flash: Math.pow calculates wrong answers for larger numbers - actionscript-3

why is this so?
when i try out:
Math.pow(2,58)=288230376151711740
while in fact, it is 288230376151711744
or
Math.pow(2,57)=144115188075855870
while it really equals 144115188075855872
it just throws that number without any warning.
i would understand if it stopped going above some number in case of maximum value reached. however, this seems to calculate the first n digits correctly and then go wrong at the very end of the digits only

You've ran out of Number type display precision. The trick is that with powers of 2 the actual value stored in the variable will be precise, while when you'll trace it the engine will truncate the displayed value by 16 digits, as it divides by 10 in process, and leftovers will eventually hit "machine zero" if compared to original value taken without exponential part. This is made to prevent white noise generated by imprecise floating-point division to be displayed. You can work around this issue if you'll advance to big integers/floating point numbers, that store more bits than a double precision number.

Related

Why is MS Access returning some results in scientific notation?

I have two fields, both have the size set to double in the table properties. When I subtract one field from the other some of the results are displayed as scientific notation when I click in the cell and others just show regular standard format to decimal places.
The data in both fields was updated with Round([Field01],2) and Round([Filed2],2) so the numbers in the fields should not be any longer than 2 decimal places.
Here's an example:
Field1 = 7.01
Field2 = 7.00
But when I subtract Field1 from Field2 the access display shows 0.01 but when I click on the result it displays, -9.99999999999979E-03. So of course, when I try to filter on all results that have 0.01 the query comes back empty because it thinks the result is -9.99999999999979E-03.
Even stranger is if Field1 = 1.02 and Field2 = 1.00, the result is 0.02 and when I click on the result the display still shows 0.02 and I can filter on all results that equal 0.02.
Why would MS Access treat numbers in the same query differently? Why is it displaying in Scientific Notation and not filtering?
Thanks for any support.
Take this simple code in Access (or even Excel) and run it!
Public Sub TestAdd()
Dim MyNumber As Single
Dim I As Integer
For I = 1 To 10
MyNumber = MyNumber + 1.01
Debug.Print MyNumber
Next I
End Sub
Here is the output of the above:
1.01
2.02
3.03
4.04
5.05
6.06
7.070001
8.080001
9.090001
10.1
You can see that after just 7 additions rounding is occurring!
Note how after JUST 7 simple little additions Access is now spitting out wrong numbers and has rounding errors!
More amazing? The above code runs the SAME in Excel!
Ok, I am sure I have your attention now!
If I recall, the FIRST day and first class in computing science? Computers don't store exact numbers when using floating point numbers.
So, then how is it possible that the WHOLE business community using Excel, or Access, or in fact your desktop calculator not come crashing down?
You mean Access cannot add up 7 simple little numbers without having errors?
How can I even do payroll then?
The basic concept and ALL you need to know here is that computers store real (floating) numbers only as approximate.
And integer values are stored exact.
so, there are several approaches here, and in fact if you writing ANY business software that needs to work with money values? And not suffer rounding errors?
Then you better off to choose what we called some kind of "scaled" integer. Behind the scenes, the computer does NOT use floating numbers, but uses a integer value, and the also has a "decimal" position.
In fact, in a lot of older business BASIC languages, or others? We often had to do the scaling on our own. (so, we would choose a large integer format). In fact, this "scaling" feature still exists in Access!!! (and you see it in the format options).
So, two choices here. If you don't want "tiny" rounding errors, then use "currency" data type. This may, or may not be sufficient for you, since it only allows a max of 4 decimal places. But in most cases, it should suffice. And if you need "more" decimal places, then you can multiply the values by 1000, and then divide by 1000 when done the calculations.
however, try changing the column type to currency and that should work. (this type of data is how your desktop calculator also works - and thus you not see funny rounding errors as a result (in most cases).
but, the FIRST rule of the day? First computer course?
Computers do not store exact numbers for floating point numbers - they are approximations, and are subject to rounding errors. Now, if you really are using double for the table, then I don't think these rounding errors should show up - since you have "so many decimal places" available.
But, I would try using currency data type - it is a scaled integer, or so called packed decimal.
You can ALSO choose to use a packed decimal in Access, and it supports out to 28 digits, and you can set the "scale" (the decimal point location). However, since you can't declare a decimal type in VBA, then I would suggest that in the table (and in VBA code, use currency data types).
If you need more then 4 decimal points, then consider scaling the currency in your code, or perhaps at that point, you consider using a packed decimal type in the table, but values in VBA will have to use the "variant" type, and they will correctly take on the data column setting if used in code and assigned a value from the table(s) in question.
Needless to say, the first day you start dealing with computers, and that first day ANYTHING beyond being a "end user"? Well, this is your first lesson of the day!
"The data in both fields was updated with Round([Field01],2) and Round([Filed2],2) so the numbers in the fields should not be any longer than 2 decimal places." instead of rounding up(which i think is the reason for the scientific notation) you can use number field as data type , then under field size choose double, then under decimal places choose 2.

