Three.js How to point child of Object3d to face camera? - html

Here is the thing. I have an Object3d that is composed of 6 planes settled to form a cube. Now, after applying quaternion rotation based on mouse input and after the cube has stopped - I need the cube to turn straight to the camera at its closest side (plane child). What I am doing now is I’m getting the current Euler angles of my Object3d matrix, applying rotation to this matrix and setting it back to my object’s quaternion with setFromRotationMatrix() function. Sometimes this method works (usually at low angles) and sometimes the Z axis behaves wrong (or maybe Y, or even all of them, can’t tell).
Now, I certainly could just calculate the closest side and apply direct quaternion of this side to my object, which works, but that gives me no animation.
I’m using this code to get my current angles: http://www.cs.princeton.edu/~gewang/projects/darth/stuff/quat_faq.html#Q37. Based on that I calculate the closest 90 degrees rotation for every axis:
function lookAtCamDeg(val){
var d = 1;
var s = 1;
var newAngle;
if(val < 0)d*=-1;
val = Math.abs(val);
if(val <= 45)s*=-1;
if(val > 45)val=90-val;
newAngle = val*d*s;
return newAngle;
}
And applying that to turn my cube:
var angles = getAngles();http://www.cs.princeton.edu/~gewang/projects/darth/stuff/quat_faq.html#Q37
var newX = lookAtCamDeg(angles.x);
var newY = lookAtCamDeg(angles.y);
var newZ = lookAtCamDeg(angles.z);
var ma = cube.matrix;
ma = ma.rotateX(-newX*DEGREES)
ma = ma.rotateY(-newY*DEGREES)
ma = ma.rotateZ(-newZ*DEGREES)
cube.quaternion.setFromRotationMatrix(ma);
What I am thinking now is to try using separate planes of my cube (children) and based on their normals apply lookAt() method, but don’t know how to do it, since I need to rotate the whole object, not just one child. Could someone please lead me to the right direction to go? What is the best way to achieve my needs?

The THREE.Quaterion object contains methods for interpolation. So calculate the quaternion value of the original face normal, the quaternion you get here from setFromRotationMatrix(ma), and then apply THREE.Quaterion.slerp() repeatedly to get in-betweens, which can apply to cube.quaternion

Related

Cesium convert lat lon to x and y

I am looking to turn 2 lat/lon positions into an x and y distance of the canvas, then apply the distance formula to it.
Right now I have:
const leftPoint = new LatLon(center.lat, center.lon).destinationPoint(semiMajorAxis, 270);
const rightPoint = new LatLon(center.lat, center.lon).destinationPoint(semiMajorAxis, 90);
const leftXY = Cartographic.toCartesian(Cartographic.fromDegrees(leftPoint.lon, leftPoint.lat));
const rightXY = Cartographic.toCartesian(Cartographic.fromDegrees(rightPoint.lon, rightPoint.lat));
const diameter = distanceFormula(leftXY.x, leftXY.y, rightXY.x, rightXY.y);
But the result of diameter is 18,000, even though both points are on my screen!
Cesium's Cartographic.toCartesian function converts a Cartographic (lon/lat/alt) type of coordinate to a full 3D Cartesian position. Imagine X, Y, Z with zero being the center of the Earth itself, with the Earth's surface being approximately 6.3 million meters in any direction.
If you're looking for 2D canvas / screen coordinates, you must follow this call with another function, Cesium.SceneTransforms.wgs84ToWindowCoordinates. That function converts the 3D WGS84 (Cartesian3) Earth position into a 2D (Cartesian2) screen position. There's a demo of wgs84ToWindowCoordinates being used in the Sandcastle Star Burst Example around line 287.
Also it looks like you've rolled your own LatLon class, not specified above, that appears to have similar functions to Cesium's Cartographic class. You might be able to make the code a little cleaner by using Cartographic directly instead of a homebrew class there. Likewise you don't need to roll your own distanceFormula on the last line. Once you have 2D Cartesian2 window coordinates, call Cesium.Cartesian2.distance to get the distance.
I can't understand your saying 'x and y distance of the canvas'.
Generally, for calculate distance between two point on CesiumJS follow below steps.
1.Define two points
//Define x,y coordinate and convert to radian
const longitudeRadian_1 = Cesium.Math.toRadians(longitudeDegree_1)
const latitudeRadian_1 = Cesium.Math.toRadians(latitudeDegree_1)
const longitudeRadian_2 = Cesium.Math.toRadians(longitudeDegree_2)
const latitudeRadian_2 = Cesium.Math.toRadians(latitudeDegree_2)
//Get cartographic from degrees
const Carto_Point_1 = new Cesium.Cartographic(longitudeRadian_1 , latitudeRadian_1 )
const Carto_Point_2 = new Cesium.Cartographic(longitudeRadian_2 , latitudeRadian_2)
//Get cartesian from cartographic
const Cartesian_Point_1 = Cesium.Cartographic.toCartesian(Carto_Point_1)
const Cartesian_Point_2 = Cesium.Cartographic.toCartesian(Carto_Point_2)
2.Calculate distance between two points
const distance = Cesium.Cartesian3.distance(Cartesian_Point_1, Cartesian_Point_2)
console.log(distance)
I hope this would help

