Berkeley Pac-Man Project: features divided through by 10 - reinforcement-learning

I am busy coding reinforcement learning agents for the game Pac-Man and came across Berkeley's CS course's Pac-Man Projects, specifically the reinforcement learning section.
For the approximate Q-learning agent, feature approximation is used. A simple extractor is implemented in this code. What I am curious about is why, before the features are returned, they are scaled down by 10? By running the solution without the factor of 10 you can notice that Pac-Man does significantly worse, but why?

After running multiple tests it turns out that the optimal Q-value can diverge wildly away. In fact, the features can all become negative, even the one which would usually incline PacMan to eat pills. So he just stands there and eventually tries to run from ghosts but never tries to finish a level.
I speculate that this happens when he loses in training, that the negative reward is propagated through the system and since the potential number of ghosts can be greater than one, this has a heavy bearing on the weights, causing everything to become very negative and the system can't "recover" from this.
I confirmed this by adjusting the feature extractor to only scale the #-of-ghosts-one-step-away feature and then PacMan manages to get a much better result
In retrospect this question is now more mathsy and might fit better on another stackexchange.

Related

Deep Q Learning agent finds solution then diverges again

I am trying to train a DQN Agent to solve AI Gym's Cartpole-v0 environment. I have started with this person's implementation just to get some hands-on experience. What I noticed is that during training, after many episodes the agent finds the solution and is able to keep the pole upright for the maximum amount of timesteps. However, after further training, the policy looks like it becomes more stochastic and it can't keep the pole upright anymore and goes in and out of a good policy. I'm pretty confused by this why wouldn't further training and experience help the agent? At episodes my epsilon for random action becomes very low, so it should be operating on just making the next prediction. So why does it on some training episodes fail to keep the pole upright and on others it succeeds?
Here is a picture of my reward-episode curve during the training process of the above linked implementation.
This actually looks fairly normal to me, in fact I guessed your results were from CartPole before reading the whole question.
I have a few suggestions:
When you're plotting results, you should plot averages over a few random seeds. Not only is this generally good practice (it shows how sensitive your algo is to seeds), it'll smooth out your graphs and give you a better understanding of the "skill" of your agent. Don't forget, the environment and the policy are stochastic, so it's not completely crazy that your agent exhibits this type of behavior.
Assuming you're implementing e-greedy exploration, what's your epsilon value? Are you decaying it over time? The issue could also be that your agent is still exploring a lot even after it found a good policy.
Have you played around with hyperparameters, like learning rate, epsilon, network size, replay buffer size, etc? Those can also be the culprit.

Why is a target network required?

I have a concern in understanding why a target network is necessary in DQN? I’m reading paper on “human-level control through deep reinforcement learning”
I understand Q-learning. Q-learning is value-based reinforcement learning algorithm that learns “optimal” probability distribution between state-action that will maximize it’s long term discounted reward over a sequence of timesteps.
The Q-learning is updated using the bellman equation, and a single step of the q-learning update is given by
Q(S, A) = Q(S, A) + $\alpha$[R_(t+1) + $\gamma$ (Q(s’,a;’) - Q(s,a)]
Where alpha and gamma are learning and discount factors.
I can understand that the reinforcement learning algorithm will become unstable and diverge.
The experience replay buffer is used so that we do not forget past experiences and to de-correlate datasets provided to learn the probability distribution.
This is where I fail.
Let me break the paragraph from the paper down here for discussion
The fact that small updates to $Q$ may significantly change the policy and therefore change the data distribution — understood this part. Changes to Q-network periodically may lead to unstability and changes in distribution. For example, if we always take a left turn or something like this.
and the correlations between the action-values (Q) and the target values r + $gamma$ (argmax(Q(s’,a’)) — This says that the reward + gamma * my prediction of the return given that I take what I think is the best action in the current state and follow my policy from then on.
We used an iterative update that adjusts the action-values (Q) towards target values that are only periodically updated, thereby reducing correlations with the target.
So, in summary a target network required because the network keeps changing at each timestep and the “target values” are being updated at each timestep?
But I do not understand how it is going to solve it?
So, in summary a target network required because the network keeps changing at each timestep and the “target values” are being updated at each timestep?
The difference between Q-learning and DQN is that you have replaced an exact value function with a function approximator. With Q-learning you are updating exactly one state/action value at each timestep, whereas with DQN you are updating many, which you understand. The problem this causes is that you can affect the action values for the very next state you will be in instead of guaranteeing them to be stable as they are in Q-learning.
This happens basically all the time with DQN when using a standard deep network (bunch of layers of the same size fully connected). The effect you typically see with this is referred to as "catastrophic forgetting" and it can be quite spectacular. If you are doing something like moon lander with this sort of network (the simple one, not the pixel one) and track the rolling average score over the last 100 games or so, you will likely see a nice curve up in score, then all of a sudden it completely craps out starts making awful decisions again even as your alpha gets small. This cycle will continue endlessly regardless of how long you let it run.
Using a stable target network as your error measure is one way of combating this effect. Conceptually it's like saying, "I have an idea of how to play this well, I'm going to try it out for a bit until I find something better" as opposed to saying "I'm going to retrain myself how to play this entire game after every move". By giving your network more time to consider many actions that have taken place recently instead of updating all the time, it hopefully finds a more robust model before you start using it to make actions.
On a side note, DQN is essentially obsolete at this point, but the themes from that paper were the fuse leading up to the RL explosion of the last few years.

