Is there a way to skew/distort only one corner using CSS3 or canvas tag in HTML5?
Here is a screenshot from Photoshop tutorial how to do it:
Update:
This is the best I have found so far, but it is not 100% accurate:
https://github.com/edankwan/PerspectiveTransform.js
Update2:
I need html5 version of this:
http://www.rubenswieringa.com/code/as3/flex/DistortImage/
This should help you .
Link1
And you should try searching before posting a question. I searched for html5 canvas skew image and it showed me so many results .
Update
Check Out this Fiddle
// Find each img, and replace it with a canvas
$('img').each(function (index, el) {
var c, // new canvas which will replace this img element
ctx, // context of new canvas
i, // loop counter
tmpCtx, // temp context for doing work
h, // height of the image / new canvas
w, // width of the image / new canvas
dh, // destination height (used in translation)
dw, // destination width (used in translation)
dy, // destination y
leftTop,// left top corner position
leftBot;// left bottom corner position
// Get the height/width of the image
h = el.height;
w = el.width;
// Create the canvas and context that will replace the image
c = $("<canvas height='" + h + "' width='" + w + "'><\/canvas>");
ctx = c.get(0).getContext('2d');
// Create a temporary work area
tmpCtx = document.createElement('canvas').getContext('2d');
// Draw the image on the temp work area
for (i = 0; i < h; i++) {
dw = Math.abs((w * (h - i) + w * i) / h);
tmpCtx.drawImage(el,
0, i, w, 1, // sx, sy, sw, sh
0, i, dw, 1); // dx, dy, dw, dh
}
// Calculate the left corners to be 20% of the height
leftTop = parseInt(h * .2, 10);
leftBot = parseInt(h * 1, 10) - leftTop;
ctx.save();
// Draw the image on our real canvas
for (i = 0; i < w; i++) {
dy = (leftTop * (w - i)) / w;
dh = (leftBot * (w - i) + h * i) / w;
ctx.drawImage(tmpCtx.canvas,
i, 0, 1, h,
i, dy, 1, dh);
}
ctx.restore();
// Replace the image with the canvas version
$(el).replaceWith(c);
});
I think this is what you are looking for.
Related
Question:
Why does CanvasRenderingContext2D.clip() closes an additional path when applying it to a collection of CanvasRenderingContext2D.arc() sampled along the path of a quadratic curve?
Background
I am trying to create a path of quadratic segments with a longitudinal color split. Based on a comment to the question "Square curve with lengthwise color division" I am trying to accomplish this goal by going through the following steps:
Draw the quadratic path
Sample point on the quadratic curve
Create a clipping region and draw a cycle at each sampled point
let region = new Path2D();
for (j = 0; j < pointsQBez.length; j++) {
region.arc(pointsQBez[j].x, pointsQBez[j].y, 4, 0, 2 * Math.PI );
}
ctx.clip(region)
Split the canvas into two segments based on the curve
Calculate the intersection of the start- and end-segment with the canvas border
Close the path (first clipping region)
Draw a rectangle over the whole canvas (second clipping region)
Fill in the two regions created in step four
Steps 3, 4, and 5 in pictures:
Issue
The pink part in the third image above should have the same thickness as the turquoise.
But for some strange reason, the whole inner part of the curve gets filled in.
Additional observations
This behaviour does not show when using CanvasRenderingContext2D.rect() instead of CanvasRenderingContext2D.arc():
When using CanvasRenderingContext2D.arc(), the inner part of the curve that is filled in is not consistent
Because rect does include a call to closePath() while arc doesn't.
Two ways of working around that:
You can call closePath() after each arc:
const canvas = document.querySelector("canvas");
const ctx = canvas.getContext("2d");
const pointsQBez = [];
const cx = 75;
const cy = 75;
const rad = 50;
for(let i = 0; i < 180; i++) {
const a = (Math.PI / 180) * i - Math.PI / 2;
const x = cx + Math.cos(a) * rad;
const y = cy + Math.sin(a) * rad;
pointsQBez.push({ x, y });
}
let region = new Path2D();
for (const {x, y} of pointsQBez) {
region.arc(x, y, 4, 0, 2 * Math.PI);
region.closePath();
}
ctx.clip(region);
ctx.fillStyle = "red";
ctx.fillRect(0, 0, canvas.width, canvas.height);
<canvas></canvas>
Or you can moveTo() the entry point of your arc:
const canvas = document.querySelector("canvas");
const ctx = canvas.getContext("2d");
const pointsQBez = [];
const cx = 75;
const cy = 75;
const rad = 50;
for(let i = 0; i < 180; i++) {
const a = (Math.PI / 180) * i - Math.PI / 2;
const x = cx + Math.cos(a) * rad;
const y = cy + Math.sin(a) * rad;
pointsQBez.push({ x, y });
}
let region = new Path2D();
for (const {x, y} of pointsQBez) {
region.moveTo(x + 4, y); // x + arc radius
region.arc(x, y, 4, 0, 2 * Math.PI);
}
ctx.clip(region);
ctx.fillStyle = "red";
ctx.fillRect(0, 0, canvas.width, canvas.height);
<canvas></canvas>
I have an Html5 canvas which i am drawing squares to.
