I'm trying to code integration by Simpson's method in CUDA.
This is the formula for Simpson's rule
where x_k = a + k*h.
Here's my code
__device__ void initThreadBounds(int *n_start, int *n_end, int n,
int totalBlocks, int blockWidth)
{
int threadId = blockWidth * blockIdx.x + threadIdx.x;
int nextThreadId = threadId + 1;
int threads = blockWidth * totalBlocks;
*n_start = (threadId * n)/ threads;
*n_end = (nextThreadId * n)/ threads;
}
__device__ float reg_func (float x)
{
return x;
}
typedef float (*p_func) (float);
__device__ p_func integrale_f = reg_func;
__device__ void integralSimpsonMethod(int totalBlocks, int totalThreads,
double a, double b, int n, float p_function(float), float* result)
{
*result = 0;
float h = (b - a)/n;
//*result = p_function(a)+p_function(a + h * n);
//parallel
int idx_start;
int idx_end;
initThreadBounds(&idx_start, &idx_end, n-1, totalBlocks, totalThreads);
//parallel_ends
for (int i = idx_start; i < idx_end; i+=2) {
*result += ( p_function(a + h*(i-1)) +
4 * p_function(a + h*(i)) +
p_function(a + h*(i+1)) ) * h/3;
}
}
__global__ void integralSimpson(int totalBlocks, int totalThreads, float* result)
{
float res = 0;
integralSimpsonMethod(totalBlocks, totalThreads, 0, 10, 1000, integrale_f, &res);
result[(blockIdx.x*totalThreads + threadIdx.x)] = res;
//printf ("Simpson method\n");
}
__host__ void inttest()
{
const int blocksNum = 32;
const int threadNum = 32;
float *device_resultf;
float host_resultf[threadNum*blocksNum]={0};
cudaMalloc((void**) &device_resultf, sizeof(float)*threadNum*blocksNum);
integralSimpson<<<blocksNum, threadNum>>>(blocksNum, threadNum, device_resultf);
cudaThreadSynchronize();
cudaMemcpy(host_resultf, device_resultf, sizeof(float) *threadNum*blocksNum,
cudaMemcpyDeviceToHost);
float sum = 0;
for (int i = 0; i != blocksNum*threadNum; ++i) {
sum += host_resultf[i];
// printf ("result in %i cell = %f \n", i, host_resultf[i]);
}
printf ("sum = %f \n", sum);
cudaFree(device_resultf);
}
int main(int argc, char* argv[])
{
inttest();
int i;
scanf ("%d",&i);
}
The problem is: it works wrong when n is lower than 100000. For an integral from 0 to 10, the result is ~99, but when n = 100000 or larger it works fine and the result is ~50.
What's wrong, guys?
The basic problem here is that you don't understand your own algorithm.
Your integralSimpsonMethod() function is designed such that each thread is sampling at least 3 quadrature points per sub-interval in the integral domain. Therefore, if you choose n so that it is less than four times the number of threads in the kernel call, it is inevitable that each sub interval will overlap and the resulting integral will be incorrect. You need to make sure that the code checks and scales the thread count or n so that they don't produce overlap when the integral is computed.
If you are doing this for anything other than self-edification, then I recommend you look up the composite version of Simpson's rule. This is much better suited to parallel implementation and will be considerably more performant if implemented correctly.
I would propose an approach to Simpson's integration by using CUDA Thrust. You basically need five steps:
Generate the Simpson's quadrature weights;
Generate the function sampling points;
Generate the function values;
Calculate the elementwise product between the quadrature weights and the function values;
Sum the above products.
Step #1 requires creating an array with elements repeated many times, namely, 1 4 2 4 2 4 ... 1 for the Simpson's case. This can be accomplished by borrowing Robert Crovella's approach in cuda thrust library repeat vector multiple times.
Step #2 can be accomplished by using couting_iterators and borrowing talonmies approach in Purpose and usage of counting_iterators in CUDA Thrust library.
Step #3 is an application of thrust::transform.
Steps #4 and #5 can be accomplished together by thrust::inner_product.
This approach can be exploited also for use when other quadrature integration rules are of interest.
