How does the DBInputFormat work in case of MYSQL? - mysql

When running a map reduce program on a DB like MYSQL, I just wondered whether the query is fired on the database first and then the resultset is obtained and then the splits are created to be operated by the individual mappers each taking a split.

I believe it first retrieves all the records and then create the logical splits as you may see from the setInput()'s signature:
public static void setInput(JobConf job,
Class<? extends DBWritable> inputClass,
String inputQuery,
String inputCountQuery)
It gets the inputCountQuery which makes hadoop decide on the number of mappers and how many records per mapper to process.
Also read the Limitations of the InputFormat section here.

Related

Google Dataflow (Apache beam) JdbcIO bulk insert into mysql database

I'm using Dataflow SDK 2.X Java API ( Apache Beam SDK) to write data into mysql. I've created pipelines based on Apache Beam SDK documentation to write data into mysql using dataflow. It inserts single row at a time where as I need to implement bulk insert. I do not find any option in official documentation to enable bulk inset mode.
Wondering, if it's possible to set bulk insert mode in dataflow pipeline? If yes, please let me know what I need to change in below code.
.apply(JdbcIO.<KV<Integer, String>>write()
.withDataSourceConfiguration(JdbcIO.DataSourceConfiguration.create(
"com.mysql.jdbc.Driver", "jdbc:mysql://hostname:3306/mydb")
.withUsername("username")
.withPassword("password"))
.withStatement("insert into Person values(?, ?)")
.withPreparedStatementSetter(new JdbcIO.PreparedStatementSetter<KV<Integer, String>>() {
public void setParameters(KV<Integer, String> element, PreparedStatement query) {
query.setInt(1, kv.getKey());
query.setString(2, kv.getValue());
}
})
EDIT 2018-01-27:
It turns out that this issue is related to the DirectRunner. If you run the same pipeline using the DataflowRunner, you should get batches that are actually up to 1,000 records. The DirectRunner always creates bundles of size 1 after a grouping operation.
Original answer:
I've run into the same problem when writing to cloud databases using Apache Beam's JdbcIO. The problem is that while JdbcIO does support writing up to 1,000 records in one batch, in I have never actually seen it write more than 1 row at a time (I have to admit: This was always using the DirectRunner in a development environment).
I have therefore added a feature to JdbcIO where you can control the size of the batches yourself by grouping your data together and writing each group as one batch. Below is an example of how to use this feature based on the original WordCount example of Apache Beam.
p.apply("ReadLines", TextIO.read().from(options.getInputFile()))
// Count words in input file(s)
.apply(new CountWords())
// Format as text
.apply(MapElements.via(new FormatAsTextFn()))
// Make key-value pairs with the first letter as the key
.apply(ParDo.of(new FirstLetterAsKey()))
// Group the words by first letter
.apply(GroupByKey.<String, String> create())
// Get a PCollection of only the values, discarding the keys
.apply(ParDo.of(new GetValues()))
// Write the words to the database
.apply(JdbcIO.<String> writeIterable()
.withDataSourceConfiguration(
JdbcIO.DataSourceConfiguration.create(options.getJdbcDriver(), options.getURL()))
.withStatement(INSERT_OR_UPDATE_SQL)
.withPreparedStatementSetter(new WordCountPreparedStatementSetter()));
The difference with the normal write-method of JdbcIO is the new method writeIterable() that takes a PCollection<Iterable<RowT>> as input instead of PCollection<RowT>. Each Iterable is written as one batch to the database.
The version of JdbcIO with this addition can be found here: https://github.com/olavloite/beam/blob/JdbcIOIterableWrite/sdks/java/io/jdbc/src/main/java/org/apache/beam/sdk/io/jdbc/JdbcIO.java
The entire example project containing the example above can be found here: https://github.com/olavloite/spanner-beam-example
(There is also a pull request pending on Apache Beam to include this in the project)

