Why is this lat lng coordinate is split into 2 halfs? - gis

I have this file from tsp.gatech but the lat lng coordinate is divide into two half. Why is this?
COMMENT: Created July 7, 2012, www.tsp.gatech.edu/data/usa/
1 33613.158800 86118.306100
2 33100.954000 85529.675300
3 31571.835200 85250.489300
For example the first coordinate should be 33.613158800 86.118306100.
Update: I searched for New York City and I found it lat lng coordinate to be similar.
Update 2: I think it's incorrect formated see this image of points: http://www.tsp.gatech.edu/data/usa/img/usa115475_large.jpg. I get the points from a file from this website: http://www.tsp.gatech.edu/data/usa/index.html. The site is about a challenge and the file I downloaded is usa115475.tsp.

Euclidean Distance would tend to suggest the values are X,Y distances from a reference point (in feet, meters, kilometers, miles, ...). But this is normally reserved for small scale mapping where the effects of the curvature of the earth can be considered minor.
If the data seems to correspond to decimal degrees that are incorrectly formatted, there could be an error in whatever system is returning the data. But its better to review your own processes before pointing the finger. What query/process/code are you doing to obtain this data?

Related

How can I calculate distance (in meters) between two points on Google map

I'm using an L80 GPS module together with my 8-bit processor. GPS module responds with a massage in NMEA format, giving me information about the date, time, latitude, longitude, altitude (if possible), number of satellites etc.
Latitude and longitude information of NMEA are in the form of degrees and minutes (DD°MM.mmm').
I'm able to convert them into only degrees notation (DD.dddddd°).
I have the following problem: Given a particular location (e.g. 48.858125, 2.294398) and a safety radius of, let's say, 50 meters (no more than 300 meters), how to determine weather (a, b) point is within a safety circle or not?
Can you help me figuring out the math hiding behind?
In short, I would like you to help me determine distance in meters between two points on Earth represented in angular coordinate system. Are there any math guru willing to help me?
Note that my point of calculations is my processor.
I know that, having latitudes and longitudes in degrees, my points are represented in an angular coordinate system, not Cartesian (linear) one.I also know that Universal Transferse Mercator (UTM) representation of points on Earth is in Cartesian coordinate system. Is it, maybe, easier to transform degree notation (DD.dddddd°) into UTM notation? I know there are on-line tools that are able to do a conversion. However, I don't know the math.
Thank you very much for your time and effort to help me.
Sincerely,
Bojan
You can simply find distance b/w two points by longitude and latitude.
you can find reference code on this link.
Hope this helps.
Just use the haversine formula to calcualte the distance between two points on earth.
Search for term "haversine" and the name of your programming language.
Is it, maybe, easier to transform to UTM
No for sure not. It is very complex, and it gets extremly complex when the two points are located in different UTM zones.

Converting X,Y to Latitude Longitude to ESRI shapefile

Warning: I know nothing about GIS. That will become very apparent in a moment, of course. My vocabulary isn't going to be spot on, either, Apologies.
I need to recreate parts of a "Strategy Map" that looks like this as "real geo-spatial" map:
Why? Because if I can manage to plot the boxes ("Maximize Shareholder Value", "Exceed Customer Expectations", etc.) on a map in correct relation to each other, I can do some very fun stuff in a data visualization tool I'm working with.
I can build the strategy map above in Visio, and then use a script to export the shapes I care about as X, Y points OR Polygons. One of the boxes above might looks like this once exported:
ShapeNo ShapeName PointNo X Y
1 Exceed Cust 2 37 155
1 Exceed Cust 4 116 155
1 Exceed Cust 6 116 234
1 Exceed Cust 8 37 234
1 Exceed Cust 10 37 155
...or it might look like this:
POLYGON ((37 155, 116 155, 116 134, 37 234, 37,155))
Regardless, I have a bunch of points, and I need to turn these into lat/lon coordinates, using lat/lon (0,0) as my point of reference. In the map above, 0,0 might be beneath the "Exceed Customer Expectations" box - more or less dead center.
Then, I suspect I can find a tool that will convert this jumble of stuff into an ESRI shapefile and I can import directly into my dataviz tool.
Are there any known (free) tools, scripts, libraries, etc.that might do some of this for me?
Your problem shouldn't be solved with a GIS but I can appreciate that you have found some cool dataviz features that require a shapefile.
The problem is that you want to take some x,y points and convert them to lat/lon. Latitude-longitude refer specifically to points on the earth's surface and the points in your problem have no relation to the earth's surface.
Another way to think of this is that you are trying to take random points and say one represents the capital of Russia and the other represents a large city in Germany etc.
Another problem is that you want to have a 0,0 reference point but latitude and longitude have a datum as a reference point which is a specific geographic location.
It's hard to suggest an alternative method to solve your problem without more information on your familiarity with graphic design tools, but lat/lon with GIS are not the direction to be looking.
Many people do convert x,y points to lat/lon but this is not a direct conversion. Cartesian coordinates require a known projection and datum in order for this conversion to be accurate.
Check out this link for an in depth explanation of why arbitrary x,y cannot be converted to lat/lon.
On the other hand, +1 for an out-of-the-box original idea for strategy map design!

