difference between two images start positions in html5 canvas - html

var c=document.getElementById("myCanvas");
var ctx=c.getContext("2d");
ctx.strokeRect(50,50,200,200);
ctx.translate(100,100);
ctx.scale(0.751,0.751);
ctx.translate(-100,-100);
ctx.strokeRect(50,50,200,200);
in canvas am drawing a rectangle,scaled and translated rectangle's start position is different from the original.
is there any calcutions to find the difference between the starting position of original rectangle and scaled rectangle.how can i get the difference or start position of scaled rectangle

Translations (moves), scales and rotations are all transforms.
Once you get a few transforms deep, tracking original vs transformed positions with arithmetic gets pretty scary!
Behind the scenes, html canvas uses matrix math to track where your transformed rectangle will be drawn.
You can also use the power of a matrix to track the difference between the top-left of your original rectangle and the top-left of your transformed rectangle.
The matrix is actually an array of 6 numbers. This is the “identity matrix” which represents one point in original untransformed space.
var matrix=[1,0,0,1,0,0];
Assume that your original rectangle is positioned at X/Y (in your case 50/50).
var x=50;
var y=50;
Instead of just ctx.translate(100,100), use this wrapper function to both translate and matrix track.
function translate(translateByX,translateByY){
matrix[4] += matrix[0] * translateByX + matrix[2] * translateByY;
matrix[5] += matrix[1] * translateByX + matrix[3] * translateByY;
ctx.translate(translateByX,translateByY);
}
After you’re back in original space, you have tracked where your transformed rectangle is by using the matrix.
You can get the position of your transformed X/Y (but in original space) like this:
function getXY(){
newX = x * matrix[0] + y * matrix[2] + matrix[4];
newY = x * matrix[1] + y * matrix[3] + matrix[5];
return({x:newX,y:newY});
}
Here is code and a Fiddle: http://jsfiddle.net/m1erickson/yuaMs/
<!doctype html>
<html>
<head>
<link rel="stylesheet" type="text/css" media="all" href="css/reset.css" /> <!-- reset css -->
<script type="text/javascript" src="http://code.jquery.com/jquery.min.js"></script>
<style>
body{ background-color: ivory; }
canvas{border:1px solid red;}
</style>
<script>
$(function(){
var canvas=document.getElementById("canvas");
var ctx=canvas.getContext("2d");
// test values
// objective: track this point into transformed space
var x=50;
var y=50;
// a transform matrix for point x/y
var matrix=[1,0,0,1,0,0];
// draw the first rectangle in blue
ctx.save();
ctx.beginPath();
ctx.strokeStyle="blue";
ctx.strokeRect(x,y,200,200);
// do transforms using the wrapped transform functions
// so the matrix is also tracked
translate(100,100);
scale(0.751,0.751);
translate(-100,-100);
// draw the second rectangle (now in transformed space)
ctx.beginPath();
ctx.strokeStyle="green";
ctx.strokeRect(x,y,200,200);
ctx.restore();
// Note: ctx.restore() has un-transformed our space
// get our original XY which has been transformed using the matrix
var transformed=getXY();
// draw a dot at the transformed x/y
ctx.beginPath();
ctx.arc(transformed.x,transformed.y,5,0,Math.PI*2,false);
ctx.closePath();
ctx.fillStyle="red";
ctx.fill();
// do the translate
// but also save the translate in the matrix
function translate(x,y){
matrix[4] += matrix[0] * x + matrix[2] * y;
matrix[5] += matrix[1] * x + matrix[3] * y;
ctx.translate(x,y);
}
// do the scale
// but also save the scale in the matrix
function scale(x,y){
matrix[0] *= x;
matrix[1] *= x;
matrix[2] *= y;
matrix[3] *= y;
ctx.scale(x,y);
}
// do the rotate
// but also save the rotate in the matrix
function rotate(radians){
var cos = Math.cos(radians);
var sin = Math.sin(radians);
var m11 = matrix[0] * cos + matrix[2] * sin;
var m12 = matrix[1] * cos + matrix[3] * sin;
var m21 = -matrix[0] * sin + matrix[2] * cos;
var m22 = -matrix[1] * sin + matrix[3] * cos;
matrix[0] = m11;
matrix[1] = m12;
matrix[2] = m21;
matrix[3] = m22;
ctx.rotate(radians);
}
// get the transformed point from the matrix
function getXY(vertex){
newX = x * matrix[0] + y * matrix[2] + matrix[4];
newY = x * matrix[1] + y * matrix[3] + matrix[5];
return({x:newX,y:newY});
}
}); // end $(function(){});
</script>
</head>
<body>
<p>Blue=drawn in original space</p>
<p>Green=drawn transformed space</p>
<p>Red=drawn in original space but tracked with matrix!</p>
<p id="newXY">Tracked x/y=</p>
<canvas id="canvas" width=300 height=300></canvas>
</body>
</html>

Once you've scaled your canvas, every operation that follows will be scaled, including the transforms.