Do Couchbase reactive clients guarantee order of rows in view query result

I use Couchbase Java SDK 2.2.6 with Couchbase server 4.1.
I query my view with the following code
public <T> List<T> findDocuments(ViewQuery query, String bucketAlias, Class<T> clazz) {
// We specifically set reduce false and include docs to retrieve docs
query.reduce(false).includeDocs();
log.debug("Find all documents, query = {}", decode(query));
return getBucket(bucketAlias)
.query(query)
.allRows()
.stream()
.map(row -> fromJsonDocument(row.document(), clazz))
.collect(Collectors.toList());
}
private static <A> A fromJsonDocument(JsonDocument saved, Class<A> clazz) {
log.debug("Retrieved json document -> {}", saved);
A object = fromJson(saved.content(), clazz);
return object;
}
In the logs from the fromJsonDocument method I see that rows are not always sorted by the row key. Usually they are, but sometimes they are not.
If I just run this query in browser couchbase GUI, I always receive results in expected order. Is it a bug or expected that view query results are not sorted when queried with async client?
What is the behaviour in different clients, not java?
This is due to the asynchronous nature of your call in the Java client + the fact that you used includeDocs.
What includeDocs will do is that it will weave in a call to get for each document id received from the view. So when you look at the asynchronous sequence of AsyncViewRow with includeDocs, you're actually looking at a composition of a row returned by the view and an asynchronous retrieval of the whole document.
If a document retrieval has a little bit of latency compared to the one for the previous row, it could reorder the (row+doc) emission.
But good news everyone! There is a includeDocsOrdered alternative in the ViewQuery that takes exactly the same parameters as includeDocs but will ensure that AsyncViewRow come in the same order returned by the view.
This is done by eagerly triggering the get retrievals but then buffering those that arrive out of order, so as to maintain the original order without sacrificing too much performance.
That is quite specific to the Java client, with its usage of RxJava. I'm not even sure other clients have the notion of includeDocs...

How can I defind that object set was already created?

I'm working with entity framework and mysql. We created a class
public class DataBaseContext : ObjectContext, IDbContext
There is a method
public IEnumerable<T> Find<T>(Func<T, bool> whereClause) where T : class
{
return CreateObjectSet<T>().Where(whereClause);
}
Is there a way not to create ObjectSet every time when I call the method? Can I check that it is already exists?
Whooooo. That is so bad method. You are passing Func<>, not Expression<Func<>>. It means that every time you execute your method EF will pull all records from database table mapped to T and execute your filtering in memory of your application - creating object set is the last thing you should be afraid of.
Anyway creating object set should not be expensive operation and if you don't want to create it every time you need to implement some "local caching" inside your object context instance.

Should I return IEnumerable<T> or IQueryable<T> from my DAL?

I know this could be opinion, but I'm looking for best practices.
As I understand, IQueryable<T> implements IEnumerable<T>, so in my DAL, I currently have method signatures like the following:
IEnumerable<Product> GetProducts();
IEnumerable<Product> GetProductsByCategory(int cateogoryId);
Product GetProduct(int productId);
Should I be using IQueryable<T> here?
What are the pros and cons of either approach?
Note that I am planning on using the Repository pattern so I will have a class like so:
public class ProductRepository {
DBDataContext db = new DBDataContext(<!-- connection string -->);
public IEnumerable<Product> GetProductsNew(int daysOld) {
return db.GetProducts()
.Where(p => p.AddedDateTime > DateTime.Now.AddDays(-daysOld ));
}
}
Should I change my IEnumerable<T> to IQueryable<T>? What advantages/disadvantages are there to one or the other?
It depends on what behavior you want.
Returning an IList<T> tells the caller that they've received all of the data they've requested
Returning an IEnumerable<T> tells the caller that they'll need to iterate over the result and it might be lazily loaded.
Returning an IQueryable<T> tells the caller that the result is backed by a Linq provider that can handle certain classes of queries, putting the burden on the caller to form a performant query.
While the latter gives the caller a lot of flexibility (assuming your repository fully supports it), it's the hardest to test and, arguably, the least deterministic.
One more thing to think about: where is your paging/sorting support? If you are providing paging support within your repository, returning IEnumerable<T> is fine. If you are paging outside of your repository (like in the controller or service layer) then you really want to use IQueryable<T> because you don't want to load the entire dataset into memory before it's paged.
HUUUUGGGE difference. I see this quite a bit.
You build up an IQueryable before it hits the database. The IQueryable only hits the DB once an eager function is called (.ToList() for example) or you actually try to pull values out. IQueryable = lazy.
An IEnumerable will execute your lambda against the DB right away. IEnumerable = eager.
As for which to use with the Repository pattern, I believe it's eager. I usually see ILists being passed but someone else will need to iron that out for you. EDIT - You usually see IEnumerable instead of IQueryable because you don't want layers past your Repository A) determining when the database hit will happen or B) Adding any logic to the joins outside the Repository
There is a very good LINQ video that I enjoy a lot- it hits more than just IEnumerable v IQueryable, but it really has some fantastic insight.
http://channel9.msdn.com/posts/matthijs/LINQ-Tips-Tricks-and-Optimizations-by-Scott-Allen/
You can use IQueryable and accept that someone could create a scenario where a SELECT N+1 could happen. This is a disadvantage, along with the fact that you may end up with code that is specific to your repository implementation in the layers above your repository. The advantage of this is that you are allowing the delegation common operations like paging and sorting to be expressed outside of your respository, therefore alleviating it of such concerns. It is also more flexible if you need to join the data with other database tables, as the query will remain an expression, so can be added to before its resolved into a query and hits the database.
The alternative is to lock down your repository so that it returns materialised lists by calling ToList(). With the example of paging and sorting, you will need to pass in skip, take and a sort expression as parameters to the methods of your repository, and use the parameters to return only a window of results. This means that the repository is taking on the responsibility of paging and sorting, and all of the projection of your data.
This is a bit of a judgement call, do you give your application the power of linq, and have less complexity in the repository, or do you control your data access. For me it depends on the number of queries associated with each entity, and combinations of entities, and where I want to manage that complexity.

