Matlab - Memory usage of a program - function

I'm currently implementing different signal processing algorithms in MATLAB, to later implement one of these in C++. To choose between these I'm going to perform a number of tests, one being a memory usage check. That is, I want to see how much memory the different algorithms use. Since the implementations are divided in to sub-function, I'm having problems collecting information about the actual memory usage.
This is what I've tried so far:
I've used the profiler to check memory usage of every function.
Problem: It only shows allocated memory usage. It doesn't show e.g. memory usage of variables in every function.
I've used whos at the end of every function to collect information about all the variables in the workspace of the functions. I then added these to a global variable.
Problem: The global variable keeps increasing even after the execution is done and it seems to never stop.
Now to my question. How can I, in a rather simple way, get information about the memory usage of my program, all functions included?
Best regards

I think your strategy to call whos at the end of every function (just before it returns) is a good one; but maybe you want to print the result to the screen rather than a global. If it "keeps increasing", then maybe you have a callback function that is being called unbeknownst to you, and that includes one of your whos calls. By printing to screen (and maybe including a disp('**** memory usage at the end of <function name> ***') just before it, you will find out why it "keeps going".
The alternative of using memory is somewhat helpful, but it gives information about "available" memory, as well as all the memory used by Matlab (not just the variables).
Of course any snapshot of memory usage doesn't necessarily grab the peak - it's possible that a statement like
x = sum(repmat(A, [1000 1]));
would require quite a large peak memory usage (as you replicate the matrix A 1000 times), yet a snapshot of memory (or running whos) right before or after won't tell you what just happened...

The best way to monitor memory usage is to use the profiler, with the memory option turned on:
profile -memory on
% run your code
profreport
The profiler returns memory usage and function calls statistics. Note that the memory option has an impact on your execution speed.

You can use memory function. Also, see memory management functions. Take a look to matlab memory usage.

Related

is it possible to force cudaMallocManaged allocate on a specific gpu id (e.g. via cudaSetDevice)

I want to use cudaMallocManaged, but is it possible force it allocate memory on a specific gpu id (e.g. via cudaSetDevice) on a multiple GPU system?
The reason is that I need allocate several arrays on the GPU, and I know which set of these arrays need to work together, so I want to manually make sure they are on the same GPU.
I searched CUDA documents, but didn't find any info related to this. Can someone help? Thanks!
No you can't do this directly via cudaMallocManaged. The idea behind managed memory is that the allocation migrates to whatever processor it is needed on.
If you want to manually make sure a managed allocation is "present" on (migrated to) a particular GPU, you would typically use cudaMemPrefetchAsync. Some examples are here and here. This is generally recommended for good performance if you know which GPU the data will be needed on, rather than using "on-demand" migration.
Some blogs on managed memory/unified memory usage are here and here, and some recorded training is available here, session 6.
From N.2.1.1. Explicit Allocation Using cudaMallocManaged() (emphasis mine):
By default, the devices of compute capability lower than 6.x allocate managed memory directly on the GPU. However, the devices of compute capability 6.x and greater do not allocate physical memory when calling cudaMallocManaged(): in this case physical memory is populated on first touch and may be resident on the CPU or the GPU.
So for any recent architecture it works like NUMA nodes on the CPU: Allocation says nothing about where the memory will be physically allocated. This instead is decided on "first touch", i.e. initialization. So as long as the first write to these locations comes from the GPU where you want it to be resident, you are fine.
Therefore I also don't think a feature request will find support. In this memory model allocation and placement just are completely independent operations.
In addition to explicit prefetching as Robert Crovella described it, you can give more information about which devices will access which memory locations in which way (reading/writing) by using cudaMemAdvise (See N.3.2. Data Usage Hints).
The idea behind all this is that you can start off by just using cudaMallocManaged and not caring about placement, etc. during fast prototyping. Later you profile your code and then optimize the parts that are slow using hints and prefetching to get (almost) the same performance as with explicit memory management and copies. The final code may not be that much easier to read / less complex than with explicit management (e.g. cudaMemcpy gets replaced with cudaMemPrefetchAsync), but the big difference is that you pay for certain mistakes with worse performance instead of a buggy application with e.g. corrupted data that might be overlooked.
In Multi-GPU applications this idea of not caring about placement at the start is probably not applicable, but NVIDIA seems to want cudaMallocManaged to be as uncomplicated as possible for this type of workflow.