change axis of rotation

I am taking help of sample code of Transform tutorial for rotation and position change. I am facing couple of problems.
I want to perform rotation on door and window. Currently axis of rotation pass through center. How can I change to rotate a object from axis passing through its side.
For position change > when I change position lets say for a window in any direction, it moves but it is visible on wall. I want it hide when window collide with wall.
1/ Here is a code snippet that illustrates how to rotate elements (fragments), for a more complete sample take a look at this article: Rotate Components Control for the Viewer
rotateFragments (model, fragIdsArray, axis, angle, center) {
var quaternion = new THREE.Quaternion()
quaternion.setFromAxisAngle(axis, angle)
fragIdsArray.forEach((fragId, idx) => {
var fragProxy = this.viewer.impl.getFragmentProxy(
model, fragId)
fragProxy.getAnimTransform()
var position = new THREE.Vector3(
fragProxy.position.x - center.x,
fragProxy.position.y - center.y,
fragProxy.position.z - center.z)
position.applyQuaternion(quaternion)
position.add(center)
fragProxy.position = position
fragProxy.quaternion.multiplyQuaternions(
quaternion, fragProxy.quaternion)
if (idx === 0) {
var euler = new THREE.Euler()
euler.setFromQuaternion(
fragProxy.quaternion, 0)
this.emit('rotate', {
dbIds: this.selection.dbIdArray,
fragIds: fragIdsArray,
rotation: euler,
model
})
}
fragProxy.updateAnimTransform()
})
}
2/ When you transform the geometry, you are just moving triangles around, there is no built-in logic that will hide components because they overlap, you will need to implement that yourself. You should be able to find Three.js code that computes if two meshes intersect (triangle-triangle intersection algorithm) and run that against the component you are moving and all walls that are around. Here is something that can put you on tracks: How to detect collision in three.js?
Hope that helps

function that detects if a ray is intersecting an object

I have a function that detects if a ray is intersecting an object, but it works with a radius around the center of the object, I want it to work with a bounding box, I want to give it 2 Vector3D of the bounding box, and one vector of the origin of the ray and one of the direction of the ray, and it will calculate if there is an intersection, can anyone help me with that? what is the mathematical formula for this?
intersectRay(origin:Vector3D, dir:Vector3D):
Found the solution.
1. I use a bounding box of 8 points, each for each corner.
2. I used this function to give each point a location of x and y on a 2D plain this way I turned the 3D problem into a 2D problem, the x and y are really the horizontal angle of the point relative to the camera position and the vertical angle relative to the camera position point:
public function AngleBetween2vectors(v1:Vector3D,v2:Vector3D):Point
{
var angleX:Number = Math.atan2(v1.x-v2.x,v1.z-v2.z);
angleX = angleX*180/Math.PI;
var angleY:Number = Math.atan2(v1.y-v2.y,v1.z-v2.z);
angleY = angleY*180/Math.PI;
return new Point(angleX,angleY);
}
Then I use a convex hull algorithm to delete the point that are not part of the external outline polygon which marks the place of the object on the screen, can be found on the net, make sure the bounding box doesn't contain duplicate points like if you have a flat plain with no depth, this can cause problem for the algorithm, so when you create the bounding box clean them out.
Then I use this algorithm to determine if the point of the mouse click falls within this polygon or outside of it:
private function pnpoly( A:Array,p:Point ):Boolean
{
var i:int;
var j:int;
var c:Boolean = false;
for( i = 0, j = A.length-1; i < A.length; j = i++ ) {
if( ( ( A[i].y > p.y ) != ( A[j].y > p.y ) ) &&
( p.x < ( A[j].x - A[i].x ) * ( p.y - A[i].y ) / ( A[j].y - A[i].y ) + A[i].x ) )
{
c = !c;
}
}
return c;
}
Then I measure the distance to the object and pick the closest one to the camera position, using this function:
public function DistanceBetween2Vectors(v1:Vector3D,v2:Vector3D):Number
{
var a:Number = Math.sqrt(Math.pow((v1.x-v2.x),2)+Math.pow((v1.y-v2.y),2));
var b:Number = Math.sqrt(Math.pow((v1.z-v2.z),2)+Math.pow((v1.y-v2.y),2));
return Math.sqrt(Math.pow(a,2)+Math.pow(b,2));
}
I'm sure there are more efficient ways, but this way is an interesting one, and it's good enough for me, I like it because it is intuitive, I don't like to work with abstract mathematics, it's very hard for me, and if there is a mistake, it's very hard to find it. If anyone has any suggestions on how I can make it more efficient, I'll be happy to hear them.

