I am trying to use spray-json in scala to recognize the choice between Ec2Provider and OpenstackProvider when converting to Json and back.
I would like to be able to give choices in "Provider", and if those choices don't fit the ones available then it should not validate.
My attempt at this can be seen in the following code:
import spray.json._
import DefaultJsonProtocol._
case class Credentials(username: String, password: String)
abstract class Provider
case class Ec2Provider(endpoint: String,credentials: Credentials) extends Provider
case class OpenstackProvider(credentials: Credentials) extends Provider
case class Infrastructure(name: String, provider: Provider, availableInstanceTypes: List[String])
case class InfrastructuresList(infrastructures: List[Infrastructure])
object Infrastructures extends App with DefaultJsonProtocol {
implicit val credFormat = jsonFormat2(Credentials)
implicit val ec2Provider = jsonFormat2(Ec2Provider)
implicit val novaProvider = jsonFormat1(OpenstackProvider)
implicit val infraFormat = jsonFormat3(Infrastructure)
implicit val infrasFormat = jsonFormat1(InfrastructuresList)
println(
InfrastructuresList(
List(
Infrastructure("test", Ec2Provider("nova", Credentials("user","pass")), List("1", "2"))
)
).toJson
)
}
Unfortunately, it fails because it can not find a formatter for Provider abstract class.
test.scala:19: could not find implicit value for evidence parameter of type Infrastructures.JF[Provider]
Anyone have any solution for this?
What you want to do is not available out of the box (i.e. via something like type hints that allow the deserializer to know what concrete class to instantiate), but it's certainly possible with a little leg work. First, the example, using a simplified version of the code you posted above:
case class Credentials(user:String, password:String)
abstract class Provider
case class Ec2Provider(endpoint:String, creds:Credentials) extends Provider
case class OpenstackProvider(creds:Credentials) extends Provider
case class Infrastructure(name:String, provider:Provider)
object MyJsonProtocol extends DefaultJsonProtocol{
implicit object ProviderJsonFormat extends RootJsonFormat[Provider]{
def write(p:Provider) = p match{
case ec2:Ec2Provider => ec2.toJson
case os:OpenstackProvider => os.toJson
}
def read(value:JsValue) = value match{
case obj:JsObject if (obj.fields.size == 2) => value.convertTo[Ec2Provider]
case obj:JsObject => value.convertTo[OpenstackProvider]
}
}
implicit val credFmt = jsonFormat2(Credentials)
implicit val ec2Fmt = jsonFormat2(Ec2Provider)
implicit val openStackFmt = jsonFormat1(OpenstackProvider)
implicit val infraFmt = jsonFormat2(Infrastructure)
}
object PolyTest {
import MyJsonProtocol._
def main(args: Array[String]) {
val infra = List(
Infrastructure("ec2", Ec2Provider("foo", Credentials("me", "pass"))),
Infrastructure("openstack", OpenstackProvider(Credentials("me2", "pass2")))
)
val json = infra.toJson.toString
val infra2 = JsonParser(json).convertTo[List[Infrastructure]]
println(infra == infra2)
}
}
In order to be able to serialize/deserialize instances of the abstract class Provider, I've created a custom formatter where I am supplying operations for reading and writing Provider instances. All I'm doing in these functions though is checking a simple condition (binary here as there are only 2 impls of Provider) to see what type it is and then delegating to logic to handle that type.
For writing, I just need to know which instance type it is which is easy. Reading is a little trickier though. For reading, I'm checking how many properties the object has and since the two impls have different numbers of props, I can differentiate which is which this way. The check I'm making here is very rudimentary, but it shows the point that if you can look at the Json AST and differentiate the types, you can then pick which one to deserialize to. Your actual check can be as simple or as complicated as you like, as long as it's is deterministic in differentiating the types.
Related
No instance of play.api.libs.json.Format is available for models.AccountStatus in the implicit scope.
This is the code taken from a github page, and only class names and variable names are changed.
package models
import slick.jdbc.H2Profile._
import play.api.libs.json._
case class Account(id: Long, name: String, category: Int, status:AccountStatus)
object Account {
implicit val accountFormat = Json.format[Account]
}
sealed abstract class AccountStatus(val as:Int)
object AccountStatus{
final case object Draft extends AccountStatus(0)
final case object Active extends AccountStatus(1)
final case object Blocked extends AccountStatus(2)
final case object Defaulter extends AccountStatus(3)
implicit val columnType: BaseColumnType[AccountStatus] = MappedColumnType.base[AccountStatus,Int](AccountStatus.toInt, AccountStatus.fromInt)
private def toInt(as:AccountStatus):Int = as match {
case Draft => 0
case Active => 1
case Blocked => 2
case Defaulter => 3
}
private def fromInt(as: Int): AccountStatus = as match {
case 0 => Draft
case 1 => Active
case 2 => Blocked
case 3 => Defaulter
_ => sys.error("Out of bound AccountStatus Value.")
