I want to draw a oval in html5 canvas,and i found a good method for it in stackoverflow.but I have another quesition.
function drawEllipse(ctx, x, y, w, h) {
var kappa = 0.5522848;
ox = (w / 2) * kappa, // control point offset horizontal
oy = (h / 2) * kappa, // control point offset vertical
xe = x + w, // x-end
ye = y + h, // y-end
xm = x + w / 2, // x-middle
ym = y + h / 2; // y-middle
ctx.beginPath();
ctx.moveTo(x, ym);
ctx.bezierCurveTo(x, ym - oy, xm - ox, y, xm, y);
ctx.bezierCurveTo(xm + ox, y, xe, ym - oy, xe, ym);
ctx.bezierCurveTo(xe, ym + oy, xm + ox, ye, xm, ye);
ctx.bezierCurveTo(xm - ox, ye, x, ym + oy, x, ym);
ctx.closePath();
ctx.stroke();
}
the method in the above link has use bezierCurveTo to draw a ellipse,but it has draw bezierCurveTo 4 times. but I think just 2 bezierCurveTo can draw a ellipse.like this:
but i'm weak in Mathematics,could someone tell me the relationship of "the control point" and "the oval point" please? or we must draw four bezier Curve to draw a oval?
thanks everybody
My background isn't in mathematics so if I'm wrong I'm sure someone will correct me, but from my understanding we can draw a pretty good approximation of an ellipse with just two cubic bezier curves but the coordinates will be a little tricky.
To answer your question about the relation between the oval point and the control points I think it best be answered by watching this video from the point I've selected if you're familiar with interpolation or from the beginning if you are not. Don't worry it is short.
One problem we're probably going to run into is that when we start from the top and do a bezierCurveTo the bottom of the ellipse with the corners of the rectangle (of the same width and height) as the control points, the ellipses width is going to be smaller than the rectangle. .75 times the size we want. So we can just scale the control points accordingly.
Our control point's x would be adjusted like so (assuming width is the width of the ellipse and we're dividing by two to get its offset from the origin)
var cpx = (width / .75) / 2;
Put together a visualization where you can play with the width and height and see the drawn ellipse.
The red ellipse is how we wanted it to be drawn, with the inner one how it would be drawn if we didnt reposition the control points. The lines illustrate De Casteljau's algorithm that was shown in the video.
Here's a screenshot of the visualization
You only need two cubic bezier curves to draw an ellipse. Here's a simplified version of DerekR's code that uses the original function arguments that you provided--assuming you want x and y to be the center of the ellipse:
jsFiddle
function drawEllipse(ctx, x, y, w, h) {
var width_over_2 = w / 2;
var width_two_thirds = w * 2 / 3;
var height_over_2 = h / 2;
ctx.beginPath();
ctx.moveTo(x, y - height_over_2);
ctx.bezierCurveTo(x + width_two_thirds, y - height_over_2, x + width_two_thirds, y + height_over_2, x, y + height_over_2);
ctx.bezierCurveTo(x - width_two_thirds, y + height_over_2, x - width_two_thirds, y - height_over_2, x, y -height_over_2);
ctx.closePath();
ctx.stroke();
}
Big thanks to BKH.
I used his code with two bezier curves to complete my ellipse drawing with any rotation angle. Also, I created an comparison demo between ellipses drawn by bezier curves and native ellipse() function (for now implemented only in Chrome).
