Simplest way to add XML doc to a WinRT project - windows-runtime

We have a group of developers moving from C++ to C# and WinRT. We used D'Oxygen as part of our C++ developer builds, and I'd like to continue to have document generation as part of the developer build in C#/WinRT.
It's easy to turn on XML Doc generation, and I believe that will provide warnings for malformed tags, but without actual HTML output, I think our developers will be missing valuable feedback.
Looks like NDoc is now defunct, and I took a quick look at Sandcastle, but found it rather complex. Ideally, I'm looking for something that doesn't unduly burden developers, or require them to remember extra steps as they edit, build, test, and commit. In other words, the best solution would be something that "just happens", like a post-build step, and doesn't add significantly to each developer's build time.
If anyone has had some experience doing this in C#/WinRT, I'd sure like some advice.
Thanks in advance!

Get Sandcastle Help File Builder.
Create a help project for your library in the Visual Studio solution.
Remove Build check mark from Debug solution configuration to build the documentation project only in Release configurations, since Debug is most often used during development. For release build testing or performance testing you can either create another solution configuration or simply switch the option back and forth.
Build the documentation once
Include the documentation file in the solution so it shows up in the Pending Changes window when the file changes.
Kindly ask your developers to build with the release configuration that updates the documentation before check-in or use any other policy to require updating the documentation.
I don't think it makes sense to build the documentation all the time, but it helps to make it easy to do so that when you actually need an updated version - you can build it really quickly.
You can also make sure to use FXCop or StyleCop (forgot which) and configure it to treat missing XML documentation warnings as errors - at least in release builds. Doing it for debug configurations might slow down development and make changes difficult since developers often want to try things out before committing to a final implementation worth documenting.
EDIT*
Sandcastle provides various output formats as shown in the project properties:

I would like to mention ForgeDoc (of which I'm the developer), it could be what you are looking for. It is designed to be fast and simple, and it generates proper MSDN-like HTML output. It also has a command-line interface so you can just call it from a post-build event command in Visual Studio.
I think you should give it a try, as I would really like to hear about your thoughts.

Related

NativeScript, Code Sharing and different environments

Note: this is not a dupe of this or this other question. Read on: this question is specific to the Code-Sharing template.
I am doing some pretty basic experiments with NativeScript, Angular and the code sharing templates (see: #nativescript/schematics).
Now I am doing some exploration / poc work on how different "build configuration" are supported by the framework. To be clear, I am searching for a simple -and hopefully official- way to have the application use a different version of a specific file (let's call it configuration.ts) based on the current platform (web/ios/android) and environment (development/production/staging?).
Doing the first part is obviously trivial - after all that is the prime purpose of the code sharing schematics. So, different versions of the same file are identified by different extensions. This page explain things pretty simply.
What I don't get as easily is if the framework/template supports any similar convention-based rule that can be used to switch between debug/release (or even better development/staging/production) versions of a file. Think for example of a config.ts file that contains different parameters based on the environment.
I have done some research in the topic, but I was unable to find a conclusive answer:
the old and now retired documentation for the appbuilder platform mentions a (.debug. and .release.) naming convention for files. I don't think this work anymore.
other sources mention passing parameters during the call to tns build / tns run and then fetching them via webpack env variable... See here. This may work, but seems oddly convoluted
third option that gets mentioned is to use hooks to customize the build (or use a plugin that should do the same)
lastly, for some odd reason, the #nativescript/schematics seems to generate a default project that contains two files called environment.ts and environment.prod.ts. I suspect those only work for the web version of the project (read: ng serve) - I wasn't able to get the mobile compiler to recognize files that end with debug.ts, prod.ts or release.ts
While it may be possible that what I am trying to do isn't just supported (yet?), the general confusion an dissenting opinions on the matter make me think I may be missing something.. somewhere.
In case this IS somehow supported, I also wonder how it may integrate with the NativeScript Sidekick app that is often suggested as a tool to ease the build/run process of NativeScript applications (there is no way to specify additional parameters for the tns commands that the Sidekick automates, the only options available are switching between debug/release mode), but this is probably better to be left for another question.
Environment files are not yet supported, passing environment variables from build command could be the viable solution for now.
But of course, you may write your own schematics if you like immediate support for environment files.
I did not look into sharing environment files between web and mobile yet - I do like Manoj's suggestion regarding modifying the schematics, but I'll have to cross that bridge when I get there I guess. I might have an answer to your second question regarding Sidekick. The latest version does support "Webpack" build option which seems to pass the --bundle parameter to tns. The caveat is that this option seems to be more sensitive to typescript errors, even relatively benign ones, so you have to be careful and make sure to fix them all prior to building. In my case I had to lock the version of #types/jasmine in package.json to "2.8.6" in order to avoid some incompatibility between that and the version of typescript that Sidekick's cloud solution is using. Another hint is to check "Clean Build" after npm dependency changes are made. Good luck!