Here is the code
#include <thrust/iterator/counting_iterator.h>
#include <thrust/iterator/transform_iterator.h>
#include <thrust/iterator/permutation_iterator.h>
#include <thrust/iterator/counting_iterator.h>
#include <thrust/iterator/constant_iterator.h>
#include <thrust/inner_product.h>
#include <thrust/functional.h>
#include <thrust/fill.h>
#include <thrust/device_vector.h>
#include <thrust/host_vector.h>
// for printing
#include <thrust/copy.h>
#include <ostream>
#define STRIDE 2
#define N 100
#define pi_f 3.14159265358979f // Greek pi in single precision
struct sin_functor
{
__host__ __device__
float operator()(float x) const
{
return sin(2.f*pi_f*x);
}
};
template <typename Iterator>
class strided_range
{
public:
typedef typename thrust::iterator_difference<Iterator>::type difference_type;
struct stride_functor : public thrust::unary_function<difference_type,difference_type>
{
difference_type stride;
stride_functor(difference_type stride)
: stride(stride) {}
__host__ __device__
difference_type operator()(const difference_type& i) const
{
return stride * i;
}
};
typedef typename thrust::counting_iterator<difference_type> CountingIterator;
typedef typename thrust::transform_iterator<stride_functor, CountingIterator> TransformIterator;
typedef typename thrust::permutation_iterator<Iterator,TransformIterator> PermutationIterator;
// type of the strided_range iterator
typedef PermutationIterator iterator;
// construct strided_range for the range [first,last)
strided_range(Iterator first, Iterator last, difference_type stride)
: first(first), last(last), stride(stride) {}
iterator begin(void) const
{
return PermutationIterator(first, TransformIterator(CountingIterator(0), stride_functor(stride)));
}
iterator end(void) const
{
return begin() + ((last - first) + (stride - 1)) / stride;
}
protected:
Iterator first;
Iterator last;
difference_type stride;
};
int main(void)
{
// --- Generate the integration coefficients
thrust::host_vector<float> h_coefficients(STRIDE);
h_coefficients[0] = 4.f;
h_coefficients[1] = 2.f;
thrust::device_vector<float> d_coefficients(N);
typedef thrust::device_vector<float>::iterator Iterator;
strided_range<Iterator> pos1(d_coefficients.begin()+1, d_coefficients.end()-2, STRIDE);
strided_range<Iterator> pos2(d_coefficients.begin()+2, d_coefficients.end()-1, STRIDE);
thrust::fill(pos1.begin(), pos1.end(), h_coefficients[0]);
thrust::fill(pos2.begin(), pos2.end(), h_coefficients[1]);
d_coefficients[0] = 1.f;
d_coefficients[N-1] = 1.f;
// print the generated d_coefficients
std::cout << "d_coefficients: ";
thrust::copy(d_coefficients.begin(), d_coefficients.end(), std::ostream_iterator<float>(std::cout, " ")); std::cout << std::endl;
// --- Generate sampling points
float a = 0.f;
float b = .5f;
float Dx = (b-a)/(float)(N-1);
thrust::device_vector<float> d_x(N);
thrust::transform(thrust::make_counting_iterator(a/Dx),
thrust::make_counting_iterator((b+1.f)/Dx),
thrust::make_constant_iterator(Dx),
d_x.begin(),
thrust::multiplies<float>());
// --- Calculate function values
thrust::device_vector<float> d_y(N);
thrust::transform(d_x.begin(), d_x.end(), d_y.begin(), sin_functor());
// --- Calculate integral
float integral = (Dx/3.f) * thrust::inner_product(d_y.begin(), d_y.begin() + N, d_coefficients.begin(), 0.0f);
printf("The integral is = %f\n", integral);
getchar();
return 0;
}
Related
I'm trying to write code that will permute a vector on a gpu, but I'm have great difficulty getting Thrust to cooperate. At the moment the code below compiles fine, but does nothing to the order of the vector r. Please help. Thanks!
void rng_permutation<float>(const int n, float* r){
float* order;
cudaMalloc((void**)&order, n* sizeof(float));
/*
some lines of code that generate uniform random floats between 0 and 1 that I know work
*/
thrust::device_ptr<float> order_(order);
thrust::device_vector<float> order__(order_, order_ + n);
thrust::device_ptr<float> r_(r);
thrust::device_vector<float> r__(r_, r_ + n);
thrust::sort_by_key(order__.begin(), order__.end(), r__.begin());
thrust::copy(order_, order_ + n, order__.begin());
thrust::copy(r_, r_ + n, r__.begin());
cudaFree(order);
order__.clear();
r__.clear();
thrust::device_vector<float>().swap(order__);
thrust::device_vector<float>().swap(r__);
}
You've got your sources and destinations backwards here:
thrust::copy(order_, order_ + n, order__.begin());
thrust::copy(r_, r_ + n, r__.begin());
The previous line of code just sorted what is in order__. You are then copying the contents of order_ over the top of that (the first parameters to thrust::copy are the source parameters, the last are the destination parameters). Makes no sense. Instead, reverse that:
thrust::copy(order__.begin(), order__.end(), order_);
thrust::copy(r__.begin(), r__.end(), r_);
And you will get sensible results:
$ cat t312.cu
#include <stdlib.h>
#include <thrust/device_vector.h>
#include <thrust/sort.h>
#include <thrust/copy.h>
#include <iostream>
#include <thrust/sequence.h>
template <typename T>
void caffe_gpu_rng_uniform(int n, T lo, T hi, T *o)
{
T *d = (T *)malloc(n*sizeof(T));
for (int i = 0; i < n; i++) d[i] = (rand()/(float)RAND_MAX)*(hi-lo) + lo;
cudaMemcpy(o, d, n*sizeof(T), cudaMemcpyHostToDevice);
free(d);
};
template <typename T>
void print_gpu_array_entries(T *o, int x , int y , int n){
thrust::copy_n(thrust::device_pointer_cast<T>(o), x, std::ostream_iterator<T>(std::cout, ","));
std::cout << std::endl;
}
void rng_permutation(const int n, float* r){
float* order;
cudaMalloc((void**)&order, n* sizeof(float));
caffe_gpu_rng_uniform<float>(n, (float)0.0, (float)1.0, order);
print_gpu_array_entries<float>(order, 10 , 1 , n);
print_gpu_array_entries<float>(r, 10 , 1 , n);
thrust::device_ptr<float> order_(order);
thrust::device_vector<float> order__(order_, order_ + n);
thrust::device_ptr<float> r_(r);
thrust::device_vector<float> r__(r_, r_ + n);
thrust::sort_by_key(order__.begin(), order__.end(), r__.begin());
thrust::copy(order__.begin(), order__.end(), order_);
thrust::copy(r__.begin(), r__.end(), r_);
print_gpu_array_entries<float>(order, 10 , 1 , n);
print_gpu_array_entries<float>(r, 10 , 1 , n);
cudaFree(order);
order__.clear();
r__.clear();
thrust::device_vector<float>().swap(order__);
thrust::device_vector<float>().swap(r__);
}
int main(){
thrust::device_vector<float> data(10);
thrust::sequence(data.begin(), data.end());
rng_permutation(10, thrust::raw_pointer_cast(data.data()));
}
$ nvcc -o t312 t312.cu
$ ./t312
0.840188,0.394383,0.783099,0.79844,0.911647,0.197551,0.335223,0.76823,0.277775,0.55397,
0,1,2,3,4,5,6,7,8,9,
0.197551,0.277775,0.335223,0.394383,0.55397,0.76823,0.783099,0.79844,0.840188,0.911647,
5,8,6,1,9,7,2,3,0,4,
$
I am looking for a way to perform operations over columns .