So your second translate :
ctx.translate(-100,-100);
is in fact performing a translate by (-75.1, -75.1) in the original coordinate system.

Related

Building a circle with quadratic curves in canvas

I am trying to build a near-perfect circle with quadratic curves in canvas. I have this function for setting up points around a circle and connecting them with quadratic curves:
function calcPointsCircle(cx, cy, radius, dashLength) {
var n = radius / dashLength,
alpha = Math.PI * 2 / n,
i = -1;
while (i < n) {
var theta = alpha * i,
theta2 = alpha * (i + 1);
points.push({
x : (Math.cos(theta) * radius) + cx,
y : (Math.sin(theta) * radius) + cy,
ex : (Math.cos(theta2) * radius) + cx,
ey : (Math.sin(theta2) * radius) + cy,
py : (Math.sin(theta) * radius) + cy
});
i+=2;
}
}
for (i = 0; i < points.length; i++) {
var p = points[i];
ctx.strokeStyle = '#fff';
ctx.quadraticCurveTo(p.x, p.py, p.x, p.y);
ctx.stroke();
}
It works, but the lines are currently straight (which is obvious, since I am using the points x and y coordinates for the control point):
I am looking for a way to automatically calculate the poisitions for the control points based on the circle radius and the number of points... All help is more then welcome
Here's how to calculate the controls points of a set of quadratic curves which approximate a circle circumscribing a regular polygon.
Given:
A centerpoint, radius & sidecount.
For each side of the polygon, calculate:
3 points on a circumscribing circumference and then calculate the quadratic curve control point that causes the curve to pass through those 3 points:
The 2 points of the polygon side are 2 of the 3 points
Calculate the sweep angle between the 2 points of a side (var sweep)
Bisect the sweep angle (sweep/2)
Use trigonometry to calculate the point on the circumference midway between the 2 points of the side.
Calculate the middle control point:
// calc middle control point
var cpX=2*x1-x0/2-x2/2;
var cpY=2*y1-y0/2-y2/2;
Example code and a Demo:
// change sideCount to the # of poly sides desired
//
var sideCount=5;
var canvas=document.getElementById("canvas");
var ctx=canvas.getContext("2d");
ctx.lineWidth=2;
ctx.fillStyle=randomColor();
// save PI*2
var PI2=Math.PI*2;
// functions to calc a point on circumference of circle
var xx=function(a){return(cx+radius*Math.cos(a));}
var yy=function(a){return(cy+radius*Math.sin(a));}
// general interpolation function
var lerp=function(a,b,x){ return(a+x*(b-a)); }
// define the regular polygon
var cx=150;
var cy=150;
var radius=100;
// calc qCurve controls points and put in sides[] array
var sides=[];
for(var i=0;i<sideCount;i++){
sides.push(makeSide(i,sideCount));
}
// drawing and animating stuff
var percent=0;
var percentDirection=0.50;
$("#toShape").click(function(){
percentDirection=-0.50;
})
$("#toCircle").click(function(){
percentDirection=0.50;
})
animate();
// functions
function animate(){
requestAnimationFrame(animate);
drawSides(percent);
percent+=percentDirection;
if(percent>100){percent=100;}
if(percent<0){percent=0;}
}
function drawSides(pct,color){
ctx.clearRect(0,0,canvas.width,canvas.height);
if(pct==100){
ctx.beginPath();
ctx.arc(cx,cy,radius,0,PI2);
ctx.closePath();
ctx.fill();
}else{
ctx.beginPath();
ctx.moveTo(sides[0].x0,sides[0].y0);
for(var i=0;i<sideCount;i++){
var side=sides[i];
var cpx=lerp(side.midX,side.cpX,pct/100);
var cpy=lerp(side.midY,side.cpY,pct/100);
ctx.quadraticCurveTo(cpx,cpy,side.x2,side.y2);
}
ctx.fill();
}
}
// given a side of a regular polygon,
// calc a qCurve that approximates a circle
function makeSide(n,sideCount){
// starting & ending angles vs centerpoint
var sweep=PI2/sideCount;
var sAngle=sweep*(n-1);
var eAngle=sweep*n;
// given start & end points,
// calc the point on circumference at middle of sweep angle
var x0=xx(sAngle);
var y0=yy(sAngle);