The canvas itself is roughly the size of the window.
When i detect a click on a square i would like to translate the canvas so that the square is roughly in the center of the window. Any insights, hints, or straight-forward replies are welcome.
Here is what i tried so far:
If a square is at point (1000, 1000) I would simply translate the canvas (-1000, -1000). I know i need to add an offset so that it is centered in the window. However, the canvas always ends up off of the visible window (too far in the upper-left corner somewhere).
A more complex scenario:
Ultimately i would like to be able to center on a clicked object on a canvas that is transformed (rotated & skewed). I'm going for an isometric effect which seems to work really well. I'm wondering if this transformation affects the centering logic/math at all?
Transforming from screen to world and back
When working with non standard axis (or projections) such as isometrix it is always best to use a transformation matrix. It will cover every possible 2D projection with the same simple functions.
The coordinates of the iso world are called world coordinates. All you objects are stored as world coordinates. When you render them you project those coordinates to the screen coordinates using a transformation matrix.
The matrix, not a movie.
The matrix represents the direction and size in screen coordinates of the world
x and y axis and the screen location of the world origin (0,0)
For iso that is
x axis across 1 down 0.5
y axis across -1 down 0.5
z axis up 1 (-1 as up is the reverse of down) but this example does not use z
So the matrix as an array
const isoMat = [1,0.5,-1,0.5,0,0]; // ISO (pixel art) dimorphic projection
The first two are the x axis, the next two the y axis and the last two values are the screen coordinates of the origin.
Use the matrix to transform points
You apply a matrix to a point, this transforms the point from one coordinate system to another. You can also convert back via a inverse transform.
World to screen
You will need to convert from world coordinates to screen coordinates.
function worldToScreen(pos,retPos){
retPos.x = pos.x * isoMat[0] + pos.y * isoMat[2] + isoMat[4];
retPos.y = pos.x * isoMat[1] + pos.y * isoMat[3] + isoMat[5];
}
In the demo I ignore the origin as I set that at the center of the canvas at all times. Thus remove the origin from that function
function worldToScreen(pos,retPos){
retPos.x = pos.x * isoMat[0] + pos.y * isoMat[2];
retPos.y = pos.x * isoMat[1] + pos.y * isoMat[3];
}
Screen to world.
You will also need to convert from the screen coordinates to the world. For this you need to use the inverse transform. It's a bit like the inverse of multiply a * 2 = b is the inverse of b / 2 = a
There is a standard method for calculating the inverse matrix as follows
const invMatrix = []; // inverse matrix
// I call the next line cross, most call it the determinant which I
// think is stupid as it is effectively a cross product and is used
// like you would use a cross product. Anyways I digress
const cross = isoMat[0] * isoMat[3] - isoMat[1] * isoMat[2];
invMatrix[0] = isoMat[3] / cross;
invMatrix[1] = -isoMat[1] / cross;
invMatrix[2] = -isoMat[2] / cross;
invMatrix[3] = isoMat[0] / cross;
Then we have a function that converts from the screen x,y to the world position
function screenToWorld(pos,retPos){
const x = pos.x - isoMat[4];
const y = pos.y - isoMat[5];
retPos.x = x * invMatrix[0] + y * invMatrix[2];
retPos.y = x * invMatrix[1] + y * invMatrix[3];
}
So you get the mouse coords as screen pixels, use the above function to convert to world coords. Then you can use the world coords to find the object you are looking for.
To move a world object to the screen center you convert its coords to screen coords, add the position on the screen (the canvas center) and set the transform matrix origin to that location.
The demo
The demo creates a set of boxes in world coordinates. It sets the 2D context transform to the isoMat (isometric projection) via ctx.setTransform(
Every frame I convert the mouse screen coords to world coords then use that to check which box the mouse is over.
If the mouse button is down I then convert that box from world coords to screen and add the screen center. To smooth the step the new screen center is chased (smoothed)..
