Call function for all elements in an array - function

Let's say I have a function, like:
function [result] = Square( x )
result = x * x;
end
And I have an array like the following,
x = 0:0.1:1;
I want to have an y array, which stores the squares of x's using my Square function. Sure, one way would be the following,
y = zeros(1,10);
for i = 1:10
y(i) = Square(x(i));
end
However, I guess there should be a more elegant way of doing it. I tried some of my insights and made some search, however couldn't find any solution. Any suggestions?

For the example you give:
y = x.^2; % or
y = x.*x;
in which .* and .^ are the element-wise versions of * and ^. This is the simplest, fastest way there is.
More general:
y = arrayfun(#Square, x);
which can be elegant, but it's usually pretty slow compared to
y = zeros(size(x));
for ii = 1:numel(x)
y(ii) = Square(x(ii)); end
I'd actually advise to stay away from arrayfun until profiling has showed that it is faster than a plain loop. Which will be seldom, if ever.
In new Matlab versions (R2008 and up), the JIT accelerates loops so effectively that things like arrayfun might actually disappear in a future release.
As an aside: note that I've used ii instead of i as the loop variable. In Matlab, i and j are built-in names for the imaginary unit. If you use it as a variable name, you'll lose some performance due to the necessary name resolution required. Using anything other than i or j will prevent that.

You want arrayfun.
arrayfun(#Square, x)
See help arrayfun
(tested only in GNU Octave, I do not have MATLAB)

Have you considered the element-by-element operator .*?
See the documentation for arithmetic operators.

I am going to assume that you will not be doing something as simple as a square operation and what you are trying to do is not already vectorised in MATLAB.
It is better to call the function once, and do the loop in the function. As the number of elements increase, you will notice significant increase in operation time.
Let our functions be:
function result = getSquare(x)
result = x*x; % I did not use .* on purpose
end
function result = getSquareVec(x)
result = zeros(1,numel(x));
for idx = 1:numel(x)
result(:,idx) = x(idx)*x(idx);
end
end
And let's call them from a script:
y = 1:10000;
tic;
for idx = 1:numel(y)
res = getSquare(y(idx));
end
toc
tic;
res = getSquareVec(y);
toc
I ran the code a couple of times and turns out calling the function only once is at least twice as fast.
Elapsed time is 0.020524 seconds.
Elapsed time is 0.008560 seconds.
Elapsed time is 0.019019 seconds.
Elapsed time is 0.007661 seconds.
Elapsed time is 0.022532 seconds.
Elapsed time is 0.006731 seconds.
Elapsed time is 0.023051 seconds.
Elapsed time is 0.005951 seconds.

Related

Julia: Base function 10,000x quicker then similar function

I'm playing around with the decimal to binary converter 'bin()' in Julia, wanting to improve performance. I need to use BigInts for this problem, and calling bin() with a bigInt from within my file outputs the correct binary representation; however, calling a function similar to the bin() function costs a minute in time, while bin() takes about .003 seconds. Why is there this huge difference?
function binBase(x::Unsigned, pad::Int, neg::Bool)
i = neg + max(pad,sizeof(x)<<3-leading_zeros(x))
a = Array(Uint8,i)
while i > neg
a[i] = '0'+(x&0x1)
x >>= 1
i -= 1
end
if neg; a[1]='-'; end
ASCIIString(a)
end
function bin1(x::BigInt, pad::Int)
y = bin(x)
end
function bin2(x::BigInt, pad::Int,a::Array{Uint8,1}, neg::Bool)
while pad > neg
a[pad] = '0'+(x&0x1)
x >>= 1
pad -= 1
end
if neg; a[1]='-'; end
ASCIIString(a)
end
function test()
a = Array(Uint8,1000001)
x::BigInt= 2
x = (x^1000000)
#time bin1(x,1000001)
#time bin2(x,1000001,a,true)
end
test()
As noted by Felipe Lema, Base delegates BigInt printing to GMP, which can print BigInts without doing any intermediate computations with them – doing lots of computations with BigInts to figure out their digits is quite slow and ends up allocating a lot of memory. The bottom line: doing x >>= 1 is extremely efficient for things like Int64 values but not that efficient for things like BigInts.
Using julia's profiling tools I can see that Base.bin is calling a C function from libGMP, which has all sorts of machine specific optimizations (somewhere here is mpn_get_str that is being called).
#profile bin1(x,1000001)
Profile.print()
Profile.clear()
#profile bin2(x,1000001,a,true)
Profile.print()
Profile.clear()
I could also see a huge difference in bytes allocates (bin1:1000106, bin2:62648125016) which would require some more profiling and tunning, but I guess the previous paragraph is enough for an answer.