function drawEllipseByBezierCurves(ctx, x, y, radiusX, radiusY, rotationAngle) {
var width_two_thirds = radiusX * 4 / 3;
var dx1 = Math.sin(rotationAngle) * radiusY;
var dy1 = Math.cos(rotationAngle) * radiusY;
var dx2 = Math.cos(rotationAngle) * width_two_thirds;
var dy2 = Math.sin(rotationAngle) * width_two_thirds;
var topCenterX = x - dx1;
var topCenterY = y + dy1;
var topRightX = topCenterX + dx2;
var topRightY = topCenterY + dy2;
var topLeftX = topCenterX - dx2;
var topLeftY = topCenterY - dy2;
var bottomCenterX = x + dx1;
var bottomCenterY = y - dy1;
var bottomRightX = bottomCenterX + dx2;
var bottomRightY = bottomCenterY + dy2;
var bottomLeftX = bottomCenterX - dx2;
var bottomLeftY = bottomCenterY - dy2;
ctx.beginPath();
ctx.moveTo(bottomCenterX, bottomCenterY);
ctx.bezierCurveTo(bottomRightX, bottomRightY, topRightX, topRightY, topCenterX, topCenterY);
ctx.bezierCurveTo(topLeftX, topLeftY, bottomLeftX, bottomLeftY, bottomCenterX, bottomCenterY);
ctx.closePath();
ctx.stroke();
}
You will find this explained slightly more math-based in http://pomax.github.io/bezierinfo/#circles_cubic, but the gist is that using a cubic bezier curve for more than a quarter turn is usually not a good idea. Thankfully, using four curves makes finding the required control points rather easy. Start off with a circle, in which case each quarter circle is (1,0)--(1,0.55228)--(0.55228,1)--(0,1) with scaled coordinates for your ellipse. Draw that four times with +/- signs swapped to effect a full circle, scale the dimensions to get your ellipse, and done.
If you use two curves, the coordinates become (1,0)--(1,4/3)--(-1,4/3)--(-1,0), scaled for your ellipse. It may still look decent enough in your application, it depends a bit on how big your drawing ends up being.
It can be mathematically proven, that circle can not be made with Bézier curve of any degree. You can make "almost circle" by approximating it.
Say you want to draw a quarter of circle around [0,0]. Cubic bézier coordinates are:
[0 , 1 ]
[0.55, 1 ]
[1 , 0.55]
[1 , 0 ]
It is a very good approximation. Transform it linearly to get an ellpise.
Related
I'm trying to develop heat map, now initially I would have to draw the intensity mask, and since I'm using GWT so I have randomly generated some coordinates and placed my circles ( with required gradience ) at those locations so the output comes out to be circles overlapping each other. And If I look at the intensity mask from Dylan Vester, it comes to be very smooth How can I draw my heat map ?? Also how the output is achieved similar to Dylan Vester?? Question also is if I'm drawing circles then how to decide the intensity at the intersection of two or more circles, how they have achieved ?? Here is my code
// creating the object for the heat points
Heat_Point x = new Heat_Point();
// Variables for random locations
int Min = 1,Max = 300;
int randomx,randomy;
// Generating set of random values
for( int i = 0 ; i < 100 ; i++ ) {
// Generating random x and y coordinates
randomx = Min + (int)(Math.random() * ((Max - Min) + 1));
randomy = Min + (int)(Math.random() * ((Max - Min) + 1));
// Drawing the heat points at generated locations
x.Draw_Heatpoint(c1, randomx, randomy);
}
And Here is how I'm plotting my heat point that is Heat_Point class
Context con1 = c1.getContext2d(); // c1 is my canvas
CanvasGradient x1;
x1 = ((Context2d) con1).createRadialGradient(x,y,10,x,y,20);
x1.addColorStop(0,"black");
x1.addColorStop(1,"white");
((Context2d) con1).beginPath();
((Context2d) con1).setFillStyle(x1);
((Context2d) con1).arc(x,y,20, 0, Math.PI * 2.0, true);
((Context2d) con1).fill();
((Context2d) con1).closePath();`
here I was supposed to add some images but I didn't have enough reputation :D :P
I took a quick look at HeatmapJS (http://www.patrick-wied.at/static/heatmapjs/) and it seems he uses radial gradients (like you have above) and he also uses opacity and a color filter called "multiply blend" to smooth out the intensity of the colors in the heat map.
His code is quite impressive. It's open source, so you might want to check it out!
I am creating a game in which I draw a series of polygons by creating points around a radius of a cricle.
Later on I rotate the shapes and I need to calculate the new location (X,Y) of the points based on the rotation. I have the Old XY of each point, the XY of the center of the shape, radius of shape and the rotation.
Have a look at my diagram of the problem.
It should be possible to use matrix transformations for this, but you can also do it manually:
http://www.siggraph.org/education/materials/HyperGraph/modeling/mod_tran/2drota.htm
So essentially;
newX = initialX * Math.cos(angle) - initialY * Math.sin(angle);
newY = initialY * Math.cos(angle) + initialX * Math.sin(angle);
//Angle is in radians btw
This assumes that the initialX/Y is relative to the center of rotation, so you would have to subtract the center point before starting, and then add it again after the calculation to place it correctly.
