SRP without violating encapsulation - language-agnostic

I am having trouble reconciling the Single Responsibility Principle with encapsulation. It seems like splitting responsibilities amongst classes requires exposing a lot of data. As an example, consider some object called DataPoints. DataPoints is filled with x and y coordinates, among other things. I can create a Generator class that fills DataPoints. Now, let's say I want to plot those data points. Clearly, that's a separate responsibility that might come from a class called DataPointsPlotter. But to plot the data, I need to know what the internal x and y coordinates are. With a single class handling both, that's no problem. x and y are internal variables, but both a create() and a print() method have access to those. I can expose x and y (perhaps through getters/setters--ugh) or I can pass the DataPoints structure to the Plotter class, but it still needs to get inside to get x and y. I can have an instance of Plotter declared in the DataPoints class to which I send x and y. But that's still an exposure.
How can I in this example plot x and y using the plotter without violating encapsulation?

class DataPoint {
protected x, y
public function construct(theX, theY) {
x = theX
y = theY
}
public function getX {
return x
}
public function getY {
return y
}
}
This encapsulates the responsibility of representing a datapoint in a known format. Assuming there's also some sanity checking going on to confirm that x and y have good values, this is one responsibility which is being encapsulated here.
class Plotter {
public function plot(DataPoint dp) {
x = dp.getX
y = dp.getY
... plot ...
}
}
The plotter accepts an instance of DataPoint and plots it. That's also one responsibility: plot an instance of DataPoint. It does not require Plotter to have any knowledge of the internal structure of DataPoint. It just requires a defined and stable interface how Plotter can get the necessary data from DataPoint. Which are the getters getX and getY. You can change the internals of DataPoint around however you want as long as its interface stays the same. And the responsibility of DataPoint is to hold a datapoint and give other code access to its data in a defined way. If there was no way to get data out of DataPoint, its existence would be quite useless.
So no, SRP and encapsulation are not at odds with each other. You just need to be clear about what exactly the responsibility is.

Related

How to plot a transfer function from a Cauer network

The picture below shows a Cauer network, which is a continued fraction network.
I have built the 3rd olrder transfer function 3rd Octave like this:
function uebertragung=G(R1,Tau1,R2,Tau2,R3,Tau3)
s= tf("s");
C1= Tau1/R1;
C2= Tau2/R2;
C3= Tau3/R3;
# --- Uebertragungsfunktion 3.Ordnung --- #
uebertragung= 1/((s*R1*C1)^3+5*(s*R2*C2)^2+6*s*R3*C3+1);
endfunction
R1,R2,R3,C1,C2,C3 are the 6 parameters my characteristic curve depends on.
I need to put this parameters into the tranfser function, get a result and plot the characteristic curve from the data.
The characteristic curve shows thermal impedance vs time. Like these 2 curves from an igbt data sheet.
My problem is I don't know how to handle transfer functions properly. I need data to plot the characteristic curve but I don't know how to generate them out of the transfer function.
Any tips are welcome. Do I have to make Laplace transformation?
If you need further Information ask me and I try to provide them all.
From the data sheet, the equation they are using for their transient thermal impedance graph is the Foster chain step function response:
Z(t) = sum (R_i * (1-exp(-t/tau_i))) = sum (R_i * (1-exp(-t/(R_i*C_i))))
I verified that the stage R's and C's in the table by the graph will produce the plot you shared with that function.
The method for producing a step function response of an s-domain (Laplace domain) impedance function (Z) is to take the inverse Laplace transform of the product of the transfer function and 1/s (the Laplace domain form of a constant value step function). With the Foster model impedance function:
Z(s) = sum (R_i/(1+R_i*C_i*s))
that will produce the equation above.
Using the transfer function in Octave, you can use the Control package function step to calculate the transient response for you rather than performing the inverse Laplace transform yourself. So once you have Z(s), step(Z) will produce or plot the transient response. See help step for details. You can then adjust the plot (switch to log scale, set axes limits, etc) to look like one of the spec sheet plots.
Now, you want to do the same thing with a Cauer network model. It is important to realize that the R's and C's will not be the same for the two models. The Foster network is a decoupled model that has each primary complex pole isolated by layout, but the R's and C's are actually convolutions of the physical thermal resistances and capacitances in the real package. On the contrary, the Cauer model has R's and C's that match the physical package layers, and the poles in the s-domain transfer function will be complex products of the multiple layers.
So, however you are obtaining your R's and C's for the Cauer model, you can't just use the same values they have in their Foster model parameter table. They can be calculated from physical layer and material properties, however, assuming you have that information. Once you do have useful values, the procedure for going from Z(s) to the transient impedance function is the same for either network, and they should produce the same result.
As an example, the following procedure should work in both Octave and Matlab to plot the Thermal impedance curve from the spec sheet data using the Foster Z(s) model as a starting point. For the Cauer model, just use a different Z(s) function.
(Note that Octave has some issues in the step function that insert t = 0 entries into the time series output, even when they aren't specified, which can cause some errors when trying to plot on a log scale. so this example puts in a t=0 node then ignores it. wanted to explain so that line didn't seem confusing).
s = tf('s')
R1 = 8.5e-3; R2 = 2e-3;
tau1 = 151e-3; tau2 = 5.84e-3;
C1 = tau1/R1; C2 = tau2/R2;
input_imped = R1/(1+R1*C1*s)+R2/(1+R2*C2*s)
times = linspace(0, 10, 100000);
[Zvals,output_times] = step(input_imped, times);
loglog(output_times(2:end), Zvals(2:end));
xlim([.001 10]); ylim([0.0001, .1]);
grid;
xlabel('t [s]');
ylabel('Z_t_h_(_j_-_c_) [K/W] IGBT');
text(1,0.013 ,'Z_t_h_(_j_-_c_) IGBT');