var x1=xx((eAngle+sAngle)/2);
var y1=yy((eAngle+sAngle)/2);
var x2=xx(eAngle);
var y2=yy(eAngle);
// calc the control points to pass a qCurve
// through the 3 points
var dx=x2-x1;
var dy=y2-y1;
var a=Math.atan2(dy,dx);
var midX=lerp(x0,x2,0.50);
var midY=lerp(y0,y2,0.50);
// calc middle control point
var cpX=2*x1-x0/2-x2/2;
var cpY=2*y1-y0/2-y2/2;
return({
x0:x0, y0:y0,
x2:x2, y2:y2,
midX:midX, midY:midY,
cpX:cpX, cpY:cpY,
color:randomColor()
});
}
function randomColor(){
return('#'+Math.floor(Math.random()*16777215).toString(16));
}
body{ background-color: ivory; }
canvas{border:1px solid red;}
<script src="https://ajax.googleapis.com/ajax/libs/jquery/1.9.1/jquery.min.js"></script>
<button id="toShape">Animate to Shape</button>
<button id="toCircle">Animate to Circle</button><br>
<canvas id="canvas" width=300 height=300></canvas>

Gradient Stroke Along Curve in Canvas

I'm trying to draw a curve in canvas with a linear gradient stoke style along the curve, as in this image. On that page there is a linked svg file that gives instructions on how to accomplish the effect in svg. Maybe a similar method would be possible in canvas?
A Demo: http://jsfiddle.net/m1erickson/4fX5D/
It's fairly easy to create a gradient that changes along the path:
It's more difficult to create a gradient that changes across the path:
To create a gradient across the path you draw many gradient lines tangent to the path:
If you draw enough tangent lines then the eye sees the curve as a gradient across the path.
Note: Jaggies can occur on the outsides of the path-gradient. That's because the gradient is really made up of hundreds of tangent lines. But you can smooth out the jaggies by drawing a line on either side of the gradient using the appropriate colors (here the anti-jaggy lines are red on the top side and purple on the bottom side).
Here are the steps to creating a gradient across the path:
Plot hundreds of points along the path.
Calculate the angle of the path at those points.
At each point, create a linear gradient and draw a gradient stroked line across the tangent of that point. Yes, you will have to create a new gradient for each point because the linear gradient must match the angle of the line tangent to that point.
To reduce the jaggy effect caused by drawing many individual lines, you can draw a smooth path along the top and bottom side of the gradient path to overwrite the jaggies.
Here is annotated code:
<!doctype html>
<html>
<head>
<link rel="stylesheet" type="text/css" media="all" href="css/reset.css" /> <!-- reset css -->
<script type="text/javascript" src="http://code.jquery.com/jquery.min.js"></script>
<style>
body{ background-color: ivory; }
#canvas{border:1px solid red;}
</style>
<script>
$(function(){
// canvas related variables
var canvas=document.getElementById("canvas");
var ctx=canvas.getContext("2d");
// variables defining a cubic bezier curve
var PI2=Math.PI*2;
var s={x:20,y:30};
var c1={x:200,y:40};
var c2={x:40,y:200};
var e={x:270,y:220};
// an array of points plotted along the bezier curve
var points=[];
// we use PI often so put it in a variable
var PI=Math.PI;
// plot 400 points along the curve
// and also calculate the angle of the curve at that point
for(var t=0;t<=100;t+=0.25){
var T=t/100;
// plot a point on the curve
var pos=getCubicBezierXYatT(s,c1,c2,e,T);
// calculate the tangent angle of the curve at that point
var tx = bezierTangent(s.x,c1.x,c2.x,e.x,T);
var ty = bezierTangent(s.y,c1.y,c2.y,e.y,T);
var a = Math.atan2(ty, tx)-PI/2;
// save the x/y position of the point and the tangent angle
// in the points array
points.push({
x:pos.x,
y:pos.y,
angle:a
});
}
// Note: increase the lineWidth if
// the gradient has noticable gaps
ctx.lineWidth=2;
// draw a gradient-stroked line tangent to each point on the curve
for(var i=0;i<points.length;i++){