Web Audio Pitch Detection for Tuner

So I have been making a simple HTML5 tuner using the Web Audio API. I have it all set up to respond to the correct frequencies, the problem seems to be with getting the actual frequencies. Using the input, I create an array of the spectrum where I look for the highest value and use that frequency as the one to feed into the tuner. The problem is that when creating an analyser in Web Audio it can not become more specific than an FFT value of 2048. When using this if i play a 440hz note, the closest note in the array is something like 430hz and the next value seems to be higher than 440. Therefor the tuner will think I am playing these notes when infact the loudest frequency should be 440hz and not 430hz. Since this frequency does not exist in the analyser array I am trying to figure out a way around this or if I am missing something very obvious.
I am very new at this so any help would be very appreciated.
Thanks
There are a number of approaches to implementing pitch detection. This paper provides a review of them. Their conclusion is that using FFTs may not be the best way to go - however, it's unclear quite what their FFT-based algorithm actually did.
If you're simply tuning guitar strings to fixed frequencies, much simpler approaches exist. Building a fully chromatic tuner that does not know a-priori the frequency to expect is hard.
The FFT approach you're using is entirely possible (I've built a robust musical instrument tuner using this approach that is being used white-label by a number of 3rd parties). However you need a significant amount of post-processing of the FFT data.
To start, you solve the resolution problem using the Short Timer FFT (STFT) - or more precisely - a succession of them. The process is described nicely in this article.
If you intend building a tuner for guitar and bass guitar (and let's face it, everyone who asks the question here is), you'll need t least a 4092-point DFT with overlapping windows in order not to violate the nyquist rate on the bottom E1 string at ~41Hz.
You have a bunch of other algorithmic and usability hurdles to overcome. Not least, perceived pitch and the spectral peak aren't always the same. Taking the spectral peak from the STFT doesn't work reliably (this is also why the basic auto-correlation approach is also broken).