Conditional logging with minimal cyclomatic complexity

After reading "What’s your/a good limit for cyclomatic complexity?", I realize many of my colleagues were quite annoyed with this new QA policy on our project: no more 10 cyclomatic complexity per function.
Meaning: no more than 10 'if', 'else', 'try', 'catch' and other code workflow branching statement. Right. As I explained in 'Do you test private method?', such a policy has many good side-effects.
But: At the beginning of our (200 people - 7 years long) project, we were happily logging (and no, we can not easily delegate that to some kind of 'Aspect-oriented programming' approach for logs).
myLogger.info("A String");
myLogger.fine("A more complicated String");
...
And when the first versions of our System went live, we experienced huge memory problem not because of the logging (which was at one point turned off), but because of the log parameters (the strings), which are always calculated, then passed to the 'info()' or 'fine()' functions, only to discover that the level of logging was 'OFF', and that no logging were taking place!
So QA came back and urged our programmers to do conditional logging. Always.
if(myLogger.isLoggable(Level.INFO) { myLogger.info("A String");
if(myLogger.isLoggable(Level.FINE) { myLogger.fine("A more complicated String");
...
But now, with that 'can-not-be-moved' 10 cyclomatic complexity level per function limit, they argue that the various logs they put in their function is felt as a burden, because each "if(isLoggable())" is counted as +1 cyclomatic complexity!
So if a function has 8 'if', 'else' and so on, in one tightly-coupled not-easily-shareable algorithm, and 3 critical log actions... they breach the limit even though the conditional logs may not be really part of said complexity of that function...
How would you address this situation ?
I have seen a couple of interesting coding evolution (due to that 'conflict') in my project, but I just want to get your thoughts first.
Thank you for all the answers.
I must insist that the problem is not 'formatting' related, but 'argument evaluation' related (evaluation that can be very costly to do, just before calling a method which will do nothing)
So when a wrote above "A String", I actually meant aFunction(), with aFunction() returning a String, and being a call to a complicated method collecting and computing all kind of log data to be displayed by the logger... or not (hence the issue, and the obligation to use conditional logging, hence the actual issue of artificial increase of 'cyclomatic complexity'...)
I now get the 'variadic function' point advanced by some of you (thank you John).
Note: a quick test in java6 shows that my varargs function does evaluate its arguments before being called, so it can not be applied for function call, but for 'Log retriever object' (or 'function wrapper'), on which the toString() will only be called if needed. Got it.
I have now posted my experience on this topic.
I will leave it there until next Tuesday for voting, then I will select one of your answers.
Again, thank you for all the suggestions :)
With current logging frameworks, the question is moot
Current logging frameworks like slf4j or log4j 2 don't require guard statements in most cases. They use a parameterized log statement so that an event can be logged unconditionally, but message formatting only occurs if the event is enabled. Message construction is performed as needed by the logger, rather than pre-emptively by the application.
If you have to use an antique logging library, you can read on to get more background and a way to retrofit the old library with parameterized messages.
Are guard statements really adding complexity?
Consider excluding logging guards statements from the cyclomatic complexity calculation.
It could be argued that, due to their predictable form, conditional logging checks really don't contribute to the complexity of the code.
Inflexible metrics can make an otherwise good programmer turn bad. Be careful!
Assuming that your tools for calculating complexity can't be tailored to that degree, the following approach may offer a work-around.
The need for conditional logging
I assume that your guard statements were introduced because you had code like this:
private static final Logger log = Logger.getLogger(MyClass.class);
Connection connect(Widget w, Dongle d, Dongle alt)
throws ConnectionException
{