How to take screenshot on test failure with junit 5

Can someone tell me please: how to take a screenshot when test method fails (jUnit 5). I have a base test class with BeforeEach and AfterEach methods. Any other classes with #Test methods extends base class.
Well, it is possible to write java code that takes screenshots, see here for example.
But I am very much wondering about the real problem you are trying to solve this way. I am not sure if you figured that yet, but the main intention of JUnit is to provide you a framework that runs your tests in various environments.
Of course it is nice that you can run JUnit within your IDE, and maybe you would find it helpful to get a screenshot. But: "normally" unit tests also run during nightly builds and such - in environments where "taking a screenshot" might not make any sense!
Beyond that: screenshorts are an extremely ineffective way of collecting information! When you have a fail, you should be locking for textual log files, html/xml reports, whatever. You want that failing tests generate information that can be easily digested.
So, the real answer here is: step back from what you are doing right now, and re-consider non-screenshot solutions to the problem you actually want to solve!
You don't need to take screen shots for JUnit test failes/passes, rather the recommended way is to generate various reports (Tests Passed/Failed Report, Code coverage Report, Code complexity Report etc..) automatically using the below tools/plugins.
You can use Cobertura maven plugin or Sonarqube code quality tool so that these will automatically generate the reports for you.
You can look here for Cobertura-maven-plugin and here for Sonarqube for more details.
You need to integrate these tools with your CI (Continuous Integration) environments and ensure that if the code is NOT passing certain quality (in terms of tests coverage, code complexity, etc..) then the project build (war/ear) should fail automatically.

Which Mercurial plugin should I use for IntelliJ

Which of the hg plug-ins has:
the least hassles
causes the least trouble
is prettiest
Can't claim to have tried a wide variety, but, what's wrong with hg4idea...?
In regards to the "don't use one" response - this is hardly adequate. What if I use my IDE to do a refactoring that renames a file? Without IDE/source control integration, the file rename is made without regards to source control, and then Mercurial (or whatever else) thinks a file went missing and a new one appeared. Then you have to go back to wrangle with the source control to sort things out.
JetBrains seems to have chosen hg4idea-luciad for its upcoming Python editor (PyCharm) and it is now more active than hg4idea
It looks like a leader is on the way :-)
To answer your question: The best IDE PlugIn is don't use on.
I think IDE integration is not necessary when working with a DVCS. When working in a centralized System, it is reasonable for the purpose of automatic check out on edit. However, I like keeping things separate. I don't want my IDE cluttered up. I don't see any benefits in using a plug-in compared to a standalone solution (that I keep running on a second monitor etc. ).
I am fine with TortoiseHG and the command line for more complicated tasks.