Hope this helps!
For each point do:
alpha = arctan2(x, y)
len = sqrt(x^2 + y^2)
newX = len * cos(alpha + rotation)
newy = len * sin(alpha + rotation)
Original [x,y] and new [newX,newY] coordinates are both relative to the center of your rotation. If your original [x,y] is absolut, you have to calculate relative first:
x = xAbs - xCenter
y = yAbs - yCenter
Make sure your arctan2 function provides a result of PI/2 or -PI/2 if x=0. Primitive arctan functions do not allow x=0.
I'm programming a flash game, I made an array of points (x and y positions) that some movieclips must follow. Those movieclips have a certain speed (they make steps of 5 pixels for now). When I want to move them horizontally or vertically, everything's fine, I have to add or remove 5 pixels of those clips' x or y. But sometimes they have to move diagonally and now that's complicated.
What I'm doing:
var angle:Number = Math.atan2(nextPoint.y - this.y, nextPoint.x - this.x) * 180 / Math.PI;
var xstep:Number = Math.cos(angle) * this.speed;
var ystep:Number = Math.sqrt(Math.pow(this.speed, 2) - Math.pow(xstep, 2));
this.x += xstep;
this.y += ystep;
It's only a fraction of the code, but I think it's all you need.
Basically, this makes my movieclip do a little step (of this.speed (currently set to 5) pixels).
If the current point and the next point have the same y position, it works fine. When they don't, it doesn't work. The angle is right at first but it slowly decreases (while it should stay the same). I don't know if it's the angle that isn't computed the right way or if it's the x and y steps, but it's one of those, I'm sure.
Try this instead:
var angle:Number = Math.atan2(nextPoint.y - this.y, nextPoint.x - this.x);
var xstep:Number = Math.cos(angle) * this.speed;
var ystep:Number = Math.sin(angle) * this.speed;
Because cos operates on angles in radians, you don't need to convert to degrees. Computing the y component of an angle uses sin, so it should be similar to x. I'm not able to test this, but it's possible that ystep will be backwards and may need to be multiplied by -1.
I'm working on a game in HTML5 canvas.
I want is draw an S-shaped cubic bezier curve between two points, but I'm looking for a way to calculate the coordinates of the control points so that the curve itself is always the same length no matter how close those points are, until it reaches the point where the curve becomes a straight line.
This is solvable numerically. I assume you have a cubic bezier with 4 control points.
at each step you have the first (P0) and last (P3) points, and you want to calculate P1 and P2 such that the total length is constant.
Adding this constraint removes one degree of freedom so we have 1 left (started with 4, determined the end points (-2) and the constant length is another -1). So you need to decide about that.
The bezier curve is a polynomial defined between 0 and 1, you need to integrate on the square root of the sum of elements (2d?). for a cubic bezier, this means a sqrt of a 6 degree polynomial, which wolfram doesn't know how to solve. But if you have all your other control points known (or known up to a dependency on some other constraint) you can have a save table of precalculated values for that constraint.
Is it really necessary that the curve is a bezier curve? Fitting two circular arcs whose total length is constant is much easier. And you will always get an S-shape.
Fitting of two circular arcs:
Let D be the euclidean distance between the endpoints. Let C be the constant length that we want. I got the following expression for b (drawn in the image):
b = sqrt(D*sin(C/4)/4 - (D^2)/16)
I haven't checked if it is correct so if someone gets something different, leave a comment.
EDIT: You should consider the negative solution too that I obtain when solving the equation and check which one is correct.
b = -sqrt(D*sin(C/4)/4 - (D^2)/16)
Here's a working example in SVG that's close to correct:
http://phrogz.net/svg/constant-length-bezier.xhtml
I experimentally determined that when the endpoints are on top of one another the handles should be
desiredLength × cos(30°)
away from the handles; and (of course) when the end points are at their greatest distance the handles should be on top of one another. Plotting all ideal points looks sort of like an ellipse:
The blue line is the actual ideal equation, while the red line above is an ellipse approximating the ideal. Using the equation for the ellipse (as my example above does) allows the line to get about 9% too long in the middle.