}
}
https://github.com/playframework/play-scala-slick-example/blob/2.6.x/app/models/Person.scala
So, this code needs to be added inside of the object AccountStatus code block since we need to use fromInt to transform an Int to an AccountStatus. This is a Reads defined for AccountStatus:
implicit object AccountStatusReads extends Reads[AccountStatus] {
def reads(jsValue: JsValue): JsResult[AccountStatus] = {
(jsValue \ "as").validate[Int].map(fromInt)
}
}
What's a Reads? It's just a trait that defines how a JsValue (the play class encapsulating JSON values) should be deserialized from JSON to some type. The trait only requires one method to be implemented, a reads method which takes in some json and returns a JsResult of some type. So you can see in the above code that we have a Reads that will look for a field in JSON called as and try to read it as an integer. From there, it will then transform it into an AccountStatus using the already defined fromInt method. So for example in the scala console you could do this:
import play.api.libs.json._
// import wherever account status is and the above reader
scala> Json.parse("""{"as":1}""").as[AccountStatus]
res0: AccountStatus = Active
This reader isn't perfect though, mainly because it's not handling the error your code will give you on out of bound numbers:
scala> Json.parse("""{"as":20}""").as[AccountStatus]
java.lang.RuntimeException: Out of bound AccountStatus Value.
at scala.sys.package$.error(package.scala:27)
at AccountStatus$.fromInt(<console>:42)
at AccountStatusReads$$anonfun$reads$1.apply(<console>:27)
at AccountStatusReads$$anonfun$reads$1.apply(<console>:27)
at play.api.libs.json.JsResult$class.map(JsResult.scala:81)
at play.api.libs.json.JsSuccess.map(JsResult.scala:9)
at AccountStatusReads$.reads(<console>:27)
at play.api.libs.json.JsValue$class.as(JsValue.scala:65)
at play.api.libs.json.JsObject.as(JsValue.scala:166)
... 42 elided
You could handle this by making the Reads handle the error. I can show you how if you want, but first the other part of a Format is a Writes. This trait, unsurprisingly is similar to reads except it does the reverse. You're taking your class AccountStatus and creating a JsValue (JSON). So, you just have to implement the writes method.
implicit object AccountStatusWrites extends Writes[AccountStatus] {
def writes(as: AccountStatus): JsValue = {
JsObject(Seq("as" -> JsNumber(as.as)))
}
}
Then this can be used to serialize that class to JSON like so:
scala> Json.toJson(Draft)
res4: play.api.libs.json.JsValue = {"as":0}
Now, this is actually enough to get your error to go away. Why? Because Json.format[Account] is doing all the work we just did for you! But for Account. It can do this because it's a case class and has less than 22 fields. Also every field for Account has a way to be converted to and from JSON (via a Reads and Writes). Your error message was showing that Account could not have a format automatically created for it because part of it (status field) had no formatter.
Now, why do you have to do this? Because AccountStatus is not a case class, so you can't call Json.format[AccountStatus] on it. And because the subclasses of it are each objects, which have no unapply method defined for them since they're not case classes. So you have to explain to the library how to serialize and deserialize.
Since you said you're new to scala, I imagine that the concept of an implicit is still somewhat foreign. I recommend you play around with it / do some reading to get a grasp of what to do when you see that the compiler is complaining about not being able to find an implicit it needs.
Bonus round
So, you might really not want to do that work yourself, and there is a way to avoid having to do it so you can do Json.format[AccountStatus]. You see Json.format uses the apply and unapply methods to do its dirty work. In scala, these two methods are defined automatically for case classes. But there's no reason you can't define them yourself and get everything they give you for free!
So, what do apply and unapply look like type signature wise? It changes per class, but in this case apply should match Int => AccountStatus (a function that goes from an int to an AccountStatus). So it's defined like so:
def apply(i: Int): AccountStatus = fromInt(i)
and unapply is similar to the reverse of this, but it needs to return an Option[Int], so it looks like
def unapply(as: AccountStatus): Option[Int] = Option(as.as)
with both of these defined you don't need to define the reads and writes yourself and instead can just call
// this is still inside the AccountStatus object { ... }
implicit val asFormat = Json.format[AccountStatus]
and it will work in a similar fashion.