Only work with upto 8 decimal places in Octave

When the eigenvalues of matrices with integer entries (even 3x3 matrices) are calculated in Octave, sometimes it reports a floating point value like 9.1940e-17, whereas it should really be zero.
For example, when I am plotting some numbers modulo 1, a value -2e-17 is becoming 1 in the plot, but it should actually be 0.
Although I can approximate the answers upto some decimal places later, it will still internally calculate upto 17 decimal places while calculating the eigenvalue and waste calculation time. Is it possible to work with only upto something like 8 decimal places for all quantities from the beginning?
If that is not possible, is it possible to tell octave (once and for all in a script) to approximate all quantities upto 8 decimal places while reporting?
To complement Daniel's answer, the additional precision doesn't cost any additional time. The computer works with the number as a whole, not with individual digits.
You might want to use
A(abs(A)<1e-8) = 0;
after computing your final result A to set the near-zero values to zero.
What you are asking for won't help, it makes it worse. Setting the precision to 8 decimal points (or significant digits) won't make numerical errors disappear, it will increase the numerical errors to that magnitude. Take a simple calculation:
x=1/3
y=x*6
Now you would end up with 1.99999998, a much larger error.
There are libraries doing the opposite, increasing the precision. In Octave that's called vpa.

What will be the constraints of the values that can be entered in the colum that was declared as FLOAT?

I am building a web app, and in some section in it a teacher inserts the expected results of a scientific experiment. These results must be very accurate, they might come like this 0.4933546522886728. And after searching for a while, FLOAT seems to be the right datatype to store these answers in the database. As known FLOAT columns in mysql can be declared like this FLOAT(n, d), where n is the total number of digits in the number and d is the number of digits after the decimal point. So, I do not know the number of digits the teacher will enter. So, what would happen if I declared it like this FLOAT. The thing that made me think of this is this quote from the mysql documentation.
For maximum portability, code requiring storage of approximate numeric data values should use FLOAT or DOUBLE PRECISION with no specification of precision or number of digits.
And what would be the maximum and minimum of the values to be entered in this FLOAT column.
I also thought of using VARCHAR and store the exact number that the teacher enters and then according to the nature of the number that in the database number that the student enters to be compared with the right answer will be manipulated to match the other number.
For example if the teacher enters 1.23451 and the student enters 1.4235123, my code will make it 1.42351.
The (n,d) on the end of FLOAT and DECIMAL does not make sense. All it does is cause an extra rounding.
FLOAT provides about 7 significant decimal digits of precision and a modestly big exponent range. 0.4933546522886728 will be stored as about 0.4933546xxxxx, with the extra digits being noise.
That number can be stored in a DOUBLE, with a rounding error after 53 bits (about 16 digits) of precision.
There are very few scientific measurements that need more digits than available in the precision of FLOAT.
You can INSERT ... VALUES ( 0.4933546522886728 ) and put that into a FLOAT. It will get rounded to 24 significant bits. Ditto for 4933546522886.728 . Or 0.0000000004933546522886728 . Or 4.933546522886728e20 or 4.933546522886728e-20 .
Take whatever numbers you are given and simply put them in the INSERT without worrying about precision or scaling.
VARCHAR is the wrong way to go for numbers and dates, unless you want to store the raw input before it has been converted into the internal format.

Best practice for storing weights in a SQL database?