Well you should be able to work it out in the code, any problems ask in the comments.
const ctx = canvas.getContext("2d");
const moveSpeed = 0.4;
const boxMin = 20;
const boxMax = 50;
const boxCount = 100;
const boxArea = 2000;
// some canvas vals
var w = canvas.width;
var h = canvas.height;
var cw = w / 2; // center
var ch = h / 2;
var globalTime;
const U = undefined;
// Helper function
const doFor = (count, cb) => { var i = 0; while (i < count && cb(i++) !== true); };
const eachOf = (array, cb) => { var i = 0; const len = array.length; while (i < len && cb(array[i], i++, len) !== true ); };
const setOf = (count, cb) => {var a = [],i = 0; while (i < count) { a.push(cb(i ++)) } return a };
const randI = (min, max = min + (min = 0)) => (Math.random() * (max - min) + min) | 0;
const rand = (min, max = min + (min = 0)) => Math.random() * (max - min) + min;
// mouse function and object
const mouse = {x : 0, y : 0, button : false, world : {x : 0, y : 0}}
function mouseEvents(e){
mouse.x = e.pageX;
mouse.y = e.pageY;
mouse.button = e.type === "mousedown" ? true : e.type === "mouseup" ? false : mouse.button;
}
["down","up","move"].forEach(name => document.addEventListener("mouse"+name,mouseEvents));
// boxes in world coordinates.
const boxes = [];
function draw(){
if(this.dead){
ctx.fillStyle = "rgba(0,0,0,0.5)";
ctx.fillRect(this.x,this.y,this.w,this.h);
}
ctx.strokeStyle = this.col;
ctx.globalAlpha = 1;
ctx.strokeRect(this.x,this.y,this.w,this.h);
// the rest is just overkill
if(this.col === "red"){
this.mr = 10;
}else{
this.mr = 1;
}
this.mc += (this.mr-this.m) * 0.45;
this.mc *= 0.05;
this.m += this.mc;
for(var i = 0; i < this.m; i ++){
const m = this.m * (i + 1);
ctx.globalAlpha = 1-(m / 100);
ctx.strokeRect(this.x-m,this.y-m,this.w,this.h);
}
}
// make random boxes.
function createBoxes(){
boxes.length = 0;
boxes.push(...setOf(boxCount,()=>{
return {
x : randI(cw- boxArea/ 2, cw + boxArea/2),
y : randI(ch- boxArea/ 2, ch + boxArea/2),
w : randI(boxMin,boxMax),
h : randI(boxMin,boxMax),
m : 5,
mc : 0,
mr : 5,
col : "black",
dead : false,
draw : draw,
isOver : isOver,
}
}));
}
// use mouse world coordinates to find box under mouse
function isOver(x,y){
return x > this.x && x < this.x + this.w && y > this.y && y < this.y + this.h;
}
var overBox;
function findBox(x,y){
if(overBox){
overBox.col = "black";
}
overBox = undefined;
eachOf(boxes,box=>{
if(box.isOver(x,y)){
overBox = box;
box.col = "red";
return true;
}
})
}
function drawBoxes(){
boxes.forEach(box=>box.draw());
}
// next 3 values control the movement of the origin
// rather than move instantly the currentPos chases the new pos.
const currentPos = {x :0, y : 0};
const newPos = {x :0, y : 0};
const chasePos = {x :0, y : 0};
// this function does the chasing
function updatePos(){
chasePos.x += (newPos.x - currentPos.x) * moveSpeed;
chasePos.y += (newPos.y - currentPos.y) * moveSpeed;
chasePos.x *= moveSpeed;
chasePos.y *= moveSpeed;
currentPos.x += chasePos.x;
currentPos.y += chasePos.y;
}
// ISO matrix and inverse matrix plus 2world and 2 screen
const isoMat = [1,0.5,-1,0.5,0,0];
const invMatrix = [];
const cross = isoMat[0] * isoMat[3] - isoMat[1] * isoMat[2];
invMatrix[0] = isoMat[3] / cross;
invMatrix[1] = -isoMat[1] / cross;
invMatrix[2] = -isoMat[2] / cross;
invMatrix[3] = isoMat[0] / cross;
function screenToWorld(pos,retPos){
const x = pos.x - isoMat[4];
const y = pos.y - isoMat[5];
retPos.x = x * invMatrix[0] + y * invMatrix[2];
retPos.y = x * invMatrix[1] + y * invMatrix[3];
}
function worldToScreen(pos,retPos){
retPos.x = pos.x * isoMat[0] + pos.y * isoMat[2];// + isoMat[4];
retPos.y = pos.x * isoMat[1] + pos.y * isoMat[3];// + isoMat[5];
}
// main update function
function update(timer){
// standard frame setup
globalTime = timer;
ctx.setTransform(1,0,0,1,0,0); // reset transform
ctx.globalAlpha = 1; // reset alpha
if(w !== innerWidth || h !== innerHeight){
cw = (w = canvas.width = innerWidth) / 2;
ch = (h = canvas.height = innerHeight) / 2;
createBoxes();
}else{
ctx.clearRect(0,0,w,h);
}
ctx.fillStyle = "black";
ctx.font = "28px arial";
ctx.textAlign = "center";
ctx.fillText("Click on a box to center it.",cw,28);
// update position
updatePos();
isoMat[4] = currentPos.x;
isoMat[5] = currentPos.y;
// set the screen transform to the iso matrix
// all drawing can now be done in world coordinates.