I have MxN matrix, i want to activate cublas function (for example nrm2) over each column.
The result i expect to get is : M x 1
How can I do that?
CUBLAS has no batched Level 1 routines, so there is no direct way to compute the column or row norms in a single call. You can do it by calling nrm2 many times in a loop over all the rows or columns of the matrix, for example:
#include <cublas_v2.h>
#include <thrust/iterator/counting_iterator.h>
#include <thrust/transform.h>
#include <thrust/random.h>
#include <thrust/device_vector.h>
#include <iostream>
struct prg
{
float a, b;
__host__ __device__
prg(float _a=0.f, float _b=1.f) : a(_a), b(_b) {};
__host__ __device__
float operator()(const unsigned int n) const
{
thrust::default_random_engine rng;
thrust::uniform_real_distribution<float> dist(a, b);
rng.discard(n);
return dist(rng);
}
};
int main(void)
{
const int M = 1024, N = M;
const int num = N * M;
thrust::device_vector<float> matrix(num);
thrust::device_vector<float> vector(N, -1.0f);
thrust::counting_iterator<unsigned int> index_sequence_begin(0);
thrust::transform(index_sequence_begin,
index_sequence_begin + num,
matrix.begin(),
prg(1.f,2.f));
float* m_d = thrust::raw_pointer_cast(matrix.data());
float* v_d = thrust::raw_pointer_cast(vector.data());
cudaStream_t stream;
cudaStreamCreate(&stream);
cublasHandle_t handle;
cublasCreate(&handle);
cublasSetPointerMode(handle, CUBLAS_POINTER_MODE_DEVICE);
cublasSetStream(handle, stream);
for(int col=0; col < N; col++) {
cublasSnrm2(handle, M, m_d + col*M, 1, v_d + col);
}
cudaDeviceSynchronize();
for(auto x : vector) {
float normval = x;
std::cout << normval << std::endl;
}
return 0;
}
Unless you have very large rows or columns, there is little scope to exploit streams to run simultaneous kernels and reduce the overall runtime because each nrm2 call will be too short. So there is a lot of latency in running lots of individual kernels, which will negatively effect performance.
A much better alternative would be to write your own kernel to do this.
I want to perform a transformation on a input thrust::device_vector and only copy the result to the output vector if the result satisfies a predicate. So the number of results could be less than the size of the input device_vector (similar to the output vector of thrust::copy_if). I have not found a way to do this with thrust::transform_if. Currently I can do this with thrust::transform and thrust::remove_if as shown in the example below:
#include <thrust/random.h>
#include <thrust/iterator/counting_iterator.h>
#include <thrust/device_vector.h>
#include <thrust/transform.h>
#include <thrust/remove.h>
#include <iostream>
__host__ __device__ unsigned int hash(unsigned int a) {
a = (a+0x7ed55d16) + (a<<12);
a = (a^0xc761c23c) ^ (a>>19);
a = (a+0x165667b1) + (a<<5);
a = (a+0xd3a2646c) ^ (a<<9);
a = (a+0xfd7046c5) + (a<<3);
a = (a^0xb55a4f09) ^ (a>>16);
return a;
};
struct add_random {
__host__ __device__ add_random() {}
__device__ int operator()(const int n, const int x) const {
thrust::default_random_engine rng(hash(n));
thrust::uniform_int_distribution<int> uniform(0, 11);
return uniform(rng)+x;
}
};
struct is_greater {
__host__ __device__ bool operator()(const int x) {
return x > 6 ;
}
};
int main(void) {
int x[5] = {10, 2, 5, 3, 0};
thrust::device_vector<int> d_x(x, x+5);
thrust::transform(
thrust::counting_iterator<int>(0),
thrust::counting_iterator<int>(5),
d_x.begin(),
d_x.begin(),
add_random());
std::cout << "after adding random number:" << std::endl;
std::ostream_iterator<int> o(std::cout, " ");
thrust::copy(d_x.begin(), d_x.end(), o);
std::cout << std::endl;
thrust::device_vector<int>::iterator new_end(thrust::remove_if(d_x.begin(), d_x.end(), is_greater()));
std::cout << "after removing values greater than 6:" << std::endl;
thrust::copy(d_x.begin(), new_end, o);
std::cout << std::endl;
return 0;
}
Which gives the output:
after adding random number:
18 4 8 7 11
after removing values greater than 6:
4
I would like to avoid copying the results to memory twice, first by thrust::transform and then by thrust::remove_if in the above example. Is it possible to get the above output with a single transformation function? How can I do this? My biggest concern is the computational cost, so any optimized solution, even if it doesn't use the Thrust library would be great.