An application I'm working on needs to store weights of the format X pounds, y.y ounces. The database is MySQL, but I imagine this is DB agnostic.
I can think of three ways to do this:
Convert the weight to decimal pounds and store in a single field. (5 lbs 6.2 oz = 5.33671875 lbs)
Convert the weight to decimal ounces and store in a single field. (5 lbs 6.2 oz = 86.2 oz)
Store the pounds portion as an integer and the ounces portion as a decimal, in two fields.
I'm thinking that #1 is not such a good idea, since decimal pounds will produce numbers of arbitrary precision, which would need to be stored as a float, which could lead to inaccuracies which are inherent in floating point numbers.
Is there a compelling reason to choose #2 over #3 or vise-versa?
TL;DR
Choose either option #1 or option #2—there's no difference between them. Don't use option #3, because it's awkward to work with.
You claim that there are inherent inaccuracies in floating point numbers. I think that this deserves to be explored a little first.
When deciding upon a numeral system for representing a number (whether on a piece of paper, in a computer circuit, or elsewhere), there are two separate issues to consider:
its basis; and
its format.
Pick a base, any base…
Limited by finite space, one cannot represent an arbitrary member of an infinite set. For example: no matter how much paper you buy or how small your handwriting, it'd always be possible to find an integer that won't fit in the given space (you could just keep appending extra digits until the paper runs out). So, with integers, we usually restrict our finite space to representing only those that fall within some particular interval—e.g. if we have space for the positive/negative sign and three digits, we might restrict ourselves to the interval [-999,+999].
Every non-empty interval contains an infinite set of real numbers. In other words, no matter what interval one takes over the real numbers—be it [-999,+999], [0,1], [0.000001,0.000002] or anything else—there is still an infinite set of reals within that interval (one need only keep appending (non-zero) fractional digits)! Therefore arbitrary real numbers must always be "rounded" to something that can be represented in finite space.
The set of real numbers that can be represented in finite space depends upon the numeral system that is used. In our (familiar) positional base-10 system, finite space will suffice for one-half (0.510) but not for one-third (0.33333…10); by contrast, in the (less familiar) positional base-9 system, it is the other way around (those same numbers are respectively 0.44444…9 and 0.39). The consequence of all this is that some numbers that can be represented using only a small amount of space in positional base-10 (and therefore appear to be very "round" to us humans), e.g. one-tenth, would actually require infinite binary circuits to be stored precisely (and therefore don't appear to be very "round" to our digital friends)! Notably, since 2 is a factor of 10, the same is not true in reverse: any number that can be represented with finite binary can also be represented with finite decimal.
We can't do any better for continuous quantities. Ultimately such quantities must use a finite representation in some numeral system: it's arbitrary whether that system happens to be easy on computer circuits, on human fingers, on something else or on nothing at all—whichever system is used, the value must be rounded and therefore it always results in "representation error".
In other words, even if one has a perfectly accurate measuring instrument (which is physically impossible), then any measurement it reports will already have been rounded to a number that happens to fit on its display (in whatever base it uses—typically decimal, for obvious reasons). So, "86.2 oz" is never actually "86.2 oz" but rather a representation of "something between 86.1500000... oz and 86.2499999... oz". (Actually, because in reality the instrument is imperfect, all we can ever really say is that we have some degree of confidence that the actual value falls within that interval—but that is definitely departing some way from the point here).
But we can do better for discrete quantities. Such values are not "arbitrary real numbers" and therefore none of the above applies to them: they can be represented exactly in the numeral system in which they were defined—and indeed, should be (as converting to another numeral system and truncating to a finite length would result in rounding to an inexact number). Computers can (inefficiently) handle such situations by representing the number as a string: e.g. consider ASCII or BCD encoding.
Apply a format…
Since it's a property of the numeral system's (somewhat arbitrary) basis, whether or not a value appears to be "round" has no bearing on its precision. That's a really important observation, which runs counter to many people's intuition (and it's the reason I spent so much time explaining numerical basis above).