Mysql geometry AREA() function returns what exactly when coords are long/lat?

My question is somewhat related to this similar one, which links to a pretty complex solution - but what I want to understand is the result of this:
Using a Mysql Geometry field to store a small polygon I duly ran
select AREA(myPolygon) where id =1
over it, and got an value like 2.345. So can anyone tell me, just what does that number represent seeing as the stored values were long/lat sets describing the polygon?
FYI, the areas I am working on are relatively small (car parks and the like) and the area does not have to be exact - I will not be concerned about the curvature of the earth.
2.345 of what? Thanks, this is bugging me.
The short answer is that the units for your area calculation are basically meaningless ([deg lat diff] * [deg lon diff]). Even though the curvature of the earth wouldn't come into play for the area calculation (since your areas are "small"), it does come into play for the calculation of distance between the lat/lon polygon coordinates.
Since a degree of longitude is different based on the distance from the equator (http://en.wikipedia.org/wiki/Longitude#Degree_length), there really is no direct conversion of your area into m^2 or km^2. It is dependent on the distance north/south of the equator.
If you always have rectangular polygons, you could just store the opposite corner coordinates and calculate area using something like this: PHP Library: Calculate a bounding box for a given lat/lng location
The most "correct" thing to do would be to store your polygons using X-Y (meters) coordinates (perhaps UTM using the WGS-84 ellipsoid), which can be calculated from lat/lon using various libraries like the following for Java: Java, convert lat/lon to UTM. You could then continue to use the MySQL AREA() function.

How do I convert from this weird Coordinate unit to LngLat for use in Google Maps?

I have a database full of rows if coordinate pairs like this:
ux: 6643641
uy: 264274
uz: NULL
I have been tasked to make all these coordinates appear on google maps as points of interest, but nobody could tell me what the hell those coordinates were.
What I need for Google Maps is longitude and lengtitude coordinates. I know the one can be converted to the other, but nothing more.
I realize this might not be the correct place to ask about coordinate systems, but I honestly couldn't think of any other place to state the question.
Thanks for any help!
That's my bad, I now see that there is more data for each row:
CoordSystemNumber: 23
CoordSystemName: EUREF89 UTM Sone 33
I think that format is called UTM. You need to know the Zone and Hemisphere to complete the conversion. Is there other data associated with this?
Tell me if this seems helpful :
x = 882880 meters
y = -4924482 meters
z = 3944130 meters
Geocentric latitude and longitude are not commonly used, but they are defined by
latitude = arctan( z / sqrt( x^2 + y^2 ) )
longitude = arctan( y / x )
Taken from here :
http://www.cv.nrao.edu/~rfisher/Ephemerides/earth_rot.html
see this too :
http://en.wikipedia.org/wiki/Geographic_coordinate_system
This wikipedia article might offer some help.
The coordinates are often chosen such that one of the numbers represent vertical position, and two or three of the numbers represent horizontal position. A common choice of coordinates is latitude, longitude and elevation.

How do I convert coordinates to a Latitude & Longitude?