Welcome to the world of thrust fancy iterators. You can get a quick overview of some fancy iterator types by looking at the thrust quick start guide. In particular, a thrust transform iterator can frequently be used to replace a thrust transform operation that is applied to the input of another thrust algorithm, "fusing" the two algorithms into a single operation.
Here's a worked example applied to your case:
$ cat t1254.cu
#include <thrust/random.h>
#include <thrust/iterator/counting_iterator.h>
#include <thrust/iterator/transform_iterator.h>
#include <thrust/device_vector.h>
#include <thrust/transform.h>
#include <thrust/remove.h>
#include <iostream>
__host__ __device__ unsigned int hash(unsigned int a) {
a = (a+0x7ed55d16) + (a<<12);
a = (a^0xc761c23c) ^ (a>>19);
a = (a+0x165667b1) + (a<<5);
a = (a+0xd3a2646c) ^ (a<<9);
a = (a+0xfd7046c5) + (a<<3);
a = (a^0xb55a4f09) ^ (a>>16);
return a;
};
struct add_random : public thrust::unary_function<thrust::tuple<int, int>, int> {
__host__ __device__ int operator()(thrust::tuple<int, int> t) const {
int n = thrust::get<0>(t);
int x = thrust::get<1>(t);
thrust::default_random_engine rng(hash(n));
thrust::uniform_int_distribution<int> uniform(0, 11);
return uniform(rng)+x;
}
};
struct is_greater {
__host__ __device__ bool operator()(const int x) {
return x < 6 ;
}
};
int main(void) {
int x[5] = {10, 2, 5, 3, 0};
thrust::device_vector<int> d_x(x, x+5);
thrust::device_vector<int> d_r(5);
int rsize = thrust::copy_if(thrust::make_transform_iterator(thrust::make_zip_iterator(thrust::make_tuple(thrust::counting_iterator<int>(0), d_x.begin())), add_random()), thrust::make_transform_iterator(thrust::make_zip_iterator(thrust::make_tuple(thrust::counting_iterator<int>(5), d_x.end())), add_random()), d_r.begin(), is_greater())- d_r.begin();
std::cout << "after removing values greater than 6:" << std::endl;
thrust::copy_n(d_r.begin(), rsize, std::ostream_iterator<int>(std::cout, " "));
std::cout << std::endl;
return 0;
}
$ nvcc -o t1254 t1254.cu
$ ./t1254
after removing values greater than 6:
4
$
We've replaced your transform operation with a transform iterator applied to the same two inputs. Since you have two inputs to your transform operation, we're using a zip iterator to combine these, and the transform functor has also been reworked slightly to accept that tuple as its input.
Converted your remove_if to a copy_if, to work with the transform iterator as input. This requires a slight change in the logic of the copy predicate.
I am trying to solve a problem using CUDA Thrust.
I have a host array with 3 elements. Is it possible, using Thrust, to create a device array of 384 elements in which the 3 elements in my host array is repeated 128 times (128 x 3 = 384)?
Generally speaking, starting from an array of 3 elements, how can I use Thrust to generate a device array of size X, where X = Y x 3, i.e. Y is the number of repetitions?
One possible approach:
create a device vector of appropriate size
create 3 strided ranges, one for each of the element positions {1, 2, 3} in the final output (device) vector
use thrust::fill to fill each of the 3 strided ranges with the appropriate (host vector) element {1, 2, 3}
This code is a trivial modification of the strided range example to demonstrate. You can change the REPS define to 128 to see the full expansion to 384 output elements:
#include <thrust/iterator/counting_iterator.h>
#include <thrust/iterator/transform_iterator.h>
#include <thrust/iterator/permutation_iterator.h>
#include <thrust/functional.h>
#include <thrust/fill.h>
#include <thrust/device_vector.h>
#include <thrust/host_vector.h>
// for printing
#include <thrust/copy.h>
#include <ostream>
#define STRIDE 3
#define REPS 15 // change to 128 if you like
#define DSIZE (STRIDE*REPS)
// this example illustrates how to make strided access to a range of values
// examples:
// strided_range([0, 1, 2, 3, 4, 5, 6], 1) -> [0, 1, 2, 3, 4, 5, 6]
// strided_range([0, 1, 2, 3, 4, 5, 6], 2) -> [0, 2, 4, 6]
// strided_range([0, 1, 2, 3, 4, 5, 6], 3) -> [0, 3, 6]
// ...