Precision is instead determined by how many significant figures a representation has. We need a storage format that is capable of recording our values to at least as many significant figures as we consider them to be correct. Taking by way of example values that we consider to be correct when stated as 86.2 and 0.0000862, the two most common options are:
Fixed point, where the number of significant figures depends on magnitude: e.g. in fixed 5-decimal-point representation, our values would be stored as 86.20000 and 0.00009 (and therefore have 7 and 1 significant figures of precision respectively). In this example, precision has been lost in the latter value (and indeed, it wouldn't take much more for us to have been totally unable to represent anything of significance); and the former value stored false precision, which is a waste of our finite space (and indeed, it wouldn't take much more for the value to become so large that it overflows the storage capacity).
A common example of when this format might be appropriate is for an accounting system: monetary sums must usually be tracked to the penny irrespective of their magnitude (therefore less precision is required for small values, and more precision is required for large values). As it happens, currency is usually also considered to be discrete (pennies are indivisible), so this is also a good example of a situation where a particular basis (decimal for most modern currencies) is desirable to avoid the representation errors discussed above.
One usually implements fixed point storage by treating one's values as quotients over a common denominator and storing the numerator as an integer. In our example, the common denominator could be 105, so instead of 86.20000 and 0.00009 one would store the integers 8620000 and 9 and remember that they must be divided by 100000.
Floating point, where the number of significant figures is constant irrespective of magnitude: e.g. in 5-significant-figure decimal representation, our values would be stored as 86.200 and 0.000086200 (and, by definition, have 5 significant figures of precision both times). In this example, both values have been stored without any loss of precision; and they both also have the same amount of false precision, which is less wasteful (and we can therefore use our finite space to represent a far greater range of values—both large and small).
A common example of when this format might be appropriate is for recording any real world measurements: the precision of measuring instruments (which all suffer from both systematic and random errors) is fairly constant irrespective of scale so, given sufficient significant figures (typically around 3 or 4 digits), absolutely no precision is lost even if a change of base resulted in rounding to a different number.
One usually implements floating point storage by treating one's values as integer significands with integer exponents. In our example, the significand could be 86200 for both values whereupon the (base-10) exponents would be -4 and -9 respectively.
But how precise are the floating point storage formats used by our computers?
An IEEE754 single precision (binary32) floating point number has 24 bits, or log10(224) (over 7) digits, of significance—i.e. it has a tolerance of less than ±0.000006%. In other words, it is more precise than saying "86.20000".
An IEEE754 double precision (binary64) floating point number has 53 bits, or log10(253) (almost 16) digits, of significance—i.e. it has a tolerance of just over ±0.00000000000001%. In other words, it is more precise than saying "86.2000000000000".
The most important thing to realise is that these formats are, respectively, over ten thousand and over one trillion times more precise than saying "86.2"—even though exact conversions of the binary back into decimal happens to include erroneous false precision (which we must ignore: more on this shortly)!
Notice also that both fixed and floating point formats will result in loss of precision when a value is known more precisely than the format supports. Such rounding errors can propagate in arithmetic operations to yield apparently erroneous results (which no doubt explains your reference to the "inherent inaccuracies" of floating point numbers): for example, 1⁄3 × 3000 in 5-place fixed point would yield 999.99000 rather than 1000.00000; and 1⁄7 − 7⁄50 in 5-significant figure floating point would yield 0.0028600 rather than 0.0028571.
The field of numerical analysis is dedicated to understanding these effects, but it is important to realise that any usable system (even performing calculations in your head) is vulnerable to such problems because no method of calculation that is guaranteed to terminate can ever offer infinite precision: consider, for example, how to calculate the area of a circle—there will necessarily be loss of precision in the value used for π, which will propagate into the result.
Conclusion
Real world measurements should use binary floating point: it's fast, compact, extremely precise and no worse than anything else (including the decimal version from which you started). Since MySQL's floating-point datatypes are IEEE754, this is exactly what they offer.