ctx.setTransform(isoMat[0], isoMat[1], isoMat[2], isoMat[3], isoMat[4], isoMat[5]);
// convert the mouse to world coordinates
screenToWorld(mouse,mouse.world);
// find box under mouse
findBox(mouse.world.x, mouse.world.y);
// if mouse down and over a box
if(mouse.button && overBox){
mouse.button = false;
overBox.dead = true; // make it gray
// get the screen coordinates of the box
worldToScreen({
x:-(overBox.x + overBox.w/2),
y:-(overBox.y + overBox.h/2),
},newPos
);
// move it to the screen center
newPos.x += cw;
newPos.y += ch;
}
// forget what the following function does, think it does something like draw boxes, but I am guessing.. :P
drawBoxes();
requestAnimationFrame(update);
}
requestAnimationFrame(update);
canvas { position : absolute; top : 0px; left : 0px; }
<canvas id="canvas"></canvas>
I'm trying to draw a curve in canvas with a linear gradient stoke style along the curve, as in this image. On that page there is a linked svg file that gives instructions on how to accomplish the effect in svg. Maybe a similar method would be possible in canvas?
A Demo: http://jsfiddle.net/m1erickson/4fX5D/
It's fairly easy to create a gradient that changes along the path:
It's more difficult to create a gradient that changes across the path:
To create a gradient across the path you draw many gradient lines tangent to the path:
If you draw enough tangent lines then the eye sees the curve as a gradient across the path.
Note: Jaggies can occur on the outsides of the path-gradient. That's because the gradient is really made up of hundreds of tangent lines. But you can smooth out the jaggies by drawing a line on either side of the gradient using the appropriate colors (here the anti-jaggy lines are red on the top side and purple on the bottom side).
Here are the steps to creating a gradient across the path:
Plot hundreds of points along the path.
Calculate the angle of the path at those points.
At each point, create a linear gradient and draw a gradient stroked line across the tangent of that point. Yes, you will have to create a new gradient for each point because the linear gradient must match the angle of the line tangent to that point.
To reduce the jaggy effect caused by drawing many individual lines, you can draw a smooth path along the top and bottom side of the gradient path to overwrite the jaggies.
Here is annotated code:
<!doctype html>
<html>
<head>
<link rel="stylesheet" type="text/css" media="all" href="css/reset.css" /> <!-- reset css -->
<script type="text/javascript" src="http://code.jquery.com/jquery.min.js"></script>
<style>
body{ background-color: ivory; }
#canvas{border:1px solid red;}
</style>
<script>
$(function(){
// canvas related variables
var canvas=document.getElementById("canvas");
var ctx=canvas.getContext("2d");
// variables defining a cubic bezier curve
var PI2=Math.PI*2;
var s={x:20,y:30};
var c1={x:200,y:40};
var c2={x:40,y:200};
var e={x:270,y:220};
// an array of points plotted along the bezier curve
var points=[];
// we use PI often so put it in a variable
var PI=Math.PI;
// plot 400 points along the curve
// and also calculate the angle of the curve at that point
for(var t=0;t<=100;t+=0.25){
var T=t/100;
// plot a point on the curve
var pos=getCubicBezierXYatT(s,c1,c2,e,T);
// calculate the tangent angle of the curve at that point
var tx = bezierTangent(s.x,c1.x,c2.x,e.x,T);
var ty = bezierTangent(s.y,c1.y,c2.y,e.y,T);
var a = Math.atan2(ty, tx)-PI/2;
// save the x/y position of the point and the tangent angle
// in the points array
points.push({
x:pos.x,
y:pos.y,
angle:a
});
}
// Note: increase the lineWidth if
// the gradient has noticable gaps
ctx.lineWidth=2;
// draw a gradient-stroked line tangent to each point on the curve
for(var i=0;i<points.length;i++){
// calc the topside and bottomside points of the tangent line
var offX1=points[i].x+20*Math.cos(points[i].angle);
var offY1=points[i].y+20*Math.sin(points[i].angle);
var offX2=points[i].x+20*Math.cos(points[i].angle-PI);
var offY2=points[i].y+20*Math.sin(points[i].angle-PI);
// create a gradient stretching between
// the calculated top & bottom points
var gradient=ctx.createLinearGradient(offX1,offY1,offX2,offY2);
gradient.addColorStop(0.00, 'red');
gradient.addColorStop(1/6, 'orange');
gradient.addColorStop(2/6, 'yellow');