// calc the topside and bottomside points of the tangent line
var offX1=points[i].x+20*Math.cos(points[i].angle);
var offY1=points[i].y+20*Math.sin(points[i].angle);
var offX2=points[i].x+20*Math.cos(points[i].angle-PI);
var offY2=points[i].y+20*Math.sin(points[i].angle-PI);
// create a gradient stretching between
// the calculated top & bottom points
var gradient=ctx.createLinearGradient(offX1,offY1,offX2,offY2);
gradient.addColorStop(0.00, 'red');
gradient.addColorStop(1/6, 'orange');
gradient.addColorStop(2/6, 'yellow');
gradient.addColorStop(3/6, 'green')
gradient.addColorStop(4/6, 'aqua');
gradient.addColorStop(5/6, 'blue');
gradient.addColorStop(1.00, 'purple');
// draw the gradient-stroked line at this point
ctx.strokeStyle=gradient;
ctx.beginPath();
ctx.moveTo(offX1,offY1);
ctx.lineTo(offX2,offY2);
ctx.stroke();
}
// draw a top stroke to cover jaggies
// on the top of the gradient curve
var offX1=points[0].x+20*Math.cos(points[0].angle);
var offY1=points[0].y+20*Math.sin(points[0].angle);
ctx.strokeStyle="red";
// Note: increase the lineWidth if this outside of the
// gradient still has jaggies
ctx.lineWidth=1.5;
ctx.beginPath();
ctx.moveTo(offX1,offY1);
for(var i=1;i<points.length;i++){
var offX1=points[i].x+20*Math.cos(points[i].angle);
var offY1=points[i].y+20*Math.sin(points[i].angle);
ctx.lineTo(offX1,offY1);
}
ctx.stroke();
// draw a bottom stroke to cover jaggies
// on the bottom of the gradient
var offX2=points[0].x+20*Math.cos(points[0].angle+PI);
var offY2=points[0].y+20*Math.sin(points[0].angle+PI);
ctx.strokeStyle="purple";
// Note: increase the lineWidth if this outside of the
// gradient still has jaggies
ctx.lineWidth=1.5;
ctx.beginPath();
ctx.moveTo(offX2,offY2);
for(var i=0;i<points.length;i++){
var offX2=points[i].x+20*Math.cos(points[i].angle+PI);
var offY2=points[i].y+20*Math.sin(points[i].angle+PI);
ctx.lineTo(offX2,offY2);
}
ctx.stroke();
//////////////////////////////////////////
// helper functions
//////////////////////////////////////////
// calculate one XY point along Cubic Bezier at interval T
// (where T==0.00 at the start of the curve and T==1.00 at the end)
function getCubicBezierXYatT(startPt,controlPt1,controlPt2,endPt,T){
var x=CubicN(T,startPt.x,controlPt1.x,controlPt2.x,endPt.x);
var y=CubicN(T,startPt.y,controlPt1.y,controlPt2.y,endPt.y);
return({x:x,y:y});
}
// cubic helper formula at T distance
function CubicN(T, a,b,c,d) {
var t2 = T * T;
var t3 = t2 * T;
return a + (-a * 3 + T * (3 * a - a * T)) * T
+ (3 * b + T * (-6 * b + b * 3 * T)) * T
+ (c * 3 - c * 3 * T) * t2
+ d * t3;
}
// calculate the tangent angle at interval T on the curve
function bezierTangent(a, b, c, d, t) {
return (3 * t * t * (-a + 3 * b - 3 * c + d) + 6 * t * (a - 2 * b + c) + 3 * (-a + b));
};
}); // end $(function(){});
</script>
</head>
<body>
<canvas id="canvas" width=300 height=300></canvas>
</body>
</html>
I am working on doing something very similar, and I just wanted to add a couple things. markE's answer is great, but what he calls tangent lines to the curve, are actually lines normal or perpendicular to the curve. (Tangent lines are parallel, normal lines are perpendicular)
For my particular application, I am using a gradient across a line with transparency. In this case, it is important to get near pixel perfect gradient regions, as overlapping transparency will get drawn twice, changing the desired color. So instead of drawing a bunch of lines perpendicular to the curve, I divided the curve up into quadrilaterals and applied a linear gradient to each. Additionally, using these quadrilateral regions reduces the number of calls to draw you have to make, which can make it more efficient. You don't need a ton of regions to get a pretty smooth effect, and the fewer regions you use, the faster it will be able to render.