Here's the relevant JavaScript code:
// M is the MoveTo command in SVG (the first point on the path)
// C is the CurveTo command in SVG:
// C.x is the end point of the path
// C.x1 is the first control point
// C.x2 is the second control point
function makeFixedLengthSCurve(path,length){
var dx = C.x - M.x, dy = C.y - M.y;
var len = Math.sqrt(dx*dx+dy*dy);
var angle = Math.atan2(dy,dx);
if (len >= length){
C.x = M.x + 100 * Math.cos(angle);
C.y = M.y + 100 * Math.sin(angle);
C.x1 = M.x; C.y1 = M.y;
C.x2 = C.x; C.y2 = C.y;
}else{
// Ellipse of major axis length and minor axis length*cos(30°)
var a = length, b = length*Math.cos(30*Math.PI/180);
var handleDistance = Math.sqrt( b*b * ( 1 - len*len / (a*a) ) );
C.x1 = M.x + handleDistance * Math.sin(angle);
C.y1 = M.y - handleDistance * Math.cos(angle);
C.x2 = C.x - handleDistance * Math.sin(angle);
C.y2 = C.y + handleDistance * Math.cos(angle);
}
}
I am developing a white board application which allows the user to draw line with arrow head (some like Microsoft Word line with arrow feature). I am using graphics property along with lineTo() method to draw a line. Now i have to draw a angular arrow on the last point of line. I am drawing the arrow by connecting the points around last points. As 360 line can pass through this point and each line can have a different angle of arrow. Please suggest me the way to calculating these point around the last point.
I've been doing something myself, and I needed it to look a bit nicer than just a triangle, and use relatively inexpensive calculations (as few calls to other functions as possible, like Math trigonometry). Here it is:
public static function DrawArrow(ax:int, ay:int, bx:int, by:int):void
{
// a is beginning, b is the arrow tip.
var abx:int, aby:int, ab:int, cx:Number, cy:Number, dx:Number, dy:Number, ex:Number, ey:Number, fx:Number, fy:Number;
var size:Number = 8, ratio:Number = 2, fullness1:Number = 2, fullness2:Number = 3; // these can be adjusted as needed
abx = bx - ax;
aby = by - ay;
ab = Math.sqrt(abx * abx + aby * aby);
cx = bx - size * abx / ab;
cy = by - size * aby / ab;
dx = cx + (by - cy) / ratio;
dy = cy + (cx - bx) / ratio;
ex = cx - (by - cy) / ratio;
ey = cy - (cx - bx) / ratio;
fx = (fullness1 * cx + bx) / fullness2;
fy = (fullness1 * cy + by) / fullness2;
// draw lines and apply fill: a -> b -> d -> f -> e -> b
// replace "sprite" with the name of your sprite
sprite.graphics.clear();
sprite.graphics.beginFill(0xffffff);
sprite.graphics.lineStyle(1, 0xffffff);
sprite.graphics.moveTo(ax, ay);
sprite.graphics.lineTo(bx, by);
sprite.graphics.lineTo(dx, dy);
sprite.graphics.lineTo(fx, fy);
sprite.graphics.lineTo(ex, ey);
sprite.graphics.lineTo(bx, by);
sprite.graphics.endFill();
}
You can also add the line color and thickness to the argument list, and maybe make it a member function of an extended Sprite, and you have a pretty nice, versatile function :) You can also play a bit with the numbers to get different shapes and sizes (small changes of fullness cause crazy changes in look, so careful :)). Just be careful not to set ratio or fullness2 to zero!
If you store the start and end point of the line, adding the arrow head should be relatively simple. If you subtract the end point coordinates from the start point coordinates, you will get the arrow direction vector (let's call it D). With this vector, you can determine any point on the line between the two points.
So, to draw the arrow head, you would need to determine a point (P1) on the segment that has a specific distance (d1) from the end point, determine a line that passes through it, and is perpendicular to D. And finally get a point (P2) that has a distance (d2) from the previously determined point. You can then determine the point that is symmetrical to P2, relative to D.
You will thus have an arrow head the length of d1 and a base with of 2 * d2.
Some additional information and a few code examples here: http://forums.devx.com/archive/index.php/t-74981.html