Float and Math precision on different systems

I want to implement a gameplay recording feature in a project, which would only record player input and seed of the RNG at the beginning of the level. Then I could take such record and play it on my computer in order to test it for validity.
I'm only concerned with some numerical differences which might appear between different Flash Player version, Operating Systems or CPUs (or whatever else that might be affected). The project would be written for Flash Player 10.0.0+. What stuff I am concerned with:
Operations on Numbers: Multiplying, dividing; bit operations (possibly bit shifting too); addition and subtraction; modulo
Math class: sin, cos and atan2; rounding
localToGlobal/globalToLocal with rotations and scaling
I won't be using stuff like hitTest, getObjectsUnderPoint, hitTestPoint, getBounds and so on, all collisions will be geometrical.
So, are there any chances that using any of the pointed things above will yield different results on different systems? If so, what can I do to avoid them?
That's an interesting question...
It's not a "will this game play the same on multiple platforms", it's "will a recording of user inputs produce the exact same output when simulated" question.
My gut would say "don't worry about it the flash VM abstracts the differences away", but then as I think more, there are some areas that might be a problem.
First, I wouldn't record anything time-based. A user hitting a key at 1.21 seconds in might be tough to predict whether that happens before or after a frame's worth of computation, especially if either the recording or playback computer was under load. Trying to time tweens with user input is probably a recipe for failure.
Accuracy of floating point should be ok. The algorithms that define when to round are well documented in IEEE-754, and all VM's use 64 bit Numbers regardless of OS they're running on. I'm guessing the math operations are equally understood.
I think it's good to avoid hitTest and whatnot. I imagine they theoretically could be influenced by whether or not hardware acceleration is being used. But I'm not an expert there, so maybe not.
Now localToGlobal/globalToLocal... I just don't know. They might have that theoretical hardware acceleration problem, but I tend to doubt it.
So I guess I didn't give any real answers.
Trig functions WILL NOT WORK! You must create custom implementations of the following: acos, asin, atan, atan2, cos, exp, log, pow, sin, and sqrt. And obviously, random().
I'm still in the process of testing the Number class. I can't say for sure whether additon/subtraction/etc. will be consistent on every machine.
It is very unlikely (although possible) that things will behave in a noticeably different way on different computers. Even if they did, it would be a very rare event and not something I would recommend worrying about unless it is absolutely crucial to gameplay.

Does anyone know what "Quantum Computing" is?