I adapted markE's code, so credit to him for that great answer. Here is the fiddle: https://jsfiddle.net/hvyt58dz/
Here is the adapted code I used:
// canvas related variables
var canvas = document.getElementById("canvas");
var ctx = canvas.getContext("2d");
// variables defining a cubic bezier curve
var PI2 = Math.PI * 2;
var s = {
x: 20,
y: 30
};
var c1 = {
x: 200,
y: 40
};
var c2 = {
x: 40,
y: 200
};
var e = {
x: 270,
y: 220
};
// an array of points plotted along the bezier curve
var points = [];
// we use PI often so put it in a variable
var PI = Math.PI;
// plot 400 points along the curve
// and also calculate the angle of the curve at that point
var step_size = 100/18;
for (var t = 0; t <= 100 + 0.1; t += step_size) {
var T = t / 100;
// plot a point on the curve
var pos = getCubicBezierXYatT(s, c1, c2, e, T);
// calculate the tangent angle of the curve at that point
var tx = bezierTangent(s.x, c1.x, c2.x, e.x, T);
var ty = bezierTangent(s.y, c1.y, c2.y, e.y, T);
var a = Math.atan2(ty, tx) - PI / 2;
// save the x/y position of the point and the tangent angle
// in the points array
points.push({
x: pos.x,
y: pos.y,
angle: a
});
}
// Note: increase the lineWidth if
// the gradient has noticable gaps
ctx.lineWidth = 2;
var overlap = 0.2;
var outside_color = 'rgba(255,0,0,0.0)';
var inside_color = 'rgba(255,0,0,0.7)';
// draw a gradient-stroked line tangent to each point on the curve
var line_width = 40;
var half_width = line_width/2;
for (var i = 0; i < points.length - 1; i++) {
var x1 = points[i].x, y1 = points[i].y;
var x2 = points[i+1].x, y2 = points[i+1].y;
var angle1 = points[i].angle, angle2 = points[i+1].angle;
var midangle = (angle1 + angle2)/ 2;
// calc the topside and bottomside points of the tangent line
var gradientOffsetX1 = x1 + half_width * Math.cos(midangle);
var gradientOffsetY1 = y1 + half_width * Math.sin(midangle);
var gradientOffsetX2 = x1 + half_width * Math.cos(midangle - PI);
var gradientOffsetY2 = y1 + half_width * Math.sin(midangle - PI);
var offX1 = x1 + half_width * Math.cos(angle1);
var offY1 = y1 + half_width * Math.sin(angle1);
var offX2 = x1 + half_width * Math.cos(angle1 - PI);
var offY2 = y1 + half_width * Math.sin(angle1 - PI);
var offX3 = x2 + half_width * Math.cos(angle2)
- overlap * Math.cos(angle2-PI/2);
var offY3 = y2 + half_width * Math.sin(angle2)
- overlap * Math.sin(angle2-PI/2);
var offX4 = x2 + half_width * Math.cos(angle2 - PI)
+ overlap * Math.cos(angle2-3*PI/2);
var offY4 = y2 + half_width * Math.sin(angle2 - PI)
+ overlap * Math.sin(angle2-3*PI/2);
// create a gradient stretching between
// the calculated top & bottom points
var gradient = ctx.createLinearGradient(gradientOffsetX1, gradientOffsetY1, gradientOffsetX2, gradientOffsetY2);
gradient.addColorStop(0.0, outside_color);
gradient.addColorStop(0.25, inside_color);
gradient.addColorStop(0.75, inside_color);
gradient.addColorStop(1.0, outside_color);
//gradient.addColorStop(1 / 6, 'orange');
//gradient.addColorStop(2 / 6, 'yellow');
//gradient.addColorStop(3 / 6, 'green')
//gradient.addColorStop(4 / 6, 'aqua');
//gradient.addColorStop(5 / 6, 'blue');
//gradient.addColorStop(1.00, 'purple');
// line cap
if(i == 0){
var x = x1 - overlap * Math.cos(angle1-PI/2);
var y = y1 - overlap * Math.sin(angle1-PI/2);
var cap_gradient = ctx.createRadialGradient(x, y, 0, x, y, half_width);
ctx.beginPath();
ctx.arc(x, y, half_width, angle1 - PI, angle1);
cap_gradient.addColorStop(0.5, inside_color);
cap_gradient.addColorStop(1.0, outside_color);
ctx.fillStyle = cap_gradient;
ctx.fill();
}
if(i == points.length - 2){
var x = x2 + overlap * Math.cos(angle2-PI/2);
var y = y2 + overlap * Math.sin(angle2-PI/2);
var cap_gradient = ctx.createRadialGradient(x, y, 0, x, y, half_width);
ctx.beginPath();
ctx.arc(x, y, half_width, angle2, angle2 + PI);
cap_gradient.addColorStop(0.5, inside_color);
cap_gradient.addColorStop(1.0, outside_color);
ctx.fillStyle = cap_gradient;
ctx.fill();
console.log(x,y);
}
// draw the gradient-stroked line at this point
ctx.fillStyle = gradient;
ctx.beginPath();