What is a polymorphic lambda?

The concept of lambdas (anonymous functions) is very clear to me. And I'm aware of polymorphism in terms of classes, with runtime/dynamic dispatch used to call the appropriate method based on the instance's most derived type. But how exactly can a lambda be polymorphic? I'm yet another Java programmer trying to learn more about functional programming.
You will observe that I don't talk about lambdas much in the following answer. Remember that in functional languages, any function is simply a lambda bound to a name, so what I say about functions translates to lambdas.
Polymorphism
Note that polymorphism doesn't really require the kind of "dispatch" that OO languages implement through derived classes overriding virtual methods. That's just one particular kind of polymorphism, subtyping.
Polymorphism itself simply means a function allows not just for one particular type of argument, but is able to act accordingly for any of the allowed types. The simplest example: you don't care for the type at all, but simply hand on whatever is passed in. Or, to make it not quite so trivial, wrap it in a single-element container. You could implement such a function in, say, C++:
template<typename T> std::vector<T> wrap1elem( T val ) {
return std::vector(val);
}
but you couldn't implement it as a lambda, because C++ (time of writing: C++11) doesn't support polymorphic lambdas.
Untyped values
...At least not in this way, that is. C++ templates implement polymorphism in rather an unusual way: the compiler actually generates a monomorphic function for every type that anybody passes to the function, in all the code it encounters. This is necessary because of C++' value semantics: when a value is passed in, the compiler needs to know the exact type (its size in memory, possible child-nodes etc.) in order to make a copy of it.
In most newer languages, almost everything is just a reference to some value, and when you call a function it doesn't get a copy of the argument objects but just a reference to the already-existing ones. Older languages require you to explicitly mark arguments as reference / pointer types.
A big advantage of reference semantics is that polymorphism becomes much easier: pointers always have the same size, so the same machine code can deal with references to any type at all. That makes, very uglily1, a polymorphic container-wrapper possible even in C:
typedef struct{
void** contents;
int size;
} vector;
vector wrap1elem_by_voidptr(void* ptr) {
vector v;
v.contents = malloc(sizeof(&ptr));
v.contents[0] = ptr;
v.size = 1;
return v;
}
#define wrap1elem(val) wrap1elem_by_voidptr(&(val))
Here, void* is just a pointer to any unknown type. The obvious problem thus arising: vector doesn't know what type(s) of elements it "contains"! So you can't really do anything useful with those objects. Except if you do know what type it is!
int sum_contents_int(vector v) {
int acc = 0, i;
for(i=0; i<v.size; ++i) {
acc += * (int*) (v.contents[i]);
}
return acc;
}
obviously, this is extremely laborious. What if the type is double? What if we want the product, not the sum? Of course, we could write each case by hand. Not a nice solution.
What would we better is if we had a generic function that takes the instruction what to do as an extra argument! C has function pointers:
int accum_contents_int(vector v, void* (*combine)(int*, int)) {
int acc = 0, i;
for(i=0; i<v.size; ++i) {