Composite trapezoid rule not running in Octave

I have the following code in Octave for implementing the composite trapezoid rule and for some reason the function only stalls whenever I execute it in Octave on f = #(x) x^2, a = 0, b = 4, TOL = 10^-6. Whenever I call trapezoid(f, a, b, TOL), nothing happens and I have to exit the Terminal in order to do anything else in Octave. Here is the code:
% INPUTS
%
% f : a function
% a : starting point
% b : endpoint
% TOL : tolerance
function root = trapezoid(f, a, b, TOL)
disp('test');
max_iterations = 10000;
disp(max_iterations);
count = 1;
disp(count);
initial = (b-a)*(f(b) + f(a))/2;
while count < max_iterations
disp(initial);
trap_0 = initial;
trap_1 = 0;
trap_1_midpoints = a:(0.5^count):b;
for i = 1:(length(trap_1_midpoints)-1)
trap_1 = trap_1 + (trap_1_midpoints(i+1) - trap_1_midpoints(i))*(f(trap_1_midpoints(i+1) + f(trap_1_midpoints(i))))/2;
endfor
if abs(trap_0 - trap_1) < TOL
root = trap_1;
return;
endif
intial = trap_1;
count = count + 1;
disp(count);
endwhile
disp(['Process ended after ' num2str(max_iterations), ' iterations.']);
I have tried your function in Matlab.
Your code is not stalling. It is rather that the size of trap_1_midpoints increases exponentionaly. With that the computation time of trap_1 increases also exponentionaly. This is what you experience as stalling.
I also found a possible bug in your code. I guess the line after the if clause should be initial = trap_1. Check the missing 'i'.
With that, your code still takes forever, but if you increase the tolerance (e.g. to a value of 1) your code return.
You could try to vectorize the for loop for speed up.
Edit: I think inside your for loop, a ) is missing after f(trap_1_midpoints(i+1).
After count=52 or so, the arithmetic sequence trap_1_midpoints is no longer representable in any meaningful fashion in floating point numbers. After count=1075 or similar, the step size is no longer representable as a positive floating point double number. That all is to say, the bound max_iterations = 10000 is ludicrous. As explained below, all computations after count=20 are meaningless.
The theoretical error for stepsize h is O(T·h^2). There is a numerical error accumulation in the summation of O(T/h) numbers that is of that size, i.e., O(mu/h) with mu=1ulp=2^(-52). Which in total means that the lowest error of the numerical integration can be expected around h=mu^(1/3), for double numbers thus h=1e-5 or in the algorithm count=17. This may vary with interval length and how smooth or wavy the function is.
One can expect the behavior that the error divides by four while halving the step size only for step sizes above this boundary 1e-5. This also means that abs(trap_0 - trap_1) is a reliable measure for the error of trap_0 (and abs(trap_0 - trap_1)/3 for trap_1) only inside this range of step sizes.
The error bound TOL=1e-6 should be met for about h=1e-3, which corresponds to count=10. If the recursion does not stop for count = 14 (which should give an error smaller than 1e-8) then the method is not accurately implemented.