In Starling, how do you transform Filters to match the target Sprite's rotation & position?

Let's say your Starling display-list is as follows:
Stage
|___MainApp
|______Canvas (filter's target)
Then, you decide your MainApp should be rotated 90 degrees and offset a bit:
mainApp.rotation = Math.PI * 0.5;
mainApp.x = stage.stageWidth;
But all of a sudden, the filter keeps on applying itself to the target (canvas) in the angle it was originally (as if the MainApp was still at 0 degrees).
(notice in the GIF how the Blur's strong horizontal value continues to only apply horizontally although the parent object turned 90 degrees).
What would need to be changed to apply the filter to the target object before it gets it's parents transform? That way (I'm assuming) the filter's result would get transformed by the parent objects.
Any guess as to how this could be done?
https://github.com/bigp/StarlingShaderIssue
(PS: the filter I'm actually using is custom-made, but this BlurFilter example shows the same issue I'm having with the custom one. If there's any patching-up to do in the shader code, at least it wouldn't necessarily have to be done on the built-in BlurFilter specifically).
I solved this myself with numerous trial and error attempts over the course of several hours.
Since I only needed the shader to run in either at 0 or 90 degrees (not actually tweened like the gif demo shown in the question), I created a shader with two specialized sets of AGAL instructions.
Without going in too much details, the rotated version basically requires a few extra instructions to flip the x and y fields in the vertex and fragment shader (either by moving them with mov or directly calculating the mul or div result into the x or y field).
For example, compare the 0 deg vertex shader...
_vertexShader = [
"m44 op, va0, vc0", // 4x4 matrix transform to output space
"mov posOriginal, va1", // pass texture positions to fragment program
"mul posScaled, va1, viewportScale", // pass displacement positions (scaled)
].join("\n");
... with the 90 deg vertex shader:
_vertexShader = [
"m44 op, va0, vc0", // 4x4 matrix transform to output space
"mov posOriginal, va1", // pass texture positions to fragment program
//Calculate the rotated vertex "displacement" UVs
"mov temp1, va1",
"mov temp2, va1",
"mul temp2.y, temp1.x, viewportScale.y", //Flip X to Y, and scale with viewport Y
"mul temp2.x, temp1.y, viewportScale.x", //Flip Y to X, and scale with viewport X
"sub temp2.y, 1.0, temp2.y", //Invert the UV for the Y axis.
"mov posScaled, temp2",
].join("\n");
You can ignore the special aliases in the AGAL example, they're essentially posOriginal = v0, posScaled = v1 variants and viewportScale = vc4constants, then I do a string-replace to change them back to their respective registers & fields ).
Just a human-readable trick I use to avoid going insane. \☻/
The part that I struggled with the most was calculating the correct scale to adjust the UV's scale (with proper detection to Stage / Viewport resize and render-texture size shifts).
Eventually, this is what I came up with in the AS3 code:
var pt:Texture = _passTexture,
dt:RenderTexture = _displacement.texture,
notReady:Boolean = pt == null,
star:Starling = Starling.current;
var finalScaleX:Number, viewRatioX:Number = star.viewPort.width / star.stage.stageWidth;
var finalScaleY:Number, viewRatioY:Number = star.viewPort.height / star.stage.stageHeight;
if (notReady) {
finalScaleX = finalScaleY = 1.0;
} else if (isRotated) {
//NOTE: Notice how the native width is divided with height, instead of same side. Weird, but it works!
finalScaleY = pt.nativeWidth / dt.nativeHeight / _imageRatio / paramScaleX / viewRatioX; //Eureka!
finalScaleX = pt.nativeHeight / dt.nativeWidth / _imageRatio / paramScaleY / viewRatioY; //Eureka x2!
} else {
finalScaleX = pt.nativeWidth / dt.nativeWidth / _imageRatio / viewRatioX / paramScaleX;
finalScaleY = pt.nativeHeight / dt.nativeHeight / _imageRatio / viewRatioY / paramScaleY;
}
Hopefully these extracted pieces of code can be helpful to others with similar shader issues.
Good luck!