In physics, its the ability for particles to exist in multiple/parallel dynamic states at a particular point in time. In computing, would it be the ability of a data bit to equal 1 or 0 at the same time, a third value like NULL[unknown] or multiple values?.. How can this technology be applied to: computer processors, programming, security, etc.?.. Has anyone built a practical quantum computer or developed a quantum programming language where, for example, the program code dynamically changes or is autonomous?
I have done research in quantum computing, and here is what I hope is an informed answer.
It is often said that qubits as you see them in a quantum computer can exist in a "superposition" of 0 and 1. This is true, but in a more subtle way than you might first guess. Even with a classical computer with randomness, a bit can exist in a superposition of 0 and 1, in the sense that it is 0 with some probability and 1 with some probability. Just as when you roll a die and don't look at the outcome, or receive e-mail that you haven't yet read, you can view its state as a superposition of the possibilities. Now, this may sound like just flim-flam, but the fact is that this type of superposition is a kind of parallelism and that algorithms that make use of it can be faster than other algorithms. It is called randomized computation, and instead of superposition you can say that the bit is in a probabilistic state.
The difference between that and a qubit is that a qubit can have a fat set of possible superpositions with more properties. The set of probabilistic states of an ordinary bit is a line segment, because all there is a probability of 0 or 1. The set of states of a qubit is a round 3-dimensional ball. Now, probabilistic bit strings are more complicated and more interesting than just individual probabilistic bits, and the same is true of strings of qubits. If you can make qubits like this, then actually some computational tasks wouldn't be any easier than before, just as randomized algorithms don't help with all problems. But some computational problems, for example factoring numbers, have new quantum algorithms that are much faster than any known classical algorithm. It is not a matter of clock speed or Moore's law, because the first useful qubits could be fairly slow and expensive. It is only sort-of parallel computation, just as an algorithm that makes random choices is only in weak sense making all choices in parallel. But it is "randomized algorithms on steroids"; that's my favorite summary for outsiders.
Now the bad news. In order for a classical bit to be in a superposition, it has be a random choice that is secret from you. Once you look a flipped coin, the coin "collapses" to either heads for sure or tails for sure. The difference between that and a qubit is that in order for a qubit to work as one, its state has to be secret from the rest of the physical universe, not just from you. It has to be secret from wisps of air, from nearby atoms, etc. On the other hand, for qubits to be useful for a quantum computer, there has to be a way to manipulate them while keeping their state a secret. Otherwise its quantum randomness or quantum coherence is wrecked. Making qubits at all isn't easy, but it is done routinely. Making qubits that you can manipulate with quantum gates, without revealing what is in them to the physical environment, is incredibly difficult.
People don't know how to do that except in very limited toy demonstrations. But if they could do it well enough to make quantum computers, then some hard computational problems would be much easier for these computers. Others wouldn't be easier at all, and great deal is unknown about which ones can be accelerated and by how much. It would definitely have various effects on cryptography; it would break the widely used forms of public-key cryptography. But other kinds of public-key cryptography have been proposed that could be okay. Moreover quantum computing is related to the quantum key distribution technique which looks very safe, and secret-key cryptography would almost certainly still be fairly safe.
The other factor where the word "quantum" computing is used regards an "entangled pair". Essentially if you can create an entangled pair of particles which have a physical "spin", quantum physics dictates that the spin on each electron will always be opposite.
If you could create an entangled pair and then separate them, you could use the device to transmit data without interception, by changing the spin on one of the particles. You can then create a signal which is modulated by the particle's information which is theoretically unbreakable, as you cannot know what spin was on the particles at any given time by intercepting the information in between the two signal points.
A whole lot of very interested organisations are researching this technique for secure communications.
Yes, there is quantum encryption, by which if someone tries to spy on your communication, it destroys the datastream such that neither they nor you can read it.
However, the real power of quantum computing lies in that a qubit can have a superposition of 0 and 1. Big deal. However, if you have, say, eight qubits, you can now represent a superposition of all integers from 0 to 255. This lets you do some rather interesting things in polynomial instead of exponential time. Factorization of large numbers (IE, breaking RSA, etc.) is one of them.
There are a number of applications of quantum computing.
One huge one is the ability to solve NP-hard problems in P-time, by using the indeterminacy of qubits to essentially brute-force the problem in parallel.
(The struck-out sentence is false. Quantum computers do not work by brute-forcing all solutions in parallel, and they are not believed to be able to solve NP-complete problems in polynomial time. See e.g. here.)
Just a update of quantum computing industry base on Greg Kuperberg's answer:
D-Wave 2 System is using quantum annealing.
The superposition quantum states will collapse to a unique state when a observation happened. The current technologies of quantum annealing is apply a physical force to 2 quantum bits, the force adds constrains to qubits so when observation happened, the qubit will have higher probability to collapse to a result that we are willing to see.
Reference:
How does a quantum machine work
I monitor recent non-peer reviewed articles on the subject, this is what I extrapolate from what I have read. a qubit, in addition to what has been said above. namely that they can hold values in superposition, they can also hold multiple bits, for example spin up/+ spin down/+ spin -/vertical , I need to abbreviate +H,-H,+V,-V Left+, LH,LV also not all of the combinations are valid and there are additional values that can be placed on the type of qubit
each used similar to ram vs rom etc. photon with a wavelength, electron with a charge, photon with a charge, photon with a spin, you get the idea, some combinations are not valid and some require additional algorithms in order to pass the argument to the next variable(location where data is stored) or qubit(location of superposition of values to be returned, if you will simply because the use of wires is by necessity limited due to size and space. One of the greatest challenges is controlling or removing Q.(quantum) decoherence. This usually means isolating the system from its environment as interactions with the external world cause the system to decohere. November 2011 researchers factorised 143 using 4 qubits. that same year, D-Wave Systems announced the first commercial quantum annealer on the market by the name D-Wave One. The company claims this system uses a 128 qubit processor chipset.May 2013, Google Inc announced that it was launching the Q. AI. Lab, hopefully to boost AI. I really do Hope I didn't waste anyones time with things they already knew. If you learned something please up.
As I can not yet comment, it really depends on what type of qubit you are working with to know the number of states for example the UNSW silicon Q. bit" vs a Diamond-neutron-valency or a SSD NMR Phosphorus - silicon vs Liquid NMR of the same.