template <typename Iterator>
class strided_range
{
public:
typedef typename thrust::iterator_difference<Iterator>::type difference_type;
struct stride_functor : public thrust::unary_function<difference_type,difference_type>
{
difference_type stride;
stride_functor(difference_type stride)
: stride(stride) {}
__host__ __device__
difference_type operator()(const difference_type& i) const
{
return stride * i;
}
};
typedef typename thrust::counting_iterator<difference_type> CountingIterator;
typedef typename thrust::transform_iterator<stride_functor, CountingIterator> TransformIterator;
typedef typename thrust::permutation_iterator<Iterator,TransformIterator> PermutationIterator;
// type of the strided_range iterator
typedef PermutationIterator iterator;
// construct strided_range for the range [first,last)
strided_range(Iterator first, Iterator last, difference_type stride)
: first(first), last(last), stride(stride) {}
iterator begin(void) const
{
return PermutationIterator(first, TransformIterator(CountingIterator(0), stride_functor(stride)));
}
iterator end(void) const
{
return begin() + ((last - first) + (stride - 1)) / stride;
}
protected:
Iterator first;
Iterator last;
difference_type stride;
};
int main(void)
{
thrust::host_vector<int> h_data(STRIDE);
h_data[0] = 1;
h_data[1] = 2;
h_data[2] = 3;
thrust::device_vector<int> data(DSIZE);
typedef thrust::device_vector<int>::iterator Iterator;
strided_range<Iterator> pos1(data.begin(), data.end(), STRIDE);
strided_range<Iterator> pos2(data.begin()+1, data.end(), STRIDE);
strided_range<Iterator> pos3(data.begin()+2, data.end(), STRIDE);
thrust::fill(pos1.begin(), pos1.end(), h_data[0]);
thrust::fill(pos2.begin(), pos2.end(), h_data[1]);
thrust::fill(pos3.begin(), pos3.end(), h_data[2]);
// print the generated data
std::cout << "data: ";
thrust::copy(data.begin(), data.end(), std::ostream_iterator<int>(std::cout, " ")); std::cout << std::endl;
return 0;
}
Robert Crovella has already answered this question using strided ranges. He has also pointed out the possibility of using the expand operator.
Below, I'm providing a worked example using the expand operator. Opposite to the use of strided ranges, it avoids the need of for loops.
#include <thrust/device_vector.h>
#include <thrust/gather.h>
#include <thrust/sequence.h>
#include <stdio.h>
using namespace thrust::placeholders;
/*************************************/
/* CONVERT LINEAR INDEX TO ROW INDEX */
/*************************************/
template <typename T>
struct linear_index_to_row_index : public thrust::unary_function<T,T> {
T Ncols; // --- Number of columns
__host__ __device__ linear_index_to_row_index(T Ncols) : Ncols(Ncols) {}
__host__ __device__ T operator()(T i) { return i / Ncols; }
};
/*******************/
/* EXPAND OPERATOR */
/*******************/
template <typename InputIterator1, typename InputIterator2, typename OutputIterator>
OutputIterator expand(InputIterator1 first1,
InputIterator1 last1,
InputIterator2 first2,
OutputIterator output)
{
typedef typename thrust::iterator_difference<InputIterator1>::type difference_type;
difference_type input_size = thrust::distance(first1, last1);
difference_type output_size = thrust::reduce(first1, last1);
// scan the counts to obtain output offsets for each input element
thrust::device_vector<difference_type> output_offsets(input_size, 0);
thrust::exclusive_scan(first1, last1, output_offsets.begin());
// scatter the nonzero counts into their corresponding output positions
thrust::device_vector<difference_type> output_indices(output_size, 0);
thrust::scatter_if(thrust::counting_iterator<difference_type>(0), thrust::counting_iterator<difference_type>(input_size),
output_offsets.begin(), first1, output_indices.begin());
// compute max-scan over the output indices, filling in the holes
thrust::inclusive_scan(output_indices.begin(), output_indices.end(), output_indices.begin(), thrust::maximum<difference_type>());
// gather input values according to index array (output = first2[output_indices])
OutputIterator output_end = output; thrust::advance(output_end, output_size);
thrust::gather(output_indices.begin(), output_indices.end(), first2, output);
// return output + output_size
thrust::advance(output, output_size);
return output;
}
/**************************/
/* STRIDED RANGE OPERATOR */
/**************************/
template <typename Iterator>
class strided_range
{
public:
typedef typename thrust::iterator_difference<Iterator>::type difference_type;
struct stride_functor : public thrust::unary_function<difference_type,difference_type>
{
difference_type stride;
stride_functor(difference_type stride)
: stride(stride) {}
__host__ __device__
difference_type operator()(const difference_type& i) const
{
return stride * i;
}
};
typedef typename thrust::counting_iterator<difference_type> CountingIterator;
typedef typename thrust::transform_iterator<stride_functor, CountingIterator> TransformIterator;
typedef typename thrust::permutation_iterator<Iterator,TransformIterator> PermutationIterator;
// type of the strided_range iterator
typedef PermutationIterator iterator;
// construct strided_range for the range [first,last)
strided_range(Iterator first, Iterator last, difference_type stride)
: first(first), last(last), stride(stride) {}
iterator begin(void) const
{
return PermutationIterator(first, TransformIterator(CountingIterator(0), stride_functor(stride)));
}
iterator end(void) const
{
return begin() + ((last - first) + (stride - 1)) / stride;
}
protected:
Iterator first;
Iterator last;
difference_type stride;
};
/********/
/* MAIN */
/********/
int main(){
/**************************/
/* SETTING UP THE PROBLEM */
/**************************/
const int Nrows = 10; // --- Number of objects
const int Ncols = 3; // --- Number of centroids
thrust::device_vector<int> d_sequence(Nrows * Ncols);
thrust::device_vector<int> d_counts(Ncols, Nrows);
thrust::sequence(d_sequence.begin(), d_sequence.begin() + Ncols);
expand(d_counts.begin(), d_counts.end(), d_sequence.begin(),
thrust::make_permutation_iterator(
d_sequence.begin(),
thrust::make_transform_iterator(thrust::make_counting_iterator(0),(_1 % Nrows) * Ncols + _1 / Nrows)));
printf("\n\nCentroid indices\n");
for(int i = 0; i < Nrows; i++) {
std::cout << " [ ";
for(int j = 0; j < Ncols; j++)
std::cout << d_sequence[i * Ncols + j] << " ";
std::cout << "]\n";
}
return 0;
}
As an apparently simpler alternative to using CUDA Thrust, I'm posting below a worked example implementing in CUDA the classical Matlab's meshgrid function.