How to display credits

I want to give credit to all open source libraries we use in our (commercial) application. I thought of showing a HTML page in our about dialog. Our build process uses ant and the third party libs are committed in svn.
What do you think is the best way of generating the HTML-Page?
Hard code the HTML-Page?
Switch dependency-management to apache-ivy and write some ant task to generate the html
Use maven-ant-tasks and write some ant task to generate the HTML
Use maven only to handle the dependencies and the HTML once, download them and commit them. The rest is done by the unchanged ant-scripts
Switch to maven2 (Hey boss, I want to switch to maven, in 1 month the build maybe work again...)
...
What elements should the about-dialog show?
Library name
Version
License
Author
Homepage
Changes made with link to source archive
...
Is there some best-practise-advice? Some good examples (applications having a nice about-dialog showing the dependencies)?
There are two different things you need to consider.
First, you may need to identify the licenses of the third-party code. This is often down with a THIRDPARTYLICENSE file. Sun Microsystems does this a lot. Look in the install directory for OpenOffice.org, for example. There are examples of .txt and .html versions of such files around.
Secondly, you may want to identify your dependencies in the About box in a brief way (and also refer to the file of license information). I would make sure the versions appear in the About box. One thing people want to quickly check for is an indication of whether the copy of your code they have needs to be replaced or updated because one of your library dependencies has a recently-disclosed bug or security vulnerability.
So I guess the other thing you want to include in the about box is a way for people to find your support site and any notices of importance to users of the particular version (whether or not you have a provision in your app for checking on-line for updates).
Ant task seems to be the best way. We do a similar thing in one of our projects. All the open source libraries are present in a specified folder. An Ant task reads the manifest of these libraries, versions and so on and generates an HTML, copies into another specified folder from where it is picked up by the web container.
Generating the page with each build would be wasteful if the libraries are not going to change often. Library versions may change, but the actual libraries don't. Easier to just create a HTML page would be the easiest way out, but that's one more maintenance head ache. Generate it once and include it with the package. The script can always be run again in case some changes are being made to the libraries (updating versions, adding new libraries).

What do you think of developing for the command line first?