ctx.moveTo(offX1, offY1);
ctx.lineTo(offX2, offY2);
ctx.lineTo(offX4, offY4);
ctx.lineTo(offX3, offY3);
ctx.fill();
}
//////////////////////////////////////////
// helper functions
//////////////////////////////////////////
// calculate one XY point along Cubic Bezier at interval T
// (where T==0.00 at the start of the curve and T==1.00 at the end)
function getCubicBezierXYatT(startPt, controlPt1, controlPt2, endPt, T) {
var x = CubicN(T, startPt.x, controlPt1.x, controlPt2.x, endPt.x);
var y = CubicN(T, startPt.y, controlPt1.y, controlPt2.y, endPt.y);
return ({
x: x,
y: y
});
}
// cubic helper formula at T distance
function CubicN(T, a, b, c, d) {
var t2 = T * T;
var t3 = t2 * T;
return a + (-a * 3 + T * (3 * a - a * T)) * T + (3 * b + T * (-6 * b + b * 3 * T)) * T + (c * 3 - c * 3 * T) * t2 + d * t3;
}
// calculate the tangent angle at interval T on the curve
function bezierTangent(a, b, c, d, t) {
return (3 * t * t * (-a + 3 * b - 3 * c + d) + 6 * t * (a - 2 * b + c) + 3 * (-a + b));
};

How to Calculate Center pixels(x,y) of each small square drwan within a rectangle in HTML5 canvas

I have written a code that will create a rectangle and by providing values it will generate rows and columns in that rectangle,basically it is creating small squares within that rectangle.
Code can be seen here http://jsfiddle.net/simerpreet/ndGE5/1/
<h1>Example</h1>
<canvas id="t_canvas" style="border:1px solid #000000;" width="300" height="225"></canvas>
<br/>
<button id="draw">Draw</button>
<Script>
var x=50;
var y=50;
var w = 150; //width
var h = 100; //height
var columns=3;
var rows =3;
var vnp =w/columns; //vertical next point
var hnp=h/rows; //horizontal next point
var canvas = document.getElementById("t_canvas");
var ctx = canvas.getContext("2d");
$(document).ready(function() {
$('#draw').click(function() {
drawVerticalLines(parseFloat(vnp));
drawHorizontalLines(parseFloat(hnp));
ctx.fillStyle = "#FF0000";
ctx.strokeRect(x, y, w, h);
ctx.stroke();
});
});
function drawVerticalLines(np){
var np = x + np //start point of first column
while(np < w+x){
ctx.moveTo(np, y);
ctx.lineTo(np, y+h);
np = vnp + np;
}
}
function drawHorizontalLines(np){
var np = y + np //start point of first column
while(np < h+y){
ctx.moveTo(x, np);
ctx.lineTo(x+w, np);
np = hnp + np;
}
}
<script>
I have given the value of rows =3 and columns =3, so it will create a tic tac toe like squares.My requirement is when i click in a any small square at any postion,it should give me the exact center location of that particular square, iam kind of stuck here,is there any kind of algorithm which can do this?
Thanks,
Simer
The correct way to get the center point can be manifested in various ways but in essence this is what you need to do:
var mousePos = getMousePos(canvas, evt), // get adjusted mouse position
gw = vnp * 0.5, // get center of one cell
gh = hnp * 0.5,
ix = ((mousePos.x - x) / vnp)|0, // get cell index clicked
iy = ((mousePos.y - y) / hnp)|0,
cx = ix * vnp + x + gw, // scale up to get pixel position
cy = iy * hnp + y + gh;
Modified fiddle here
A quick breakdown of the following lines (showing only for x, same is for y):
ix = ((mousePos.x - x) / vnp)|0
cx = ix * vnp + x + gw
Adjust for grid by subtracting the grid's start point from the mouse position. This gives you the position within the grid:
mousePos.x - x
Quantize the value to get an index by using a single cell's width. The |0 cuts off the fractional value so we end up with an integer value which we need for the next step:
((mousePos.x - x) / vnp)|0
Now that we have an integer index [0, 2] (you need to do boundary checks or index range check for the grid) we simply multiply it with a cell width to get a pixel position for the start of a grid cell:
cx = ix * vnp
And finally add back the grid start position of the grid to get to the cell's on-screen corner as well as adding half a cell size to get center of this cell:
cx = ix * vnp + gw
A bonus is that you now have indexes (ix and iy) you can use with an array to more easy check game status.