log.debug("Attempting connection of dongle " + d + " to widget " + w);
Connection c;
try {
c = w.connect(d);
} catch(ConnectionException ex) {
log.warn("Connection failed; attempting alternate dongle " + d, ex);
c = w.connect(alt);
}
log.debug("Connection succeeded: " + c);
return c;
}
In Java, each of the log statements creates a new StringBuilder, and invokes the toString() method on each object concatenated to the string. These toString() methods, in turn, are likely to create StringBuilder instances of their own, and invoke the toString() methods of their members, and so on, across a potentially large object graph. (Before Java 5, it was even more expensive, since StringBuffer was used, and all of its operations are synchronized.)
This can be relatively costly, especially if the log statement is in some heavily-executed code path. And, written as above, that expensive message formatting occurs even if the logger is bound to discard the result because the log level is too high.
This leads to the introduction of guard statements of the form:
if (log.isDebugEnabled())
log.debug("Attempting connection of dongle " + d + " to widget " + w);
With this guard, the evaluation of arguments d and w and the string concatenation is performed only when necessary.
A solution for simple, efficient logging
However, if the logger (or a wrapper that you write around your chosen logging package) takes a formatter and arguments for the formatter, the message construction can be delayed until it is certain that it will be used, while eliminating the guard statements and their cyclomatic complexity.
public final class FormatLogger
{
private final Logger log;
public FormatLogger(Logger log)
{
this.log = log;
}
public void debug(String formatter, Object... args)
{
log(Level.DEBUG, formatter, args);
}
… &c. for info, warn; also add overloads to log an exception …
public void log(Level level, String formatter, Object... args)
{
if (log.isEnabled(level)) {
/*
* Only now is the message constructed, and each "arg"
* evaluated by having its toString() method invoked.
*/
log.log(level, String.format(formatter, args));
}
}
}
class MyClass
{
private static final FormatLogger log =
new FormatLogger(Logger.getLogger(MyClass.class));
Connection connect(Widget w, Dongle d, Dongle alt)
throws ConnectionException
{
log.debug("Attempting connection of dongle %s to widget %s.", d, w);
Connection c;
try {
c = w.connect(d);
} catch(ConnectionException ex) {
log.warn("Connection failed; attempting alternate dongle %s.", d);
c = w.connect(alt);
}
log.debug("Connection succeeded: %s", c);
return c;
}
}
Now, none of the cascading toString() calls with their buffer allocations will occur unless they are necessary! This effectively eliminates the performance hit that led to the guard statements. One small penalty, in Java, would be auto-boxing of any primitive type arguments you pass to the logger.
The code doing the logging is arguably even cleaner than ever, since untidy string concatenation is gone. It can be even cleaner if the format strings are externalized (using a ResourceBundle), which could also assist in maintenance or localization of the software.
Further enhancements
Also note that, in Java, a MessageFormat object could be used in place of a "format" String, which gives you additional capabilities such as a choice format to handle cardinal numbers more neatly. Another alternative would be to implement your own formatting capability that invokes some interface that you define for "evaluation", rather than the basic toString() method.
In Python you pass the formatted values as parameters to the logging function. String formatting is only applied if logging is enabled. There's still the overhead of a function call, but that's minuscule compared to formatting.
log.info ("a = %s, b = %s", a, b)
You can do something like this for any language with variadic arguments (C/C++, C#/Java, etc).
This isn't really intended for when the arguments are difficult to retrieve, but for when formatting them to strings is expensive. For example, if your code already has a list of numbers in it, you might want to log that list for debugging. Executing mylist.toString() will take a while to no benefit, as the result will be thrown away. So you pass mylist as a parameter to the logging function, and let it handle string formatting. That way, formatting will only be performed if needed.
Since the OP's question specifically mentions Java, here's how the above can be used:
I must insist that the problem is not 'formatting' related, but 'argument evaluation' related (evaluation that can be very costly to do, just before calling a method which will do nothing)
The trick is to have objects that will not perform expensive computations until absolutely needed. This is easy in languages like Smalltalk or Python that support lambdas and closures, but is still doable in Java with a bit of imagination.
Say you have a function get_everything(). It will retrieve every object from your database into a list. You don't want to call this if the result will be discarded, obviously. So instead of using a call to that function directly, you define an inner class called LazyGetEverything:
public class MainClass {
private class LazyGetEverything {
#Override
public String toString() {
return getEverything().toString();
}
}
private Object getEverything() {
/* returns what you want to .toString() in the inner class */
}
public void logEverything() {
log.info(new LazyGetEverything());
}
}
In this code, the call to getEverything() is wrapped so that it won't actually be executed until it's needed. The logging function will execute toString() on its parameters only if debugging is enabled. That way, your code will suffer only the overhead of a function call instead of the full getEverything() call.
In languages supporting lambda expressions or code blocks as parameters, one solution for this would be to give just that to the logging method. That one could evaluate the configuration and only if needed actually call/execute the provided lambda/code block.
Did not try it yet, though.
Theoretically this is possible. I would not like to use it in production due to performance issues i expect with that heavy use of lamdas/code blocks for logging.
But as always: if in doubt, test it and measure the impact on cpu load and memory.
Thank you for all your answers! You guys rock :)
Now my feedback is not as straight-forward as yours:
Yes, for one project (as in 'one program deployed and running on its own on a single production platform'), I suppose you can go all technical on me:
dedicated 'Log Retriever' objects, which can be pass to a Logger wrapper only calling toString() is necessary
used in conjunction with a logging variadic function (or a plain Object[] array!)
and there you have it, as explained by #John Millikin and #erickson.
However, this issue forced us to think a little about 'Why exactly we were logging in the first place ?'
Our project is actually 30 different projects (5 to 10 people each) deployed on various production platforms, with asynchronous communication needs and central bus architecture.
The simple logging described in the question was fine for each project at the beginning (5 years ago), but since then, we has to step up. Enter the KPI.
Instead of asking to a logger to log anything, we ask to an automatically created object (called KPI) to register an event. It is a simple call (myKPI.I_am_signaling_myself_to_you()), and does not need to be conditional (which solves the 'artificial increase of cyclomatic complexity' issue).
That KPI object knows who calls it and since he runs from the beginning of the application, he is able to retrieve lots of data we were previously computing on the spot when we were logging.
Plus that KPI object can be monitored independently and compute/publish on demand its information on a single and separate publication bus.
That way, each client can ask for the information he actually wants (like, 'has my process begun, and if yes, since when ?'), instead of looking for the correct log file and grepping for a cryptic String...
Indeed, the question 'Why exactly we were logging in the first place ?' made us realize we were not logging just for the programmer and his unit or integration tests, but for a much broader community including some of the final clients themselves. Our 'reporting' mechanism had to be centralized, asynchronous, 24/7.
The specific of that KPI mechanism is way out of the scope of this question. Suffice it to say its proper calibration is by far, hands down, the single most complicated non-functional issue we are facing. It still does bring the system on its knee from time to time! Properly calibrated however, it is a life-saver.
Again, thank you for all the suggestions. We will consider them for some parts of our system when simple logging is still in place.