What are your opinions on developing for the command line first, then adding a GUI on after the fact by simply calling the command line methods?
eg.
W:\ todo AddTask "meeting with John, re: login peer review" "John's office" "2008-08-22" "14:00"
loads todo.exe and calls a function called AddTask that does some validation and throws the meeting in a database.
Eventually you add in a screen for this:
============================================================
Event: [meeting with John, re: login peer review]
Location: [John's office]
Date: [Fri. Aug. 22, 2008]
Time: [ 2:00 PM]
[Clear] [Submit]
============================================================
When you click submit, it calls the same AddTask function.
Is this considered:
a good way to code
just for the newbies
horrendous!.
Addendum:
I'm noticing a trend here for "shared library called by both the GUI and CLI executables." Is there some compelling reason why they would have to be separated, other than maybe the size of the binaries themselves?
Why not just call the same executable in different ways:
"todo /G" when you want the full-on graphical interface
"todo /I" for an interactive prompt within todo.exe (scripting, etc)
plain old "todo <function>" when you just want to do one thing and be done with it.
Addendum 2:
It was mentioned that "the way [I've] described things, you [would] need to spawn an executable every time the GUI needs to do something."
Again, this wasn't my intent. When I mentioned that the example GUI called "the same AddTask function," I didn't mean the GUI called the command line program each time. I agree that would be totally nasty. I had intended (see first addendum) that this all be held in a single executable, since it was a tiny example, but I don't think my phrasing necessarily precluded a shared library.
Also, I'd like to thank all of you for your input. This is something that keeps popping back in my mind and I appreciate the wisdom of your experience.
I would go with building a library with a command line application that links to it. Afterwards, you can create a GUI that links to the same library. Calling a command line from a GUI spawns external processes for each command and is more disruptive to the OS.
Also, with a library you can easily do unit tests for the functionality.
But even as long as your functional code is separate from your command line interpreter, then you can just re-use the source for a GUI without having the two kinds at once to perform an operation.
Put the shared functionality in a library, then write a command-line and a GUI front-end for it. That way your layer transition isn't tied to the command-line.
(Also, this way adds another security concern: shouldn't the GUI first have to make sure it's the RIGHT todo.exe that is being called?)
Joel wrote an article contrasting this ("unix-style") development to the GUI first ("Windows-style") method a few years back. He called it Biculturalism.
I think on Windows it will become normal (if it hasn't already) to wrap your logic into .NET assemblies, which you can then access from both a GUI and a PowerShell provider. That way you get the best of both worlds.
My technique for programming backend functionality first without having the need for an explicit UI (especially when the UI isn't my job yet, e.g., I'm desigining a web application that is still in the design phase) is to write unit tests.
That way I don't even need to write a console application to mock the output of my backend code -- it's all in the tests, and unlike your console app I don't have to throw the code for the tests away because they still are useful later.
I think it depends on what type of application you are developing. Designing for the command line puts you on the fast track to what Alan Cooper refers to as "Implementation Model" in The Inmates are Running the Asylum. The result is a user interface that is unintuitive and difficult to use.
37signals also advocates designing your user interface first in Getting Real. Remember, for all intents and purposes, in the majority of applications, the user interface is the program. The back end code is just there to support it.
It's probably better to start with a command line first to make sure you have the functionality correct. If your main users can't (or won't) use the command line then you can add a GUI on top of your work.
This will make your app better suited for scripting as well as limiting the amount of upfront Bikeshedding so you can get to the actual solution faster.
If you plan to keep your command-line version of your app then I don't see a problem with doing it this way - it's not time wasted. You'll still end up coding the main functionality of your app for the command-line and so you'll have a large chunk of the work done.
I don't see working this way as being a barrier to a nice UI - you've still got the time to add one and make is usable etc.
I guess this way of working would only really work if you intend for your finished app to have both command-line and GUI variants. It's easy enough to mock a UI and build your functionality into that and then beautify the UI later.
Agree with Stu: your base functionality should be in a library that is called from the command-line and GUI code. Calling the executable from the UI is unnecessary overhead at runtime.
#jcarrascal
I don't see why this has to make the GUI "bad?"
My thought would be that it would force you to think about what the "business" logic actually needs to accomplish, without worrying too much about things being pretty. Once you know what it should/can do, you can build your interface around that in whatever way makes the most sense.
Side note: Not to start a separate topic, but what is the preferred way to address answers to/comments on your questions? I considered both this, and editing the question itself.
I did exactly this on one tool I wrote, and it worked great. The end result is a scriptable tool that can also be used via a GUI.
I do agree with the sentiment that you should ensure the GUI is easy and intuitive to use, so it might be wise to even develop both at the same time... a little command line feature followed by a GUI wrapper to ensure you are doing things intuitively.
If you are true to implementing both equally, the result is an app that can be used in an automated manner, which I think is very powerful for power users.