Is Pinned memory non-atomic read/write safe on Xavier devices?

Double posted here, since I did not get a response I will post here as well.
Cuda Version 10.2 (can upgrade if needed)
Device: Jetson Xavier NX/AGX
I have been trying to find the answer to this across this forum, stack overflow, etc.
So far what I have seen is that there is no need for a atomicRead in cuda because:
“A properly aligned load of a 64-bit type cannot be “torn” or partially modified by an “intervening” write. I think this whole question is silly. All memory transactions are performed with respect to the L2 cache. The L2 cache serves up 32-byte cachelines only. There is no other transaction possible. A properly aligned 64-bit type will always fall into a single L2 cacheline, and the servicing of that cacheline cannot consist of some data prior to an extraneous write (that would have been modified by the extraneous write), and some data after the same extraneous write.” - Robert Crovella
However I have not found anything about cache flushing/loading for the iGPU on a tegra device. Is this also on “32-byte cachelines”?
My use case is to have one kernel writing to various parts of a chunk of memory (not atomically i.e. not using atomic* functions), but also have a second kernel only reading those same bytes in a non-tearing manner. I am okay with slightly stale data in my read (given the writing kernel flushes/updates the memory such that proceeding read kernels/processes get the update within a few milliseconds). The write kernel launches and completes after 4-8 ms or so.
At what point in the life cycle of the kernel does the iGPU update the DRAM with the cached values (given we are NOT using atomic writes)? Is it simply always at the end of the kernel execution, or at some other point?
Can/should pinned memory be used for this use case, or would unified be more appropriate such that I can take advantage of the cache safety within the iGPU?
According to the Memory Management section here we see that the iGPU access to pinned memory is Uncached. Does this mean we cannot trust the iGPU to still have safe access like Robert said above?
If using pinned, and a non-atomic write and read occur at the same time, what is the outcome? Is this undefined/segfault territory?
Additionally if using pinned and an atomic write and read occur at the same time, what is the outcome?
My goal is to remove the use of cpu side mutexing around the memory being used by my various kernels since this is causing a coupling/slow-down of two parts of my system.
Any advice is much appreciated. TIA.

What effects GCP Cloud Function memory usage

I recently redeployed a hanful of python GCP cloud functions and noticed they are taking about 50mbs more memory, triggering memory limit errors (I had to increase the memory allocation from 256mb to 512mb to get them to run). Unfortunately, that is 2x the cost.
I am trying to figure what caused the memory increase. The only thing I can think of is a python package recent upgrade. So, I specified all package versions in the requirements.txt, based off of my local virtual env, which has not changed lately. The memory usage increase remained.
Are there other factors that would lead to a memory utilization increase? Python runtime is still 3.7, the data that the functions processed has not changed. It also doesn't seem to be a change that GCP has made to cloud functions in general, because it has only happened with functions I have redeployed.
I can point out few possibilities of memory limit errors which are:
One of the reasons for out of memory in Cloud Functions is as discussed in the document.
Files that you write consume memory available to your function, and
sometimes persist between invocations. Failing to explicitly delete
these files may eventually lead to an out-of-memory error and a
subsequent cold start.
As mentioned in this StackOverflow Answer, that if you allocate anything in global memory space without deallocating it, the memory allocation will count this with the future invocations. To minimize memory usage, only allocate objects locally that will get cleaned up when the function is complete. Memory leaks are often difficult to detect.
Also, The cloud functions need to respond when they're done. if they don't respond then their allocated resources won't be free. Any exception in the cloud functions may cause a memory limit error.
You may also wanna check Auto-scaling and Concurrency which mentions another possibility.
Each instance of a function handles only one concurrent request at a
time. This means that while your code is processing one request, there
is no possibility of a second request being routed to the same
instance. Thus the original request can use the full amount of
resources (CPU and memory) that you requested.
Lastly, this may be caused by issues with logging. If you are logging objects, this may prevent these objects from being garbage collected. You may need to make the logging less verbose and use string representations to see if the memory usage gets better. Either way, you could try using the Profiler in order to get more information about what’s going on with your Cloud Function’s memory.