Why does Canvas's putImageData not work when I specify target location?

In trying to find documentation for Canvas context's putImageData() method, I've found things like this:
context.putImageData(imgData,x,y,dirtyX,dirtyY,dirtyWidth,dirtyHeight);
(from http://www.w3schools.com/tags/canvas_putimagedata.asp)
According to the documentation I've read, x and y are an index into the source image, whereas dirtyX and dirtyY specify coordinates in the target canvas where to draw the image. Yet, as you'll see from the example below (and JSFiddle) a call to putImageData(imgData,x,y) works while putImageData(imgData, 0, 0, locX, locY) doesn't. I'm not sure why.
EDIT:
I guess my real question is why the top row of the image is black, and there are only 7 rows, not 8. The images should start at the top-left of the Canvas. They DO start at the left (and have 8 columns). Why do they not start at the top?
Answer: that's due to divide by 0 on this line when yLoc is 0:
xoff = imgWidth / (yLoc/3);
The JSFiddle:
http://jsfiddle.net/WZynM/
Code:
<html>
<head>
<title>Canvas tutorial</title>
<script type="text/javascript">
var canvas;
var context; // The canvas's 2d context
function setupCanvas()
{
canvas = document.getElementById('myCanvas');
if (canvas.getContext)
{
context = canvas.getContext('2d');
context.fillStyle = "black"; // this is default anyway
context.fillRect(0, 0, canvas.width, canvas.height);
}
}
function init()
{
loadImages();
startGating();
}
var images = new Array();
var gatingTimer;
var curIndex, imgWidth=0, imgHeight;
// Load images
function loadImages()
{
for (n = 1; n <= 16; n++)
{
images[n] = new Image();
images[n].src = "qxsImages/frame" + n + ".png";
// document.body.appendChild(images[n]);
console.log("width = " + images[n].width + ", height = " + images[n].height);
}
curIndex = 1;
imgWidth = images[1].width;
imgHeight = images[1].height;
}
function redrawImages()
{
if (imgWidth == 0)
return;
curIndex++;
if (curIndex > 16)
curIndex = 1;
// To do later: use images[1].width and .height to layout based on image size
for (var x=0; x<8; x++)
{
for (var y=0; y<8; y++)
{
//if (x != 1)
// context.drawImage(images[curIndex], x*150, y*100);
// context.drawImage(images[curIndex], x*150, y*100, imgWidth/2, imgHeight/2); // scale
// else
self.drawCustomImage(x*150, y*100);
}
}
}
function drawCustomImage(xLoc, yLoc)
{
// create a new pixel array
imageData = context.createImageData(imgWidth, imgHeight);
pos = 0; // index position into imagedata array
xoff = imgWidth / (yLoc/3); // offsets to "center"
yoff = imgHeight / 3;
for (y = 0; y < imgHeight; y++)
{
for (x = 0; x < imgWidth; x++)
{
// calculate sine based on distance
x2 = x - xoff;
y2 = y - yoff;
d = Math.sqrt(x2*x2 + y2*y2);
t = Math.sin(d/6.0);
// calculate RGB values based on sine
r = t * 200;
g = 125 + t * 80;
b = 235 + t * 20;
// set red, green, blue, and alpha:
imageData.data[pos++] = Math.max(0,Math.min(255, r));
imageData.data[pos++] = Math.max(0,Math.min(255, g));
imageData.data[pos++] = Math.max(0,Math.min(255, b));
imageData.data[pos++] = 255; // opaque alpha
}
}
// copy the image data back onto the canvas
context.putImageData(imageData, xLoc, yLoc); // Works... kinda
// context.putImageData(imageData, 0, 0, xLoc, yLoc, imgWidth, imgHeight); // Doesn't work. Why?