I am reverse engineering a transportation visualization app. I need to find out the latitude for the origin of their data feed. Specifically what XY 0,0 is. The only formulas I have found calculate distance between two points, or location of a bearing/distance.
They use the XY to display a map in a very legacy application. The XY is in FEET.
I have these coordinates:
47.70446615506108, -122.34469839507263: x=1268314, y=260622
47.774182540800616,-122.3412994737105: x=1269649, y=286031
47.60024792289405, -122.32767331735774: x=1271767, y=222532
47.57012494413499, -122.29129609983679: x=1280532, y=211374
I need to find out what the latitude and longitude of x=0, y=0 is and what the formula would be to find this out.
They have two data feeds, one is more current than the other. The feed with the most current data does NOT include latitude, longitude, but only XY. I am trying to extrapolate based on their less current, yet more informative (includes lat, lon) data feed what 0,0 is so I can simply convert their (more current) data feed's XY coordinates to latitude and longitude.
If you look at the first 2 lines of data, and subtract the latitude
47.7044 - 47.7741 = -0.06972 degrees
There are 60 nautical miles per degree of latitude, and 6076 feet per nautical mile.
-.06972 * 60 * 6076 = 25,415 ft
Subtracting the two 'Y' values:
260662 - 286031 = 25,409 ft
So indeed that seems to prove the X and Y values are in feet.
If you take any of the Y values, and convert back to degrees, for example
260622 ft / ( 6076 ft/nm ) / ( 60 nm/degree ) = .71
286031 ft / 6076 / 60 = .78
So subtracting those values from the latitudes of (47.70 and 47.77) gives you very close to exactly 47 degrees, which should be your y=0 point.
For longitude, a degree is 60 nautical miles at the equator and 0 miles at the poles. So the number of miles per degree has to be multiplied by the cosine of the latitude, so approx cos(47 degrees), or .68. So instead of 6076 nm per degree, it's about 4145 nm.
So for the X values,
1268314 ft / ( 4145 ft/nm ) / ( 60 nm/degree ) = 5.10 degrees
1269649 ft / 4145 / 60 = 5.10 degrees
These X numbers increase as the latitude increases (less negative), so I believe you should add 5.1 degrees, which means the X base point is about
-122.3 + 5.1 = 117.2 West longitude for your x=0 point.
This is roughly the position of Spokane WA.
So given X=1280532, Y=211374
Lat = 47 + ( 211374 / 6096 / 60 ) = 47.58
Lon = -117.2 - ( 1280532 / ( 6096 * cos(47.58)) / 60 ) = -122.35
Which is roughly equivalent to the given data 47.57 and -122.29
The variance may be due to different projections - the X,Y system may be a "flattened" projection as opposed to lat/long which apply to a spherical projection? So to be accurate you may yet need more advanced math or that open source library :)
This question may also be helpful, it contains code for calculating great circle distances:
Calculate distance between two latitude-longitude points? (Haversine formula)
There are many different coordinate systems. You need to find out the what the coordinate systems are for both the lat/lon's (e.g. WGS84 etc) and x/y's first (e.g. some sort of projected system probably).
Once you have that information there are several tools you can use to do conversions and manipulations. One example (of a free open source coding library) is proj4.
Ask them what coordinate system they're using! (or if you got the dataset from some database, look at the metadata for the dataset and it should tell you. Otherwise I'd be skeptical of its value)
Most likely this is one of the state plane coordinate systems. They're for localized areas of the earth (kind of like UTM), and are frequently used for surveying.
You can use CORPSCON (or other GIS programs; ExpertGPS will do this if you have the GIS Option Pack but it's not free. I forget whether GPSBabel does conversion) to convert between lat/long and any of the state plane coordinate systems. You'll also need to know which datum the coordinates are in. WGS84 and NAD83 are very close but NAD27 is different.
You've got good advice on coordinate systems already, so I'll just chime in with the library I've used with great success in the past.
Geotrans is approved for use by the US Department of Defence, so you can be sure that it is well tested. You can grab it from here:
http://earth-info.nga.mil/GandG/geotrans/index.html
That might not be the right link as that page talks about the application, not the library. I expect the library is in the Developers package. Licensing terms were very liberal from memory, but make sure you review the terms before using it commercially.
Edit:
An interesting discussion on Geotrans licensing can be found here:
http://www.mail-archive.com/debian-legal#lists.debian.org/msg39263.html
Over here, I said this:
In Java, I would use the OpenMap converter from a point's expression in UTM to one using Latitude and Longitude (assuming a WGS-84 ellipsoid which is most commonly used in GPS).
OpenMap is open source and I would post a link to their download page but they have a short license script in the way. So, to avoid being rude, I won't deep link. Instead, head to their homepage and click Downloads.
That should either solve your problem directly or at least point you towards a useful algorithm.
I've used Brenor Brophey's gPoint PHP class to do this on a couple of occasions. Solid results, GPL code, and easily deployed. Recommended.