Could someone explain me w.r.t. coordinates

Could someone please explain me what are w.r.t. coordinates? or at least direct me to a place that explains what they are? I've being searching for two days or so and all that I found is tutorials on how are they used but not what they actually are or even what wrt stand for.
These tutorials take the assumption I already know what they are which is stressful because I've never heard of them.
I'm working in as3 trying to do some parametric surfaces using pixel particles and I understand these are kind of useful while moving the particles around.
This is the relevant function where they are used as u,v and w, where p is a single particle that also contains xyz values that are not being modified.
function onEnter(evt:Event):void {
dphi = 0.015*Math.cos(getTimer()*0.000132);
dtheta = 0.017*Math.cos(getTimer()*0.000244);
phi = (phi + dphi) % pi2;
theta = (theta + dtheta) % pi2;
cost = Math.cos(theta);
sint = Math.sin(theta);
cosp = Math.cos(phi);
sinp = Math.sin(phi);
//We calculate some of the rotation matrix entries here for increased efficiency:
M11 = cost*sinp;
M12 = sint*sinp;
M31 = -cost*cosp;
M32 = -sint*cosp;
p = firstParticle;
//////// redrawing ////////
displayBitmapData.lock();
//apply filters pre-update
displayBitmapData.colorTransform(displayBitmapData.rect,darken);
displayBitmapData.applyFilter(displayBitmapData, displayBitmapData.rect, origin, blur);
p = firstParticle;
do {
//Calculate rotated coordinates
p.u = M11*p.x + M12*p.y + cosp*p.z;
p.v = -sint*p.x + cost*p.y;
p.w = M31*p.x + M32*p.y + sinp*p.z;
//Calculate viewplane projection coordinates
m = fLen/(fLen - p.u);
p.projX = p.v*m + projCenterX;
p.projY = p.w*m + projCenterY;
if ((p.projX > displayWidth)||(p.projX<0)||(p.projY<0)||(p.projY>displayHeight)||(p.u>uMax)) {
p.onScreen = false;
}
else {
p.onScreen = true;
}
if (p.onScreen) {
//we read the color in the position where we will place another particle:
readColor = displayBitmapData.getPixel(p.projX, p.projY);
//we take the blue value of this color to represent the current brightness in this position,
//then we increase this brightness by levelInc.
level = (readColor & 0xFF)+levelInc;
//we make sure that 'level' stays smaller than 255:
level = (level > 255) ? 255 : level;
/*
We create light blue pixels quickly with a trick:
the red component will be zero, the blue component will be 'level', and
the green component will be 50% of the blue value. We divide 'level' in
half using a fast technique: a bit-shift operation of shifting down by one bit
accomplishes the same thing as dividing by two (for an integer output).
*/
//dColor = ((level>>1) << 8) | level;
dColor = (level << 16) | (level << 8) | level;
displayBitmapData.setPixel(p.projX, p.projY, dColor);
}
p = p.next;
} while (p != null)
displayBitmapData.unlock();
}
This is the example I'm using http://www.flashandmath.com/flashcs4/light/
I kinda understand how are they used but I don't get why.
Thanks in advance.
PD: kind of surprised there is not even a tag related to it.
In that Particle3D.as class linked, they have:
//coords WRT viewpoint axes
public var u:Number;
public var v:Number;
public var w:Number;
From the code example you posted to the question it becomes clear that coords WRT viewpoint axes means coordinates with respect to viewpoint axes, since the code is doing exactly that .
What they are doing is a Camera (or Viewing) Transformation, where the Particle's world coordinates (x,y,z) is transformed from the world coordinate system to coordinates in the camera (or view) coordinate system (u,v,w).
(x,y,z) are the coordinates of the particle in the world coordinate system
(u,v,w) are the coordinates of the particle in the camera coordinate system
For example, the world coordinate system might have an origin at (0,0,0) with the camera positioned at something like (5,3,6) with an lookat vector of (1,0,0) and up vector of (0,1,0).