In Matlab
x = [1 2 3];
y = [4 5 6 7];
[X, Y] = meshgrid(x, y);
produces
X =
1 2 3
1 2 3
1 2 3
1 2 3
and
Y =
4 4 4
5 5 5
6 6 6
7 7 7
X is exactly the four-fold replication of the x array, which is the OP's question and first guess of Robert Crovella's answer, while Y is the three-fold consecutive replication of each element of the y array, which is the second guess of Robert Crovella's answer.
Here is the code:
#include <cstdio>
#include <thrust/pair.h>
#include "Utilities.cuh"
#define BLOCKSIZE_MESHGRID_X 16
#define BLOCKSIZE_MESHGRID_Y 16
#define DEBUG
/*******************/
/* MESHGRID KERNEL */
/*******************/
template <class T>
__global__ void meshgrid_kernel(const T * __restrict__ x, size_t Nx, const float * __restrict__ y, size_t Ny, T * __restrict__ X, T * __restrict__ Y)
{
unsigned int tidx = blockIdx.x * blockDim.x + threadIdx.x;
unsigned int tidy = blockIdx.y * blockDim.y + threadIdx.y;
if ((tidx < Nx) && (tidy < Ny)) {
X[tidy * Nx + tidx] = x[tidx];
Y[tidy * Nx + tidx] = y[tidy];
}
}
/************/
/* MESHGRID */
/************/
template <class T>
thrust::pair<T *,T *> meshgrid(const T *x, const unsigned int Nx, const T *y, const unsigned int Ny) {
T *X; gpuErrchk(cudaMalloc((void**)&X, Nx * Ny * sizeof(T)));
T *Y; gpuErrchk(cudaMalloc((void**)&Y, Nx * Ny * sizeof(T)));
dim3 BlockSize(BLOCKSIZE_MESHGRID_X, BLOCKSIZE_MESHGRID_Y);
dim3 GridSize (iDivUp(Nx, BLOCKSIZE_MESHGRID_X), iDivUp(BLOCKSIZE_MESHGRID_Y, BLOCKSIZE_MESHGRID_Y));
meshgrid_kernel<<<GridSize, BlockSize>>>(x, Nx, y, Ny, X, Y);
#ifdef DEBUG
gpuErrchk(cudaPeekAtLastError());
gpuErrchk(cudaDeviceSynchronize());
#endif
return thrust::make_pair(X, Y);
}
/********/
/* MAIN */
/********/
int main()
{
const int Nx = 3;
const int Ny = 4;
float *h_x = (float *)malloc(Nx * sizeof(float));
float *h_y = (float *)malloc(Ny * sizeof(float));
float *h_X = (float *)malloc(Nx * Ny * sizeof(float));
float *h_Y = (float *)malloc(Nx * Ny * sizeof(float));
for (int i = 0; i < Nx; i++) h_x[i] = i;
for (int i = 0; i < Ny; i++) h_y[i] = i + 4.f;
float *d_x; gpuErrchk(cudaMalloc(&d_x, Nx * sizeof(float)));
float *d_y; gpuErrchk(cudaMalloc(&d_y, Ny * sizeof(float)));
gpuErrchk(cudaMemcpy(d_x, h_x, Nx * sizeof(float), cudaMemcpyHostToDevice));
gpuErrchk(cudaMemcpy(d_y, h_y, Ny * sizeof(float), cudaMemcpyHostToDevice));
thrust::pair<float *, float *> meshgrid_pointers = meshgrid(d_x, Nx, d_y, Ny);
float *d_X = (float *)meshgrid_pointers.first;
float *d_Y = (float *)meshgrid_pointers.second;
gpuErrchk(cudaMemcpy(h_X, d_X, Nx * Ny * sizeof(float), cudaMemcpyDeviceToHost));
gpuErrchk(cudaMemcpy(h_Y, d_Y, Nx * Ny * sizeof(float), cudaMemcpyDeviceToHost));
for (int j = 0; j < Ny; j++) {
for (int i = 0; i < Nx; i++) {
printf("i = %i; j = %i; x = %f; y = %f\n", i, j, h_X[j * Nx + i], h_Y[j * Nx + i]);
}
}
return 0;
}
I want to write program using Thrust which is supposed to calculate local minima
of a given functions, f.i. sin(x). I have done this by approximating the function derivative by finite differences and then searching for those abscissas where the derivative changes sign. I now want to collect the local minima. I have marked local minima with "1"
and the other points with "0". I have done an inclusive_scan (for calculating places in new tab).