Currency applications should use denary fixed point: whilst it's slow and wastes memory, it ensures both that values are not rounded to inexact quantities and that pennies are not lost on large monetary sums. Since MySQL's fixed-point datatypes are BCD-encoded strings, this is exactly what they offer.
Finally, bear in mind that programming languages usually represent fractional values using binary floating-point types: so if your database stores values in another format, you need to be careful how they are brought into your application or else they may get converted (with all the ensuing issues that entails) at the interface.
Which option is best in this case?
Hopefully I've convinced you that your values can safely (and should) be stored in floating point types without worrying too much about any "inaccuracies"? Remember, they're more precise than your flimsy 3-significant-digit decimal representation ever was: you just have to ignore false precision (but one must always do that anyway, even if using a fixed-point decimal format).
As for your question: choose either option 1 or 2 over option 3—it makes comparisons easier (for example, to find the maximal mass, one could just use MAX(mass), whereas to do it efficiently across two columns would require some nesting).
Between those two, it doesn’t matter which one chooses—floating point numbers are stored with a constant number of significant bits irrespective of their scale.
Furthermore, whilst in the general case it could happen that some values are rounded to binary numbers that are closer to their original decimal representation using option 1 whilst simultaneously others are rounded to binary numbers that are closer to their original decimal representation using option 2, as we shall shortly see such representation errors only manifest within the false precision that should always be ignored.
However, in this case, because it happens that there are 16 ounces to 1 pound (and 16 is a power of 2), the relative differences between original decimal values and stored binary numbers using the two approaches is identical:
5.387510 (not 5.3367187510 as stated in your question) would be stored in a binary32 float as 101.0110001100110011001102 (which is 5.3874998092651367187510): this is 0.0000036% from the original value (but, as discussed above, the "original value" was already a pretty lousy representation of the physical quantity it represents).
Knowing that a binary32 float stores only 7 decimal digits of precision, our compiler knows for certain that everything from the 8th digit onwards is definitely false precision and therefore must be ignored in every case—thus, provided that our input value didn't require more precision than that (and if it did, binary32 was obviously the wrong choice of format), this guarantees a return to a decimal value that looks just as round as that from which we started: 5.38750010. However, we should really apply domain knowledge at this point (as we should with any storage format) to discard any further false precision that might exist, such as those two trailing zeroes.
86.210 would be stored in a binary32 float as 1010110.001100110011001102 (which is 86.199996948242187510): this is also 0.0000036% from the original value. As before, we then ignore false precision to return to our original input.
Notice how the binary representations of the numbers are identical, except for the placement of the radix point (which is four bits apart):
101.0110 00110011001100110
101 0110.00110011001100110
This is because 5.3875 × 24 = 86.2.
As an aside: being European (albeit British), I also have a strong aversion to imperial units of measurement—handling values of different scales is just so messy. I'd almost certainly store masses in SI units (e.g. kilograms or grams) and then perform conversions to imperial units as required within the presentation layer of my application. Plus rigidly adhering to SI units might one day save you from losing $125m.
I’d be tempted to store it in a metric unit, as they tend to be simple decimals and not complex values like pounds and ounces. That way, you can just store the one value (i.e. 103.25 kg) rather than the pounds–ounces equivalent, and it’s easier to perform conversions.
This is something I’ve dealt with in the past. I do a lot of work on pro wrestling and mixed martial arts (MMA) websites where fighters’ heights and weights need to be recorded. They tend to be displayed as feet and inches and pounds and ounces, but I still store the values in their centimetres and kilogram equivalents, and then do the conversion when displaying on the site.
First, I had not known about how floating point numbers were inaccurate - thankfully a search latter helps me understand: Floating Point Inaccuracy Examples
I would fully agree with #eggyal - keep the data in a single format in a single column. This allows you to expose it to the application and let the application deal with the presentation of it - be it in lbs/oz, rounded up lbs, whatever.
The database should keep the raw data while the presentation layer dictates the layout.
You can use decimal data type for weight column.
decimal('weight', 8, 2); // precision = 8, scale = 2
Storage size:
Precision 1-9 5 Bytes
Precision 10-19 9 Bytes
Precision 20-28 13 Bytes
Precision 29-38 17 Bytes