}
function startGating()
{
gatingTimer = setInterval(redrawImages, 1000/25); // start gating
}
function stopGating()
{
clearInterval(gatingTimer);
}
</script>
<style type="text/css">
canvas { border: 1px solid black; }
</style>
</head>
<body onload="setupCanvas(); init();">
<canvas id="myCanvas" width="1200" height="800"></canvas>
</body>
</html>
http://jsfiddle.net/WZynM/
You just had your coordinates backwards.
context.putImageData(imageData, xLoc, yLoc, 0, 0, imgWidth, imgHeight);
Live Demo
xLoc, and yLoc are where you are putting it, and 0,0,imgWidth,imgHeight is the data you are putting onto the canvas.
Another example showing this.
A lot of the online docs seem a bit contradictory but for the seven param version
putImageData(img, dx, dy, dirtyX, dirtyY, dirtyRectWidth, dirtyRectHeight)
the dx, and dy are your destination, the next four params are the dirty rect parameters, basically controlling what you are drawing from the source canvas. One of the most thorough descriptions I can find was in the book HTML5 Unleashed by Simon Sarris (pg. 165).
Having been using this recently, I've discovered that Loktar above has hit upon a VERY important issue. Basically, some documentation of this method online is incorrect, a particularly dangerous example being W3Schools, to which a number of people will turn to for reference.
Their documentation states the following:
Synopsis:
context.putImageData(imgData,x,y,dirtyX,dirtyY,dirtyWidth,dirtyHeight);
Arguments:
imgData: Specifies the ImageData object to put back onto the canvas
x : The x-coordinate, in pixels, of the upper-left corner of the ImageData object [WRONG]
y : The y-coordinate, in pixels, of the upper-left corner of the ImageData object [WRONG]
dirtyX : Optional. The horizontal (x) value, in pixels, where to place the image on the canvas [WRONG]
dirtyY : Optional. The vertical (y) value, in pixels, where to place the image on the canvas [WRONG]
dirtyWidth : Optional. The width to use to draw the image on the canvas
dirtyHeight: Optional. The height to use to draw the image on the canvas
As Loktar states above, the CORRECT synopsis is as follows:
Correct Synopsis:
context.putImageData(imgData, canvasX, canvasY, srcX ,srcY, srcWidth, srcHeight);
Arguments:
imgData: Specifies the ImageData object to put back onto the canvas (as before);
canvasX : The x coordinate of the location on the CANVAS where you are plotting your imageData;
canvasY : The y coordinate of the location on the CANVAS where you are plotting your ImageData;
srcX : Optional. The x coordinate of the top left hand corner of your ImageData;
srcY : Optional. The y coordinate of the top left hand corner of your ImageData;
srcWidth : Optional. The width of your ImageData;
srcHeight : Optional. The height of your ImageData.
Use the correct synopsis above, and you won't have the problems that have been encountered above.
I'll give a big hat tip to Loktar for finding this out initially, but I thought it apposite to provide an expanded answer in case others run into the same problem.

draw square and rotate it?

how come this doesn't work? does rotate only work with images?
context.moveTo(60,60);
context.lineTo(200,60);
context.lineTo(200,200);
context.lineTo(60,200);
context.lineTo(60,60);
context.stroke();
context.rotate(45 * Math.PI / 180);
context.restore();
You are rotating the whole canvas when you use context.rotate, and since the pivot point is defaulted at the coordinates (0, 0), your square sometimes will be drawn out of bounds.
By moving the pivot point to the middle of the square, you can then rotate it successfully.
Note: Make sure you rotate the canvas before you draw the square.
// pivot point coordinates = the center of the square
var cx = 130; // (60+200)/2
var cy = 130; // (60+200)/2
// Note that the x and y values of the square
// are relative to the pivot point.
var x = -70; // cx + x = 130 - 70 = 60
var y = -70; // cy + y = 130 - 70 = 60
var w = 140; // (cx + x) + w = 60 + w = 200
var h = 140; // (cy + y) + h = 60 + h = 200
var deg = 45;
context.save();
context.translate(cx, cy);
context.rotate(deg * Math.PI/180);
context.fillRect(x, y, w, h);
context.restore();
Explanation:
context.save(); saves the current state of the coordinate system.
context.translate(cx, cy); moves the pivot point.
context.rotate(deg * Math.PI/180); rotates the square to deg degrees (Note that the parameter is in radians, not degrees)
context.fillRect( x, y, w, h ); draws the square
context.restore(); restores the last state of the coordinate system.
Here is a JS Fiddle example.
Here is another JS Fiddle example that features a HTML5 slider.