My problem is now gathering the local minima with gather_if (condition stencil, map minima),
but the code does not compile and I do not know why.
Could someone explain why?
/**
* Copyright 1993-2012 NVIDIA Corporation. All rights reserved.
*
* Please refer to the NVIDIA end user license agreement (EULA) associated
* with this source code for terms and conditions that govern your use of
* this software. Any use, reproduction, disclosure, or distribution of
* this software and related documentation outside the terms of the EULA
* is strictly prohibited.
*/
#include <stdio.h>
#include <thrust/device_vector.h>
#include <thrust/gather.h>
#include <thrust/host_vector.h>
#include <thrust/reduce.h>
#include <thrust/copy.h>
#include <thrust/remove.h>
#include <thrust/functional.h>
#include <thrust/iterator/constant_iterator.h>
#include <thrust/iterator/counting_iterator.h>
#include <thrust/scan.h>
#include <sys/time.h>
__host__ __device__ unsigned int bitreverse(unsigned int number) {
number = ((0xf0f0f0f0 & number) >> 4) | ((0x0f0f0f0f & number) << 4);
number = ((0xcccccccc & number) >> 2) | ((0x33333333 & number) << 2);
number = ((0xaaaaaaaa & number) >> 1) | ((0x55555555 & number) << 1);
return number;
}
struct is_even
{
__host__ __device__
bool operator()(const int x) {
return (x % 2) == 0;
}
};
struct select_mine
{
__host__ __device__
float operator()(const float x) {
return (x < 0) ? 1.0f : 0.0f;
}
};
struct bitreverse_functor
{
__host__ __device__ unsigned int operator()(const unsigned int &x) {
return bitreverse(x);
}
};
struct sign
{
__host__ __device__ float operator()(const float x) {
if (x > 0.0f)
return 1.0f;
if (x < 0.0f)
return -1.0f;
return 0.0f;
}
};
struct sine: public thrust::unary_function<float, float>
{
__host__ __device__
float operator()(float x) {
return sinf(x);
}
};
struct absolute: public thrust::unary_function<float, float>
{
__host__ __device__
float operator()(float x) {
if (x < 0.0f)
x = -x;
return x;
}
};
struct lokalne_minimum : public thrust::binary_function<float,float,float>
{
__host__ __device__
float operator()(float x, float y)
{
if (x > 0 && y < 0)
return 1.0f;
return 0.0f;
}
};
struct conv : public thrust::unary_function<float,int>
{
__host__ __device__
int operator()(float x)
{
return (int)(x);
}
};
using namespace thrust;
void help(char *arg) {
fprintf(stderr,
"Nieprawidlowe uzycie: %s [x1] [x2] [n]\nx1 - zakres od\nx2 - zakres do\nn - liczba podzialow zakresu\n",
arg);
}
int main(int argc, char **argv) {
if (argc != 4) {
help(argv[0]);
return 1;
}
int n = atoi(argv[3]);
float x1 = (float) atof(argv[1]);
float x2 = (float) atof(argv[2]);
if (n < 0 || x2 < x1) {
help(argv[0]);
return 1;
}
float step = (x2 - x1) / n;
fprintf(stderr, "Step: %f\n", step);
thrust::device_vector<float> oxdata(n);
thrust::device_vector<float> oydata(n);
thrust::device_vector<float> diff(n);
thrust::host_vector<float> ixdata(n);
// FIXME change it
for (int i = 0; i < n; i++)
ixdata[i] = x1 + i * step;
thrust::copy(ixdata.begin(), ixdata.end(), oxdata.begin());
thrust::transform(oxdata.begin(),oxdata.end(),oydata.begin(),sine());
thrust::transform(oydata.begin() + 1, oydata.end(), oydata.begin(),
diff.begin()+1, thrust::minus<float>());
thrust::copy(diff.begin(), diff.end(), ixdata.begin());
for (int i = 0; i < n; i++)
printf ("%f, ", ixdata[i]);
printf ("\n");
thrust::transform(diff.begin()+1,diff.end(), diff.begin(),diff.begin(),lokalne_minimum());
for (int i = 0; i < n; i++)
printf ("%f, ", ixdata[i]);
printf ("\n");
thrust::copy(oydata.begin(), oydata.end(), ixdata.begin());
for (int i = 0; i < n; i++)
printf ("%f, ", ixdata[i]);
printf ("\n");
thrust::copy(diff.begin(), diff.end(), ixdata.begin());
for (int i = 0; i < n; i++)
printf ("%f, ", ixdata[i]);
printf ("\n");
//thrust::inclusive_scan(diff.begin(),diff.end(),diff.begin());
thrust::copy(diff.begin(), diff.end(), ixdata.begin());
for (int i = 0; i < n; i++)
printf ("%f, ", ixdata[i]);
printf ("\n");
thrust::device_vector<int> minima(n);
thrust::device_vector<int> stencil(n);
thrust::host_vector<int> hminima(n);
thrust::transform(diff.begin(),diff.end(),minima.begin(),conv());
thrust::copy(minima.begin(),minima.end(),hminima.begin());
thrust::copy(minima.begin(),minima.end(),stencil.begin());
for (int i = 0; i < n; i++)
printf ("%d, ", hminima[i]);
printf ("\n");
thrust::inclusive_scan(minima.begin(), minima.end(),minima.begin());
thrust::copy(minima.begin(),minima.end(),hminima.begin());
for (int i = 0; i < n; i++)
printf ("%d, ", hminima[i]);
printf ("\n");
//thrust::gather_if(minima.begin(),minima.end(),stencil.begin(),ixdata.begin(),ixdata.begin());
return 0;
}
This is a very late answer provided to remove this question from the unanswered list. I'm profiting of Robert Crovella's comment and showing below a full working code to find local minima of a sampled function with CUDA Thrust. The rationale of the code is as follows
The function derivative is approximated by central differences as an application of thrust::transform;
The function sampling points are marked by "1" as an application of thrust::transform by seeking the sign changes of the derivative via the predicate local_minima_check();
The number of local minima is counted as an application of thrust::count;
The local minima are isolated as an application of thrust::copy_if.