.P.S. I'm traveling today, but feel free to leave any comments if some of this doesn't make sense and I'll try to get back to you later on
I would like to design a base trait/class in Scala that can produce the following json:
trait GenericResource {
val singularName: String
val pluralName: String
}
I would inherit this trait in a case class:
case class Product(name: String) extends GenericResource {
override val singularName = "product"
override val pluralName = "products"
}
val car = Product("car")
val jsonString = serialize(car)
the output should look like: {"product":{"name":"car"}}
A Seq[Product] should produce {"products":[{"name":"car"},{"name":"truck"}]} etc...
I'm struggling with the proper abstractions to accomplish this. I am open to solutions using any JSON library (available in Scala).
Here's about the simplest way I can think of to do the singular part generically with circe:
import io.circe.{ Decoder, Encoder, Json }
import io.circe.generic.encoding.DerivedObjectEncoder
trait GenericResource {
val singularName: String
val pluralName: String
}
object GenericResource {
implicit def encodeResource[A <: GenericResource](implicit
derived: DerivedObjectEncoder[A]
): Encoder[A] = Encoder.instance { a =>
Json.obj(a.singularName -> derived(a))
}
}
And then if you have some case class extending GenericResource like this:
case class Product(name: String) extends GenericResource {
val singularName = "product"
val pluralName = "products"
}
You can do this (assuming all the members of the case class are encodeable):
scala> import io.circe.syntax._
import io.circe.syntax._
scala> Product("car").asJson.noSpaces
res0: String = {"product":{"name":"car"}}
No boilerplate, no extra imports, etc.
The Seq case is a little trickier, since circe automatically provides a Seq[A] encoder for any A that has an Encoder, but it doesn't do what you want—it just encodes the items and sticks them in a JSON array. You can write something like this:
implicit def encodeResources[A <: GenericResource](implicit
derived: DerivedObjectEncoder[A]
): Encoder[Seq[A]] = Encoder.instance {
case values # (head +: _) =>
Json.obj(head.pluralName -> Encoder.encodeList(derived)(values.toList))
case Nil => Json.obj()
}
And use it like this:
scala> Seq(Product("car"), Product("truck")).asJson.noSpaces
res1: String = {"products":[{"name":"car"},{"name":"truck"}]}
But you can't just stick it in the companion object and expect everything to work—you have to put it somewhere and import it when you need it (otherwise it has the same priority as the default Seq[A] instances).
Another issue with this encodeResources implementation is that it just returns an empty object if the Seq is empty:
scala> Seq.empty[Product].asJson.noSpaces
res2: String = {}
This is because the plural name is attached to the resource at the instance level, and if you don't have an instance there's no way to get it (short of reflection). You could of course conjure up a fake instance by passing nulls to the constructor or whatever, but that seems out of the scope of this question.
This issue (the resource names being attached to instances) is also going to be trouble if you need to decode this JSON you've encoded. If that is the case, I'd suggest considering a slightly different approach where you have something like a GenericResourceCompanion trait that you mix into the companion object for the specific resource type, and to indicate the names there. If that's not an option, you're probably stuck with reflection or fake instances, or both (but again, probably not in scope for this question).
I would like to serialize an extended class in scala and
i have some test code..
import org.specs2.mutable._
import org.specs2.runner._
import org.junit.runner._
import play.api.libs.json.Json
#RunWith(classOf[JUnitRunner])
class JsonSerializerTest extends Specification {
class A(val s1: String)
case class B(s2: String) extends A("a")
"Application" should {
"serialize class to JSON" in {
implicit val bWrites = Json.writes[B]
implicit val bReads = Json.reads[B]
val bClass = B("b")
println(bClass.s1 + " " + bClass.s2)
val serialized = Json.toJson[B](bClass)
val s1 = (serialized \ "s1").asOpt[String]
s1 should beSome[String]
}
}
}
In this case test print:
a b
Application should
'None' is not Some
java.lang.Exception: 'None' is not Some
It means that s1 field from parent class were not serialized.
The solution
class A(val s1: String)
case class B(override val s1: String, s2: String) extends A(s1)
mostly unacceptable because in real application classes have a lot of fields and specifying them explicitly every time when i extend class complicates the code.
Is there any other solution for this case?
you can manually create the json serializers (described here: https://www.playframework.com/documentation/2.5.x/ScalaJsonCombinators)
the problem with your version is that Json.writes and Json.reads are macros that are looking specifically at the constructor of the case class, and building the serializer from that (so superclass arguments aren't captured). you could copy and roll your own version of the macro: https://github.com/playframework/playframework/blob/d6c2673d91d85fd37de424951ee5ad9f4f4cce98/framework/src/play-json/src/main/scala/play/api/libs/json/JsMacroImpl.scala
lastly, you can make a function that takes the result of Json.writes and Json.reads, and adds on the shared fields you want. something like:
object A {
def writesSubclass[T](writer: Writes[T]): Writes[T] = new Writes[T] {
def writes(t: T) = Json.obj("s1" -> t.s1) ++ writer.writes(t).as[JsObject]
}
}
implicit val bWrites = A.writesSubclass(Json.writes[B])
depending on how often your A gets extended, this might be your best bet.