Transferring data to GPU while kernel is running to save time

GPU is really fast when it comes to paralleled computation and out performs CPU with being 15-30 ( some have reported even 50 ) times faster however,
GPU memory is very limited compared to CPU memory and communication between GPU memory and CPU is not as fast.
Lets say we have some data what won't fit into GPU ram but we still want to use
it's wonders to compute. What we can do is split that data into pieces and feed it into GPU one by one.
Sending large data to GPU can take time and one might think, what if we would split a data piece into two and feed the first half, run the kernel and then feed the other half while kernel is running.
By that logic we should save some time because data transfer should be going on while computation is, hopefully not interrupting it's job and when finished, it can just, well, continue it's job without needs for waiting a new data path.
I must say that I'm new to gpgpu, new to cuda but I have been experimenting around with simple cuda codes and have noticed that the function cudaMemcpy used to transfer data between CPU and GPU will block if kerner is running. It will wait until kernel is finished and then will do its job.
My question, is it possible to accomplish something like that described above and if so, could one show an example or provide some information source of how it could be done?
Thank you!
is it possible to accomplish something like that described above
Yes, it's possible. What you're describing is a pipelined algorithm, and CUDA has various asynchronous capabilities to enable it.
The asynchronous concurrent execution section of the programming guide covers the necessary elements in CUDA to make it work. To use your example, there exists a non-blocking version of cudaMemcpy, called cudaMemcpyAsync. You'll need to understand CUDA streams and how to use them.
I would also suggest this presentation which covers most of what is needed.
Finally, here is a worked example. That particular example happens to use CUDA stream callbacks, but those are not necessary for basic pipelining. They enable additional host-oriented processing to be asynchronously triggered at various points in the pipeline, but the basic chunking of data, and delivery of data while processing is occurring does not depend on stream callbacks. Note also the linked CUDA sample codes in that answer, which may be useful for study/learning.

Copying an integer from GPU to CPU

I need to copy a single boolean or an integer value from the device to the host after every kernel call (I am calling the same kernel in a for loop). That is, after every kernel call, I need to send an integer or a boolean back to the host. What is the best way to do this?
Should I write the value directly to RAM? Or should I use cudaMemcpy()? Or is there any other way to do this? Would copying just 1 integer after every kernel launch slow down my program?
Let me first answer your last question:
Would copying just 1 integer after every kernel launch slow down my program?
A bit - yes. Issuing the command, waiting for GPU to respond, etc, etc... The amount of data (1 int vs 100 ints) probably doesn't really matter in this case. However, you can still achieve speeds of thousands memory transfers per second. Most likely, your kernel will be slower than this single memory transfer (otherwise, it would be probably better to do the whole task on a CPU)
what is the best way to do this?
Well, I would suggest simply trying it yourself. As you said: you can either use mapped-pinned memory and have your kernel store the value directly to RAM, or use cudaMemcpy. The first one might be better if your kernels still have some work to do after sending the integer back. In that case, the latency of sending it to host could be hidden by the execution of the kernel.
If you use the first method, you will have to call cudaThreadsynchronize() to make sure the kernel ended its execution. Kernel calls are asynchronous.
You can use cudaMemcpyAsync which is also asynchronous, but GPU cannot have kernel running and having cudaMemcpyAsync executed in parallel, unless you use streams.
I never actually tried that, but if your program won't crash if the loop executes too many times, you might try to ignore synchronisation and let it iterate until the special value is seen in RAM. In that solution, the memory transfer might be completely hidden and you would pay an overhead only at the end. You will need however to somehow prevent the loop from iterating too many times, CUDA events may be helpful.
Why not use pinned memory? If your system supports it -- see CUDA C Programming Guide's section on pinned memory.
Copying data to and from the GPU will be much slower than accessing the data from the CPU. If you are not running a significant number of threads for this value then this will result in very slow performance, don't do it.
What you are describing sounds like a serial algorithm, your algorithm needs to be parallelised in order to make it worth doing using CUDA. If you can't rewrite your algorithm to become a single write of multiple data to the GPU, multiple threads, single write of multiple data back to CPU; then your algorithm should be done on CPU.
If you need the value computed in the previous kernel call to launch the next one then is serialized and your choice is to cudaMemcpy(dst,src, size =1, ...);
If all the kernel launch parameters do not depend on the previous launch then you can store all the result of each kernel invocation in GPU memory and then download all the results at once.