But the other point of this question was to illustrate to you a specific problem in a much larger and more complicated context.
Hope you liked it. I might ask a question on KPI (which, believe or not, is not in any question on SOF so far!) later next week.
I will leave this answer up for voting until next Tuesday, then I will select an answer (not this one obviously ;) )
Maybe this is too simple, but what about using the "extract method" refactoring around the guard clause? Your example code of this:
public void Example()
{
if(myLogger.isLoggable(Level.INFO))
myLogger.info("A String");
if(myLogger.isLoggable(Level.FINE))
myLogger.fine("A more complicated String");
// +1 for each test and log message
}
Becomes this:
public void Example()
{
_LogInfo();
_LogFine();
// +0 for each test and log message
}
private void _LogInfo()
{
if(!myLogger.isLoggable(Level.INFO))
return;
// Do your complex argument calculations/evaluations only when needed.
}
private void _LogFine(){ /* Ditto ... */ }
In C or C++ I'd use the preprocessor instead of the if statements for the conditional logging.
Pass the log level to the logger and let it decide whether or not to write the log statement:
//if(myLogger.isLoggable(Level.INFO) {myLogger.info("A String");
myLogger.info(Level.INFO,"A String");
UPDATE: Ah, I see that you want to conditionally create the log string without a conditional statement. Presumably at runtime rather than compile time.
I'll just say that the way we've solved this is to put the formatting code in the logger class so that the formatting only takes place if the level passes. Very similar to a built-in sprintf. For example:
myLogger.info(Level.INFO,"A String %d",some_number);
That should meet your criteria.
Conditional logging is evil. It adds unnecessary clutter to your code.
You should always send in the objects you have to the logger:
Logger logger = ...
logger.log(Level.DEBUG,"The foo is {0} and the bar is {1}",new Object[]{foo, bar});
and then have a java.util.logging.Formatter that uses MessageFormat to flatten foo and bar into the string to be output. It will only be called if the logger and handler will log at that level.
For added pleasure you could have some kind of expression language to be able to get fine control over how to format the logged objects (toString may not always be useful).
(source: scala-lang.org)
Scala has a annontation #elidable() that allows you to remove methods with a compiler flag.
With the scala REPL:
C:>scala
Welcome to Scala version 2.8.0.final (Java HotSpot(TM) 64-Bit Server VM, Java 1.
6.0_16).
Type in expressions to have them evaluated.
Type :help for more information.
scala> import scala.annotation.elidable
import scala.annotation.elidable
scala> import scala.annotation.elidable._
import scala.annotation.elidable._
scala> #elidable(FINE) def logDebug(arg :String) = println(arg)
logDebug: (arg: String)Unit
scala> logDebug("testing")
scala>
With elide-beloset
C:>scala -Xelide-below 0
Welcome to Scala version 2.8.0.final (Java HotSpot(TM) 64-Bit Server VM, Java 1.
6.0_16).
Type in expressions to have them evaluated.
Type :help for more information.
scala> import scala.annotation.elidable
import scala.annotation.elidable
scala> import scala.annotation.elidable._
import scala.annotation.elidable._
scala> #elidable(FINE) def logDebug(arg :String) = println(arg)
logDebug: (arg: String)Unit
scala> logDebug("testing")
testing
scala>
See also Scala assert definition
As much as I hate macros in C/C++, at work we have #defines for the if part, which if false ignores (does not evaluate) the following expressions, but if true returns a stream into which stuff can be piped using the '<<' operator.
Like this:
LOGGER(LEVEL_INFO) << "A String";
I assume this would eliminate the extra 'complexity' that your tool sees, and also eliminates any calculating of the string, or any expressions to be logged if the level was not reached.
Here is an elegant solution using ternary expression
logger.info(logger.isInfoEnabled() ? "Log Statement goes here..." : null);
Consider a logging util function ...
void debugUtil(String s, Object… args) {
if (LOG.isDebugEnabled())
LOG.debug(s, args);
}
);
Then make the call with a "closure" round the expensive evaluation that you want to avoid.
debugUtil(“We got a %s”, new Object() {
#Override String toString() {
// only evaluated if the debug statement is executed
return expensiveCallToGetSomeValue().toString;
}
}
);