How to compute Fourier coefficients with MATLAB

I'm trying to compute the Fourier coefficients for a waveform using MATLAB. The coefficients can be computed using the following formulas:
T is chosen to be 1 which gives omega = 2pi.
However I'm having issues performing the integrals. The functions are are triangle wave (Which can be generated using sawtooth(t,0.5) if I'm not mistaking) as well as a square wave.
I've tried with the following code (For the triangle wave):
function [ a0,am,bm ] = test( numTerms )
b_m = zeros(1,numTerms);
w=2*pi;
for i = 1:numTerms
f1 = #(t) sawtooth(t,0.5).*cos(i*w*t);
f2 = #(t) sawtooth(t,0.5).*sin(i*w*t);
am(i) = 2*quad(f1,0,1);
bm(i) = 2*quad(f2,0,1);
end
end
However it's not getting anywhere near the values I need. The b_m coefficients are given for a
triangle wave and are supposed to be 1/m^2 and -1/m^2 when m is odd alternating beginning with the positive term.
The major issue for me is that I don't quite understand how integrals work in MATLAB and I'm not sure whether or not the approach I've chosen works.
Edit:
To clairify, this is the form that I'm looking to write the function on when the coefficients have been determined:
Here's an attempt using fft:
function [ a0,am,bm ] = test( numTerms )
T=2*pi;
w=1;
t = [0:0.1:2];
f = fft(sawtooth(t,0.5));
am = real(f);
bm = imag(f);
func = num2str(f(1));
for i = 1:numTerms
func = strcat(func,'+',num2str(am(i)),'*cos(',num2str(i*w),'*t)','+',num2str(bm(i)),'*sin(',num2str(i*w),'*t)');
end
y = inline(func);
plot(t,y(t));
end
Looks to me that your problem is what sawtooth returns the mathworks documentation says that:
sawtooth(t,width) generates a modified triangle wave where width, a scalar parameter between 0 and 1, determines the point between 0 and 2π at which the maximum occurs. The function increases from -1 to 1 on the interval 0 to 2πwidth, then decreases linearly from 1 to -1 on the interval 2πwidth to 2π. Thus a parameter of 0.5 specifies a standard triangle wave, symmetric about time instant π with peak-to-peak amplitude of 1. sawtooth(t,1) is equivalent to sawtooth(t).
So I'm guessing that's part of your problem.
After you responded I looked into it some more. Looks to me like it's the quad function; not very accurate! I recast the problem like this:
function [ a0,am,bm ] = sotest( t, numTerms )
bm = zeros(1,numTerms);
am = zeros(1,numTerms);
% 2L = 1
L = 0.5;
for ii = 1:numTerms
am(ii) = (1/L)*quadl(#(x) aCos(x,ii,L),0,2*L);
bm(ii) = (1/L)*quadl(#(x) aSin(x,ii,L),0,2*L);
end
ii = 0;
a0 = (1/L)*trapz( t, t.*cos((ii*pi*t)/L) );
% now let's test it
y = ones(size(t))*(a0/2);
for ii=1:numTerms
y = y + am(ii)*cos(ii*2*pi*t);
y = y + bm(ii)*sin(ii*2*pi*t);
end
figure; plot( t, y);
end
function a = aCos(t,n,L)
a = t.*cos((n*pi*t)/L);
end
function b = aSin(t,n,L)
b = t.*sin((n*pi*t)/L);
end
And then I called it like:
[ a0,am,bm ] = sotest( t, 100 );
and I got:
Sweetness!!!
All I really changed was from quad to quadl. I figured that out by using trapz which worked great until the time vector I was using didn't have enough resolution, which led me to believe it was a numerical issue rather than something fundamental. Hope this helps!
To troubleshoot your code I would plot the functions you are using and investigate, how the quad function samples them. You might be undersampling them, so make sure your minimum step size is smaller than the period of the function by at least factor 10.
I would suggest using the FFTs that are built-in to Matlab. Not only is the FFT the most efficient method to compute a spectrum (it is n*log(n) dependent on the length n of the array, whereas the integral in n^2 dependent), it will also give you automatically the frequency points that are supported by your (equally spaced) time data. If you compute the integral yourself (might be needed if datapoints are not equally spaced), you might calculate frequency data that are not resolved (closer spacing than 1/over the spacing in time, i.e. beyond the 'Fourier limit').