I'm Java developer and pretty new to scala.
I'm implementing some rest API that use spray and akka
The API should expose some kind of user CRUD. I'll use only create user in this question...
trait DefaultJsonFormats extends DefaultJsonProtocol with SprayJsonSupport with MetaMarshallers {}
class RegistrationService(registration: ActorRef)
(implicit executionContext: ExecutionContext)
extends Directives with DefaultJsonFormats {
implicit val timeout = Timeout(2.seconds)
implicit val userFormat = jsonFormat3(User)
implicit val registerFormat = jsonFormat1(Register)
implicit val registeredFormat = jsonFormat1(Registered)
val route =
path("register") {
post { handleWith { ru: Register => (registration ? ru).mapTo[Registered] } }
}
//------ Actor
object RegistrationActor {
case class User(id:String, name:String)
case class Register(user: User)
case class Registered(status: String)
case object NotRegistered
}
class RegistrationActor(implDef: String) extends Actor {
def receive: Receive = {
case Register(user)=>
val status=// create user real code with return status
sender ! new Registered(status)
} }
In this approach the json serialization and desiarelization is pretty annoying. For every object I need to deal with API I must define the appropriate format
implicit val userFormat = jsonFormat3(User)
implicit val registerFormat = jsonFormat1(Register)
implicit val registeredFormat = jsonFormat1(Registered)
I would like to avoid such definition and use some general json converter and return a pojo objects, so the conversion will happen under-the-hood
The question is how can I change this code to use by default Gson/Jackson/Spray default converter and avoid definition of the implicit ... jsonFormats?
For every object I need to deal with API I must define the appropriate format
It is normal to do this once, in a "JsonProtocol" class and import that where needed, rather than defining new formats each time:
import MyJsonProtocol._
val route =
path("register") {
post { handleWith { ru: Register => (registration ? ru).mapTo[Registered] } }
how can I change this code to use by default Gson/Jackson/Spray default converter and avoid definition of the implicit ... jsonFormats?
You would need to declare an implicit marshaller from Registered to HttpResponse (or an intermediate value like String) which was backed by Jackson instead of spray-json, then import that marshaller instead of SprayJsonSupport.
Have a look at the implementation of SprayJsonSupport to see how to do this. It's fairly straightforward, if you're comfortable with implicit conversions.
You can also see how this is done in Json4sSupport in Spray -- that trait implements a Marshaller[T, String] for ALL types T. Then, at runtime, the Json4s library will try to serialize the object to JSON.
In this approach the json serialization and desiarelization is pretty annoying
There are two main advantages of spray-jsons approach over Jackson's:
There is no reflection, so it is faster at runtime
This is no runtime determining of JSON formats, so any issues are caught at compile-time
I have a problem when trying to serialize sequences of AnyVal using json4s in scala.
Here is a test using FunSuite that reproduces the problem:
import org.json4s._
import org.json4s.jackson.JsonMethods._
import org.json4s.jackson.Serialization._
import org.scalatest.{FunSuite, Matchers}
case class MyId(id: String) extends AnyVal
case class MyModel(ids: Seq[MyId])
class AnyValTest extends FunSuite with Matchers {
test("should serialize correctly") {
implicit val formats = DefaultFormats
val model = MyModel(Seq(MyId("1"), MyId("2")))
val text = write(model)
parse(text).extract[MyModel] shouldBe model
}
}
The test fails when trying to extract MyModel from the JValue because it can not find a suitable value for the ids field.
I notice that it AnyVal are working fine when used directly though with something like:
case class AnotherModel(id: MyId)
Then I am able to serialise and deserialise correctly.
I know this question is one year old but I ran into the same issue. Writing what I did in case it helps someone else. You will need a custom serializer.
case class Id(asString: String) extends AnyVal
class NotificationSerializer extends CustomSerializer[Id](format ⇒ (
{case JString(s) => Id(s)},
{case Id(s) => JString(s)}))
Without above serialization, your JSON will look something like
{"ids":[[{"asString":"testId1"},{"asString":"testId2"}]]}
I am not entirely sure why AnyVal case class serialization works fine when it is a part of another case class but not standalone. My best guess is that the behavior is due to the allocation behavior of JVM for array containing value classes. See http://docs.scala-lang.org/overviews/core/value-classes.html for 'when allocation is necessary' section.