gradient.addColorStop(3/6, 'green')
gradient.addColorStop(4/6, 'aqua');
gradient.addColorStop(5/6, 'blue');
gradient.addColorStop(1.00, 'purple');
// draw the gradient-stroked line at this point
ctx.strokeStyle=gradient;
ctx.beginPath();
ctx.moveTo(offX1,offY1);
ctx.lineTo(offX2,offY2);
ctx.stroke();
}
// draw a top stroke to cover jaggies
// on the top of the gradient curve
var offX1=points[0].x+20*Math.cos(points[0].angle);
var offY1=points[0].y+20*Math.sin(points[0].angle);
ctx.strokeStyle="red";
// Note: increase the lineWidth if this outside of the
// gradient still has jaggies
ctx.lineWidth=1.5;
ctx.beginPath();
ctx.moveTo(offX1,offY1);
for(var i=1;i<points.length;i++){
var offX1=points[i].x+20*Math.cos(points[i].angle);
var offY1=points[i].y+20*Math.sin(points[i].angle);
ctx.lineTo(offX1,offY1);
}
ctx.stroke();
// draw a bottom stroke to cover jaggies
// on the bottom of the gradient
var offX2=points[0].x+20*Math.cos(points[0].angle+PI);
var offY2=points[0].y+20*Math.sin(points[0].angle+PI);
ctx.strokeStyle="purple";
// Note: increase the lineWidth if this outside of the
// gradient still has jaggies
ctx.lineWidth=1.5;
ctx.beginPath();
ctx.moveTo(offX2,offY2);
for(var i=0;i<points.length;i++){
var offX2=points[i].x+20*Math.cos(points[i].angle+PI);
var offY2=points[i].y+20*Math.sin(points[i].angle+PI);
ctx.lineTo(offX2,offY2);
}
ctx.stroke();
//////////////////////////////////////////
// helper functions
//////////////////////////////////////////
// calculate one XY point along Cubic Bezier at interval T
// (where T==0.00 at the start of the curve and T==1.00 at the end)
function getCubicBezierXYatT(startPt,controlPt1,controlPt2,endPt,T){
var x=CubicN(T,startPt.x,controlPt1.x,controlPt2.x,endPt.x);
var y=CubicN(T,startPt.y,controlPt1.y,controlPt2.y,endPt.y);
return({x:x,y:y});
}
// cubic helper formula at T distance
function CubicN(T, a,b,c,d) {
var t2 = T * T;
var t3 = t2 * T;
return a + (-a * 3 + T * (3 * a - a * T)) * T
+ (3 * b + T * (-6 * b + b * 3 * T)) * T
+ (c * 3 - c * 3 * T) * t2
+ d * t3;
}
// calculate the tangent angle at interval T on the curve
function bezierTangent(a, b, c, d, t) {
return (3 * t * t * (-a + 3 * b - 3 * c + d) + 6 * t * (a - 2 * b + c) + 3 * (-a + b));
};
}); // end $(function(){});
</script>
</head>
<body>
<canvas id="canvas" width=300 height=300></canvas>
</body>
</html>
I am working on doing something very similar, and I just wanted to add a couple things. markE's answer is great, but what he calls tangent lines to the curve, are actually lines normal or perpendicular to the curve. (Tangent lines are parallel, normal lines are perpendicular)
For my particular application, I am using a gradient across a line with transparency. In this case, it is important to get near pixel perfect gradient regions, as overlapping transparency will get drawn twice, changing the desired color. So instead of drawing a bunch of lines perpendicular to the curve, I divided the curve up into quadrilaterals and applied a linear gradient to each. Additionally, using these quadrilateral regions reduces the number of calls to draw you have to make, which can make it more efficient. You don't need a ton of regions to get a pretty smooth effect, and the fewer regions you use, the faster it will be able to render.
I adapted markE's code, so credit to him for that great answer. Here is the fiddle: https://jsfiddle.net/hvyt58dz/
Here is the adapted code I used:
// canvas related variables
var canvas = document.getElementById("canvas");
var ctx = canvas.getContext("2d");
// variables defining a cubic bezier curve
var PI2 = Math.PI * 2;
var s = {
x: 20,
y: 30
};
var c1 = {
x: 200,
y: 40
};
var c2 = {
x: 40,
y: 200
};
var e = {
x: 270,
y: 220
};
// an array of points plotted along the bezier curve
var points = [];
// we use PI often so put it in a variable
var PI = Math.PI;
// plot 400 points along the curve
// and also calculate the angle of the curve at that point
var step_size = 100/18;
for (var t = 0; t <= 100 + 0.1; t += step_size) {
var T = t / 100;
// plot a point on the curve
var pos = getCubicBezierXYatT(s, c1, c2, e, T);
// calculate the tangent angle of the curve at that point
var tx = bezierTangent(s.x, c1.x, c2.x, e.x, T);
var ty = bezierTangent(s.y, c1.y, c2.y, e.y, T);
