static classes, modules and so on. All of these provides namespaces to the objects/data/functions they contain. This allow to organize the code better, to isolate features, tends for better code reuse and adaptability (as encapsulation)
As stated in the "Zen of Python", "Namespaces are one honking great idea -- let's do more of those !".
Think of them as containers for your classes. As in if you had a helper class for building strings and you wanted it in your business layer you would use a namespace such as MyApp.Business.Helpers. This allows your classes to be contained in sensical locations so when you or some else referencing your code wants to cosume them they can be located easily. For another example if you wanted to consume a SQL connection helper class you would probably use something like:
MyApp.Data.SqlConnectionHelper sqlHelper = new MyApp.Data.SqlConnectionHelper();
In reality you would use a "using" statement so you wouldn't need to fully qualify the namespace just to declare the variable.
Paul
I've read many times and agree with avoiding the use of globals to keep code orthogonal. Does the use of the config file to keep read only information that your program uses similar to using Globals?
If you're using config files in place of globals, then yes, they are similar.
Config files should only be used in cases where the end-user (presumably a computer-savvy user, like a developer) needs to declare settings for an application or piece of code, while keeping their hands out of the code itself.
My first reaction would be that it is not the same. I think the problem with globals is the read+write scenario. Config-files are readonly (at least in terms of execution).
In the same way constants are not considered bad programming behaviour. Config-files, at least in the way I use them, are just easy-changable constants.
Well, since a config file and a global variable can both have the effect of propagating changes throughout a system - they are roughly similar.
But... in the case of a configuration file that change is usually going to take place in a single, highly-visible (to the developer) location, and global variables can affect change in very sneaky and hard to track down ways -- so in this way the two concepts are not similar.
Having a configuration file ususally helps with DRY concepts, and it shouldn't hurt the orthogonality of the system, either.
Bonus points for using the $25 word 'orthogonal'. I had to look that one up in Wikipedia to find out the non-Euclidean definition.
Configuration files are really meant to be easily editable by the end user as a way of telling the program how to run.
A more specialized form of configuration files, user preferences, are used to remember things between program executions.
Global is related to a unique instance for an object which will never change, whereas config file is used as container for reference values, for objects within the application that can change.
One "global" object will never change during runtime, the other object is initialized through config file, but can change later on.
Actually, those objects not only can change during the lifetime of the application, they can also monitor the config file in order to realize "hot-change" (modification of their value without stopping/restarting the application), if that config file is modified.
They are absolutely not the same or replacements for eachother. A config file, or object can be used non-globally, ie passed explicitly.
You can of course have a global variable that refers to a config object, and that would be defeating the purpose.