Maximize function with fminsearch

Within my daily work, I have got to maximize a particular function making use of fminsearch; the code is:
clc
clear all
close all
f = #(x,c,k) -(x(2)/c)^3*(((exp(-(x(1)/c)^k)-exp(-(x(2)/c)^k))/((x(2)/c)^k-(x(1)/c)^k))-exp(-(x(3)/c)^k))^2;
c = 10.1;
k = 2.3;
X = fminsearch(#(x) f(x,c,k),[4,10,20]);
It works fine, as I expect, but not the issue is coming up: I need to bound x within certain limits, as:
4 < x(1) < 5
10 < x(2) < 15
20 < x(3) < 30
To achieve the proper results, I should use the optimization toolbox, that I unfortunately cannot hand.
Is there any way to get the same analysis by making use of only fminsearch?
Well, not using fminsearch directly, but if you are willing to download fminsearchbnd from the file exchange, then yes. fminsearchbnd does a bound constrained minimization of a general objective function, as an overlay on fminsearch. It calls fminsearch for you, applying bounds to the problem.
Essentially the idea is to transform your problem for you, in a way that your objective function sees as if it is solving a constrained problem. It is totally transparent. You call fminsearchbnd with a function, a starting point in the parameter space, and a set of lower and upper bounds.
For example, minimizing the rosenbrock function returns a minimum at [1,1] by fminsearch. But if we apply purely lower bounds on the problem of 2 for each variable, then fminsearchbnd finds the bound constrained solution at [2,4].
rosen = #(x) (1-x(1)).^2 + 105*(x(2)-x(1).^2).^2;
fminsearch(rosen,[3 3]) % unconstrained
ans =
1.0000 1.0000
fminsearchbnd(rosen,[3 3],[2 2],[]) % constrained
ans =
2.0000 4.0000
If you have no constraints on a variable, then supply -inf or inf as the corresponding bound.
fminsearchbnd(rosen,[3 3],[-inf 2],[])
ans =
1.4137 2
Andrey has the right idea, and the smoother way of providing a penalty isn't hard: just add the distance to the equation.
To keep using the anonymous function:
f = #(x,c,k, Xmin, Xmax) -(x(2)/c)^3*(((exp(-(x(1)/c)^k)-exp(-(x(2)/c)^k))/((x(2)/c)^k-(x(1)/c)^k))-exp(-(x(3)/c)^k))^2 ...
+ (x< Xmin)*(Xmin' - x' + 10000) + (x>Xmax)*(x' - Xmax' + 10000) ;
The most naive way to bound x, would be giving a huge penalty for any x that is not in the range.
For example:
function res = f(x,c,k)
if x(1)>5 || x(1)<4
penalty = 1000000000000;
else
penalty = 0;
end
res = penalty - (x(2)/c)^3*(((exp(-(x(1)/c)^k)-exp(-(x(2)/c)^k))/((x(2)/c)^k-(x(1)/c)^k))-exp(-(x(3)/c)^k))^2;
end
You can improve this approach, by giving the penalty in a smoother way.

MatLab - nargout

I am learning MatLab on my own, and I have this assignment in my book which I don't quite understand. Basically I am writing a function that will calculate sine through the use of Taylor series. My code is as follows so far:
function y = sine_series(x,n);
%SINE_SERIES: computes sin(x) from series expansion
% x may be entered as a vector to allow for multiple calculations simultaneously
if n <= 0
error('Input must be positive')
end
j = length(x);
k = [1:n];
y = ones(j,1);
for i = 1:j
y(i) = sum((-1).^(k-1).*(x(i).^(2*k -1))./(factorial(2*k-1)));
end
The book is now asking me to include an optional output err which will calculate the difference between sin(x) and y. The book hints that I may use nargout to accomplish this, but there are no examples in the book on how to use this, and reading the MatLab help on the subject did not make my any wiser.
If anyone can please help me understand this, I would really appreciate it!
The call to nargout checks for the number of output arguments a function is called with. Depending on the size of nargout you can assign entries to the output argument varargout. For your code this would look like:
function [y varargout]= sine_series(x,n);
%SINE_SERIES: computes sin(x) from series expansion
% x may be entered as a vector to allow for multiple calculations simultaneously
if n <= 0
error('Input must be positive')
end
j = length(x);
k = [1:n];
y = ones(j,1);
for i = 1:j
y(i) = sum((-1).^(k-1).*(x(i).^(2*k -1))./(factorial(2*k-1)));
end
if nargout ==2
varargout{1} = sin(x)'-y;
end
Compare the output of
[y] = sine_series(rand(1,10),3)
and
[y err] = sine_series(rand(1,10),3)
to see the difference.