var a = Math.atan2(ty, tx) - PI / 2;
// save the x/y position of the point and the tangent angle
// in the points array
points.push({
x: pos.x,
y: pos.y,
angle: a
});
}
// Note: increase the lineWidth if
// the gradient has noticable gaps
ctx.lineWidth = 2;
var overlap = 0.2;
var outside_color = 'rgba(255,0,0,0.0)';
var inside_color = 'rgba(255,0,0,0.7)';
// draw a gradient-stroked line tangent to each point on the curve
var line_width = 40;
var half_width = line_width/2;
for (var i = 0; i < points.length - 1; i++) {
var x1 = points[i].x, y1 = points[i].y;
var x2 = points[i+1].x, y2 = points[i+1].y;
var angle1 = points[i].angle, angle2 = points[i+1].angle;
var midangle = (angle1 + angle2)/ 2;
// calc the topside and bottomside points of the tangent line
var gradientOffsetX1 = x1 + half_width * Math.cos(midangle);
var gradientOffsetY1 = y1 + half_width * Math.sin(midangle);
var gradientOffsetX2 = x1 + half_width * Math.cos(midangle - PI);
var gradientOffsetY2 = y1 + half_width * Math.sin(midangle - PI);
var offX1 = x1 + half_width * Math.cos(angle1);
var offY1 = y1 + half_width * Math.sin(angle1);
var offX2 = x1 + half_width * Math.cos(angle1 - PI);
var offY2 = y1 + half_width * Math.sin(angle1 - PI);
var offX3 = x2 + half_width * Math.cos(angle2)
- overlap * Math.cos(angle2-PI/2);
var offY3 = y2 + half_width * Math.sin(angle2)
- overlap * Math.sin(angle2-PI/2);
var offX4 = x2 + half_width * Math.cos(angle2 - PI)
+ overlap * Math.cos(angle2-3*PI/2);
var offY4 = y2 + half_width * Math.sin(angle2 - PI)
+ overlap * Math.sin(angle2-3*PI/2);
// create a gradient stretching between
// the calculated top & bottom points
var gradient = ctx.createLinearGradient(gradientOffsetX1, gradientOffsetY1, gradientOffsetX2, gradientOffsetY2);
gradient.addColorStop(0.0, outside_color);
gradient.addColorStop(0.25, inside_color);
gradient.addColorStop(0.75, inside_color);
gradient.addColorStop(1.0, outside_color);
//gradient.addColorStop(1 / 6, 'orange');
//gradient.addColorStop(2 / 6, 'yellow');
//gradient.addColorStop(3 / 6, 'green')
//gradient.addColorStop(4 / 6, 'aqua');
//gradient.addColorStop(5 / 6, 'blue');
//gradient.addColorStop(1.00, 'purple');
// line cap
if(i == 0){
var x = x1 - overlap * Math.cos(angle1-PI/2);
var y = y1 - overlap * Math.sin(angle1-PI/2);
var cap_gradient = ctx.createRadialGradient(x, y, 0, x, y, half_width);
ctx.beginPath();
ctx.arc(x, y, half_width, angle1 - PI, angle1);
cap_gradient.addColorStop(0.5, inside_color);
cap_gradient.addColorStop(1.0, outside_color);
ctx.fillStyle = cap_gradient;
ctx.fill();
}
if(i == points.length - 2){
var x = x2 + overlap * Math.cos(angle2-PI/2);
var y = y2 + overlap * Math.sin(angle2-PI/2);
var cap_gradient = ctx.createRadialGradient(x, y, 0, x, y, half_width);
ctx.beginPath();
ctx.arc(x, y, half_width, angle2, angle2 + PI);
cap_gradient.addColorStop(0.5, inside_color);
cap_gradient.addColorStop(1.0, outside_color);
ctx.fillStyle = cap_gradient;
ctx.fill();
console.log(x,y);
}
// draw the gradient-stroked line at this point
ctx.fillStyle = gradient;
ctx.beginPath();
ctx.moveTo(offX1, offY1);
ctx.lineTo(offX2, offY2);
ctx.lineTo(offX4, offY4);
ctx.lineTo(offX3, offY3);
ctx.fill();
}
//////////////////////////////////////////
// helper functions
//////////////////////////////////////////
// calculate one XY point along Cubic Bezier at interval T
// (where T==0.00 at the start of the curve and T==1.00 at the end)
function getCubicBezierXYatT(startPt, controlPt1, controlPt2, endPt, T) {
var x = CubicN(T, startPt.x, controlPt1.x, controlPt2.x, endPt.x);
var y = CubicN(T, startPt.y, controlPt1.y, controlPt2.y, endPt.y);
return ({
x: x,
y: y
});
}
// cubic helper formula at T distance
function CubicN(T, a, b, c, d) {
var t2 = T * T;
var t3 = t2 * T;
return a + (-a * 3 + T * (3 * a - a * T)) * T + (3 * b + T * (-6 * b + b * 3 * T)) * T + (c * 3 - c * 3 * T) * t2 + d * t3;
}
// calculate the tangent angle at interval T on the curve
function bezierTangent(a, b, c, d, t) {
return (3 * t * t * (-a + 3 * b - 3 * c + d) + 6 * t * (a - 2 * b + c) + 3 * (-a + b));
};
I have written a code that will create a rectangle and by providing values it will generate rows and columns in that rectangle,basically it is creating small squares within that rectangle.