#include <stdio.h>
#include <thrust/count.h>
#include <thrust/device_vector.h>
#include <thrust/host_vector.h>
#include <thrust/copy.h>
#include <thrust/iterator/constant_iterator.h>
#include <thrust/iterator/counting_iterator.h>
/**************/
/* COS STRUCT */
/**************/
struct cosine: public thrust::unary_function<float, float>
{
__host__ __device__ float operator()(float h_x) { return cosf(h_x); }
};
/******************************************/
/* SECOND ORDER CENTRAL DIFFERENCE STRUCT */
/******************************************/
struct second_order_central_difference
{
__host__ __device__ float operator()(thrust::tuple<float,float,float> t)
{
float f_1, f0, f1;
thrust::tie(f_1,f0,f1) = t;
return f_1 - 2.0f * f0 + f1;
}
};
/******************************/
/* LOCAL MINIMUM CHECK STRUCT */
/******************************/
struct local_minimum_check:public thrust::binary_function<float,float,float>
{
__host__ __device__ float operator()(float x, float y)
{
if (x < 0 && y > 0) return 1.0f;
return 0.0f;
}
};
/****************************************/
/* LOCAL MINIMUM PREDICATE CHECK STRUCT */
/****************************************/
struct pred
{
__host__ __device__ bool operator()(const int d_x) { return (d_x == 1.f); }
};
void main() {
// --- Input parameters
int n = 100; // Number of sampling points
float x1 = 3.14f / 2.f; // (x1,x2) is the sampling interval
float x2 = 1.5f * 3.14f;
// --- Calculating the sampling points x
thrust::host_vector<float> h_x(n);
float step = (x2 - x1) / n;
for (int i = 0; i < n; i++) h_x[i] = x1 + (float)i * step;
thrust::device_vector<float> d_x = h_x;
// --- Evaluating the function values y = f(x)
thrust::device_vector<float> d_y(n);
thrust::transform(d_x.begin(),d_x.end(),d_y.begin(),cosine());
// --- Computing first order central finite differences
// In Matlab's notation, it calculates d_diff1(1:n-2) = d_y(3:n,:) - d_y(1:n-2,:);
thrust::device_vector<float> d_diff1(n-2);
thrust::transform(d_y.begin() + 2, d_y.end(), d_y.begin(), d_diff1.begin(), thrust::minus<float>());
// --- Computing second order central finite differences
// In Matlab's notation, it calculates d_diff2(1:n-2) = d_y(3:n) - 2. * d_y(2:n-1) + d_y(1:n-2);
thrust::device_vector<float> d_diff2(n-2);
thrust::transform(thrust::make_zip_iterator(
thrust::make_tuple(d_y.begin(), d_y.begin() + 1, d_y.begin() + 2)),
thrust::make_zip_iterator(
thrust::make_tuple(d_y.end() - 2, d_y.end() - 1, d_y.end())),
d_diff2.begin(),second_order_central_difference());
// --- Setting a flag for all those points for which the derivative changes sign from negative to positive
thrust::device_vector<float> d_fo_derivative(n-3);
thrust::transform(d_diff1.begin(), d_diff1.end() - 1, d_diff1.begin() + 1, d_fo_derivative.begin(), local_minimum_check());
// --- Counting the number of local minima and selecting the local minima coordinates
int min_number = thrust::count(d_fo_derivative.begin(), d_fo_derivative.end(), 1.f);
thrust::device_vector<float> d_x_minima(min_number);
thrust::copy_if(d_x.begin() + 1, d_x.end() - 1, d_fo_derivative.begin(), d_x_minima.begin(), pred());
for (int i = 0; i < d_x_minima.size(); i++) {
printf ("Local minimum # %i = %f\n ", i+1, (float)d_x_minima[i]);
}
getchar();
}