I usually start with a class library and a separate, really crappy and basic GUI. As the Command Line involves parsing the Command Line, I feel like i'm adding a lot of unneccessary overhead.
As a Bonus, this gives an MVC-like approach, as all the "real" code is in a Class Library. Of course, at a later stage, Refactoring the library together with a real GUI into one EXE is also an option.
If you do your development right, then it should be relatively easy to switch to a GUI later on in the project. The problem is that it's kinda difficult to get it right.
Kinda depends on your goal for the program, but yeah i do this from time to time - it's quicker to code, easier to debug, and easier to write quick and dirty test cases for. And so long as i structure my code properly, i can go back and tack on a GUI later without too much work.
To those suggesting that this technique will result in horrible, unusable UIs: You're right. Writing a command-line utility is a terrible way to design a GUI. Take note, everyone out there thinking of writing a UI that isn't a CLUI - don't prototype it as a CLUI.
But, if you're writing new code that does not itself depend on a UI, then go for it.
A better approach might be to develop the logic as a lib with a well defined API and, at the dev stage, no interface (or a hard coded interface) then you can wright the CLI or GUI later
I would not do this for a couple of reasons.
Design:
A GUI and a CLI are two different interfaces used to access an underlying implementation. They are generally used for different purposes (GUI is for a live user, CLI is usually accessed by scripting) and can often have different requirements. Coupling the two together is not a wise choice and is bound to cause you trouble down the road.
Performance:
The way you've described things, you need to spawn an executable every time the GUI needs to d o something. This is just plain ugly.
The right way to do this is to put the implementation in a library that's called by both the CLI and the GUI.
John Gruber had a good post about the concept of adding a GUI to a program not designed for one: Ronco Spray-On Usability
Summary: It doesn't work. If usability isn't designed into an application from the beginning, adding it later is more work than anyone is willing to do.
#Maudite
The command-line app will check params up front and the GUI won't - but they'll still be checking the same params and inputting them into some generic worker functions.
Still the same goal. I don't see the command-line version affecting the quality of the GUI one.
Do a program that you expose as a web-service. then do the gui and command line to call the same web service. This approach also allows you to make a web-gui, and also to provide the functionality as SaaS to extranet partners, and/or to better secure the business logic.
This also allows your program to more easily participate in a SOA environement.
For the web-service, don't go overboard. do yaml or xml-rpc. Keep it simple.
In addition to what Stu said, having a shared library will allow you to use it from web applications as well. Or even from an IDE plugin.
There are several reasons why doing it this way is not a good idea. A lot of them have been mentioned, so I'll just stick with one specific point.
Command-line tools are usually not interactive at all, while GUI's are. This is a fundamental difference. This is for example painful for long-running tasks.
Your command-line tool will at best print out some kind of progress information - newlines, a textual progress bar, a bunch of output, ... Any kind of error it can only output to the console.
Now you want to slap a GUI on top of that, what do you do ? Parse the output of your long-running command line tool ? Scan for WARNING and ERROR in that output to throw up a dialog box ?
At best, most UI's built this way throw up a pulsating busy bar for as long as the command runs, then show you a success or failure dialog when the command exits. Sadly, this is how a lot of UNIX GUI programs are thrown together, making it a terrible user experience.
Most repliers here are correct in saying that you should probably abstract the actual functionality of your program into a library, then write a command-line interface and the GUI at the same time for it. All your business logic should be in your library, and either UI (yes, a command line is a UI) should only do whatever is necessary to interface between your business logic and your UI.
A command line is too poor a UI to make sure you develop your library good enough for GUI use later. You should start with both from the get-go, or start with the GUI programming. It's easy to add a command line interface to a library developed for a GUI, but it's a lot harder the other way around, precisely because of all the interactive features the GUI will need (reporting, progress, error dialogs, i18n, ...)
Command line tools generate less events then GUI apps and usually check all the params before starting. This will limit your gui because for a gui, it could make more sense to ask for the params as your program works or afterwards.
If you don't care about the GUI then don't worry about it. If the end result will be a gui, make the gui first, then do the command line version. Or you could work on both at the same time.
--Massive edit--
After spending some time on my current project, I feel as though I have come full circle from my previous answer. I think it is better to do the command line first and then wrap a gui on it. If you need to, I think you can make a great gui afterwards. By doing the command line first, you get all of the arguments down first so there is no surprises (until the requirements change) when you are doing the UI/UX.
That is exactly one of my most important realizations about coding and I wish more people would take such approach.
Just one minor clarification: The GUI should not be a wrapper around the command line. Instead one should be able to drive the core of the program from either a GUI or a command line. At least at the beginning and just basic operations.
When is this a great idea?
When you want to make sure that your domain implementation is independent of the GUI framework. You want to code around the framework not into the framework
When is this a bad idea?
When you are sure your framework will never die