Code can be seen here http://jsfiddle.net/simerpreet/ndGE5/1/
<h1>Example</h1>
<canvas id="t_canvas" style="border:1px solid #000000;" width="300" height="225"></canvas>
<br/>
<button id="draw">Draw</button>
<Script>
var x=50;
var y=50;
var w = 150; //width
var h = 100; //height
var columns=3;
var rows =3;
var vnp =w/columns; //vertical next point
var hnp=h/rows; //horizontal next point
var canvas = document.getElementById("t_canvas");
var ctx = canvas.getContext("2d");
$(document).ready(function() {
$('#draw').click(function() {
drawVerticalLines(parseFloat(vnp));
drawHorizontalLines(parseFloat(hnp));
ctx.fillStyle = "#FF0000";
ctx.strokeRect(x, y, w, h);
ctx.stroke();
});
});
function drawVerticalLines(np){
var np = x + np //start point of first column
while(np < w+x){
ctx.moveTo(np, y);
ctx.lineTo(np, y+h);
np = vnp + np;
}
}
function drawHorizontalLines(np){
var np = y + np //start point of first column
while(np < h+y){
ctx.moveTo(x, np);
ctx.lineTo(x+w, np);
np = hnp + np;
}
}
<script>
I have given the value of rows =3 and columns =3, so it will create a tic tac toe like squares.My requirement is when i click in a any small square at any postion,it should give me the exact center location of that particular square, iam kind of stuck here,is there any kind of algorithm which can do this?
Thanks,
Simer
The correct way to get the center point can be manifested in various ways but in essence this is what you need to do:
var mousePos = getMousePos(canvas, evt), // get adjusted mouse position
gw = vnp * 0.5, // get center of one cell
gh = hnp * 0.5,
ix = ((mousePos.x - x) / vnp)|0, // get cell index clicked
iy = ((mousePos.y - y) / hnp)|0,
cx = ix * vnp + x + gw, // scale up to get pixel position
cy = iy * hnp + y + gh;
Modified fiddle here
A quick breakdown of the following lines (showing only for x, same is for y):
ix = ((mousePos.x - x) / vnp)|0
cx = ix * vnp + x + gw
Adjust for grid by subtracting the grid's start point from the mouse position. This gives you the position within the grid:
mousePos.x - x
Quantize the value to get an index by using a single cell's width. The |0 cuts off the fractional value so we end up with an integer value which we need for the next step:
((mousePos.x - x) / vnp)|0
Now that we have an integer index [0, 2] (you need to do boundary checks or index range check for the grid) we simply multiply it with a cell width to get a pixel position for the start of a grid cell:
cx = ix * vnp
And finally add back the grid start position of the grid to get to the cell's on-screen corner as well as adding half a cell size to get center of this cell:
cx = ix * vnp + gw
A bonus is that you now have indexes (ix and iy) you can use with an array to more easy check game status.
In trying to find documentation for Canvas context's putImageData() method, I've found things like this:
context.putImageData(imgData,x,y,dirtyX,dirtyY,dirtyWidth,dirtyHeight);
(from http://www.w3schools.com/tags/canvas_putimagedata.asp)
According to the documentation I've read, x and y are an index into the source image, whereas dirtyX and dirtyY specify coordinates in the target canvas where to draw the image. Yet, as you'll see from the example below (and JSFiddle) a call to putImageData(imgData,x,y) works while putImageData(imgData, 0, 0, locX, locY) doesn't. I'm not sure why.
EDIT:
I guess my real question is why the top row of the image is black, and there are only 7 rows, not 8. The images should start at the top-left of the Canvas. They DO start at the left (and have 8 columns). Why do they not start at the top?