What is an integer overflow error?

What is an integer overflow error?
Why do i care about such an error?
What are some methods of avoiding or preventing it?
Integer overflow occurs when you try to express a number that is larger than the largest number the integer type can handle.
If you try to express the number 300 in one byte, you have an integer overflow (maximum is 255). 100,000 in two bytes is also an integer overflow (65,535 is the maximum).
You need to care about it because mathematical operations won't behave as you expect. A + B doesn't actually equal the sum of A and B if you have an integer overflow.
You avoid it by not creating the condition in the first place (usually either by choosing your integer type to be large enough that you won't overflow, or by limiting user input so that an overflow doesn't occur).
The easiest way to explain it is with a trivial example. Imagine we have a 4 bit unsigned integer. 0 would be 0000 and 1111 would be 15. So if you increment 15 instead of getting 16 you'll circle back around to 0000 as 16 is actually 10000 and we can not represent that with less than 5 bits. Ergo overflow...
In practice the numbers are much bigger and it circles to a large negative number on overflow if the int is signed but the above is basically what happens.
Another way of looking at it is to consider it as largely the same thing that happens when the odometer in your car rolls over to zero again after hitting 999999 km/mi.
When you store an integer in memory, the computer stores it as a series of bytes. These can be represented as a series of ones and zeros.
For example, zero will be represented as 00000000 (8 bit integers), and often, 127 will be represented as 01111111. If you add one to 127, this would "flip" the bits, and swap it to 10000000, but in a standard two's compliment representation, this is actually used to represent -128. This "overflows" the value.
With unsigned numbers, the same thing happens: 255 (11111111) plus 1 would become 100000000, but since there are only 8 "bits", this ends up as 00000000, which is 0.
You can avoid this by doing proper range checking for your correct integer size, or using a language that does proper exception handling for you.
An integer overflow error occurs when an operation makes an integer value greater than its maximum.
For example, if the maximum value you can have is 100000, and your current value is 99999, then adding 2 will make it 'overflow'.
You should care about integer overflows because data can be changed or lost inadvertantly, and can avoid them with either a larger integer type (see long int in most languages) or with a scheme that converts long strings of digits to very large integers.
Overflow is when the result of an arithmetic operation doesn't fit in the data type of the operation. You can have overflow with a byte-sized unsigned integer if you add 255 + 1, because the result (256) does not fit in the 8 bits of a byte.
You can have overflow with a floating point number if the result of a floating point operation is too large to represent in the floating point data type's exponent or mantissa.
You can also have underflow with floating point types when the result of a floating point operation is too small to represent in the given floating point data type. For example, if the floating point data type can handle exponents in the range of -100 to +100, and you square a value with an exponent of -80, the result will have an exponent around -160, which won't fit in the given floating point data type.
You need to be concerned about overflows and underflows in your code because it can be a silent killer: your code produces incorrect results but might not signal an error.
Whether you can safely ignore overflows depends a great deal on the nature of your program - rendering screen pixels from 3D data has a much greater tolerance for numerical errors than say, financial calculations.
Overflow checking is often turned off in default compiler settings. Why? Because the additional code to check for overflow after every operation takes time and space, which can degrade the runtime performance of your code.
Do yourself a favor and at least develop and test your code with overflow checking turned on.
From wikipedia:
In computer programming, an integer
overflow occurs when an arithmetic
operation attempts to create a numeric
value that is larger than can be
represented within the available
storage space. For instance, adding 1 to the largest value that can be represented
constitutes an integer overflow. The
most common result in these cases is
for the least significant
representable bits of the result to be
stored (the result is said to wrap).
You should care about it especially when choosing the appropriate data types for your program or you might get very subtle bugs.
From http://www.first.org/conference/2006/papers/seacord-robert-slides.pdf :
An integer overflow occurs when an integer is
increased beyond its maximum value or
decreased beyond its minimum value.
Overflows can be signed or unsigned.
P.S.: The PDF has detailed explanation on overflows and other integer error conditions, and also how to tackle/avoid them.
I'd like to be a bit contrarian to all the other answers so far, which somehow accept crappy broken math as a given. The question is tagged language-agnostic and in a vast number of languages, integers simply never overflow, so here's my kind-of sarcastic answer:
What is an integer overflow error?
An obsolete artifact from the dark ages of computing.
why do i care about it?
You don't.
how can it be avoided?
Use a modern programming language in which integers don't overflow. (Lisp, Scheme, Smalltalk, Self, Ruby, Newspeak, Ioke, Haskell, take your pick ...)
I find showing the Two’s Complement representation on a disc very helpful.
Here is a representation for 4-bit integers. The maximum value is 2^3-1 = 7.
For 32 bit integers, we will see the maximum value is 2^31-1.
When we add 1 to 2^31-1 : Clockwise we move by one and it is clearly -2^31 which is called integer overflow
Ref : https://courses.cs.washington.edu/courses/cse351/17wi/sections/03/CSE351-S03-2cfp_17wi.pdf
This happens when you attempt to use an integer for a value that is higher than the internal structure of the integer can support due to the number of bytes used. For example, if the maximum integer size is 2,147,483,647 and you attempt to store 3,000,000,000 you will get an integer overflow error.