Answer: that's due to divide by 0 on this line when yLoc is 0:
xoff = imgWidth / (yLoc/3);
The JSFiddle:
http://jsfiddle.net/WZynM/
Code:
<html>
<head>
<title>Canvas tutorial</title>
<script type="text/javascript">
var canvas;
var context; // The canvas's 2d context
function setupCanvas()
{
canvas = document.getElementById('myCanvas');
if (canvas.getContext)
{
context = canvas.getContext('2d');
context.fillStyle = "black"; // this is default anyway
context.fillRect(0, 0, canvas.width, canvas.height);
}
}
function init()
{
loadImages();
startGating();
}
var images = new Array();
var gatingTimer;
var curIndex, imgWidth=0, imgHeight;
// Load images
function loadImages()
{
for (n = 1; n <= 16; n++)
{
images[n] = new Image();
images[n].src = "qxsImages/frame" + n + ".png";
// document.body.appendChild(images[n]);
console.log("width = " + images[n].width + ", height = " + images[n].height);
}
curIndex = 1;
imgWidth = images[1].width;
imgHeight = images[1].height;
}
function redrawImages()
{
if (imgWidth == 0)
return;
curIndex++;
if (curIndex > 16)
curIndex = 1;
// To do later: use images[1].width and .height to layout based on image size
for (var x=0; x<8; x++)
{
for (var y=0; y<8; y++)
{
//if (x != 1)
// context.drawImage(images[curIndex], x*150, y*100);
// context.drawImage(images[curIndex], x*150, y*100, imgWidth/2, imgHeight/2); // scale
// else
self.drawCustomImage(x*150, y*100);
}
}
}
function drawCustomImage(xLoc, yLoc)
{
// create a new pixel array
imageData = context.createImageData(imgWidth, imgHeight);
pos = 0; // index position into imagedata array
xoff = imgWidth / (yLoc/3); // offsets to "center"
yoff = imgHeight / 3;
for (y = 0; y < imgHeight; y++)
{
for (x = 0; x < imgWidth; x++)
{
// calculate sine based on distance
x2 = x - xoff;
y2 = y - yoff;
d = Math.sqrt(x2*x2 + y2*y2);
t = Math.sin(d/6.0);
// calculate RGB values based on sine
r = t * 200;
g = 125 + t * 80;
b = 235 + t * 20;
// set red, green, blue, and alpha:
imageData.data[pos++] = Math.max(0,Math.min(255, r));
imageData.data[pos++] = Math.max(0,Math.min(255, g));
imageData.data[pos++] = Math.max(0,Math.min(255, b));
imageData.data[pos++] = 255; // opaque alpha
}
}
// copy the image data back onto the canvas
context.putImageData(imageData, xLoc, yLoc); // Works... kinda
// context.putImageData(imageData, 0, 0, xLoc, yLoc, imgWidth, imgHeight); // Doesn't work. Why?
}
function startGating()
{
gatingTimer = setInterval(redrawImages, 1000/25); // start gating
}
function stopGating()
{
clearInterval(gatingTimer);
}
</script>
<style type="text/css">
canvas { border: 1px solid black; }
</style>
</head>
<body onload="setupCanvas(); init();">
<canvas id="myCanvas" width="1200" height="800"></canvas>
</body>
</html>
http://jsfiddle.net/WZynM/
You just had your coordinates backwards.
context.putImageData(imageData, xLoc, yLoc, 0, 0, imgWidth, imgHeight);
Live Demo
xLoc, and yLoc are where you are putting it, and 0,0,imgWidth,imgHeight is the data you are putting onto the canvas.
Another example showing this.
A lot of the online docs seem a bit contradictory but for the seven param version
putImageData(img, dx, dy, dirtyX, dirtyY, dirtyRectWidth, dirtyRectHeight)
the dx, and dy are your destination, the next four params are the dirty rect parameters, basically controlling what you are drawing from the source canvas. One of the most thorough descriptions I can find was in the book HTML5 Unleashed by Simon Sarris (pg. 165).
Having been using this recently, I've discovered that Loktar above has hit upon a VERY important issue. Basically, some documentation of this method online is incorrect, a particularly dangerous example being W3Schools, to which a number of people will turn to for reference.
Their documentation states the following:
Synopsis:
context.putImageData(imgData,x,y,dirtyX,dirtyY,dirtyWidth,dirtyHeight);
Arguments:
imgData: Specifies the ImageData object to put back onto the canvas
x : The x-coordinate, in pixels, of the upper-left corner of the ImageData object [WRONG]
y : The y-coordinate, in pixels, of the upper-left corner of the ImageData object [WRONG]
dirtyX : Optional. The horizontal (x) value, in pixels, where to place the image on the canvas [WRONG]
dirtyY : Optional. The vertical (y) value, in pixels, where to place the image on the canvas [WRONG]
dirtyWidth : Optional. The width to use to draw the image on the canvas
dirtyHeight: Optional. The height to use to draw the image on the canvas
As Loktar states above, the CORRECT synopsis is as follows:
Correct Synopsis:
context.putImageData(imgData, canvasX, canvasY, srcX ,srcY, srcWidth, srcHeight);
Arguments:
imgData: Specifies the ImageData object to put back onto the canvas (as before);
canvasX : The x coordinate of the location on the CANVAS where you are plotting your imageData;
canvasY : The y coordinate of the location on the CANVAS where you are plotting your ImageData;
srcX : Optional. The x coordinate of the top left hand corner of your ImageData;
srcY : Optional. The y coordinate of the top left hand corner of your ImageData;
srcWidth : Optional. The width of your ImageData;
srcHeight : Optional. The height of your ImageData.
Use the correct synopsis above, and you won't have the problems that have been encountered above.
I'll give a big hat tip to Loktar for finding this out initially, but I thought it apposite to provide an expanded answer in case others run into the same problem.