combine(&acc, * (int*) (v.contents[i]));
}
return acc;
}
That could then be used like
void multon(int* acc, int x) {
acc *= x;
}
int main() {
int a = 3, b = 5;
vector v = wrap2elems(a, b);
printf("%i\n", accum_contents_int(v, multon));
}
Apart from still being cumbersome, all the above C code has one huge problem: it's completely unchecked if the container elements actually have the right type! The casts from *void will happily fire on any type, but in doubt the result will be complete garbage2.
Classes & Inheritance
That problem is one of the main issues which OO languages solve by trying to bundle all operations you might perform right together with the data, in the object, as methods. While compiling your class, the types are monomorphic so the compiler can check the operations make sense. When you try to use the values, it's enough if the compiler knows how to find the method. In particular, if you make a derived class, the compiler knows "aha, it's ok to call that method from the base class even on a derived object".
Unfortunately, that would mean all you achieve by polymorphism is equivalent to compositing data and simply calling the (monomorphic) methods on a single field. To actually get different behaviour (but controlledly!) for different types, OO languages need virtual methods. What this amounts to is basically that the class has extra fields with pointers to the method implementations, much like the pointer to the combine function I used in the C example – with the difference that you can only implement an overriding method by adding a derived class, for which the compiler again knows the type of all the data fields etc. and you're safe and all.
Sophisticated type systems, checked parametric polymorphism
While inheritance-based polymorphism obviously works, I can't help saying it's just crazy stupid3 sure a bit limiting. If you want to use just one particular operation that happens to be not implemented as a class method, you need to make an entire derived class. Even if you just want to vary an operation in some way, you need to derive and override a slightly different version of the method.
Let's revisit our C code. On the face of it, we notice it should be perfectly possible to make it type-safe, without any method-bundling nonsense. We just need to make sure no type information is lost – not during compile-time, at least. Imagine (Read ∀T as "for all types T")
∀T: {
typedef struct{
T* contents;
int size;
} vector<T>;
}
∀T: {
vector<T> wrap1elem(T* elem) {
vector v;
v.contents = malloc(sizeof(T*));
v.contents[0] = &elem;
v.size = 1;
return v;
}
}
∀T: {
void accum_contents(vector<T> v, void* (*combine)(T*, const T*), T* acc) {
int i;
for(i=0; i<v.size; ++i) {
combine(&acc, (*T) (v[i]));
}
}
}
Observe how, even though the signatures look a lot like the C++ template thing on top of this post (which, as I said, really is just auto-generated monomorphic code), the implementation actually is pretty much just plain C. There are no T values in there, just pointers to them. No need to compile multiple versions of the code: at runtime, the type information isn't needed, we just handle generic pointers. At compile time, we do know the types and can use the function head to make sure they match. I.e., if you wrote
void evil_sumon (int* acc, double* x) { acc += *x; }
and tried to do
vector<float> v; char acc;
accum_contents(v, evil_sumon, acc);
the compiler would complain because the types don't match: in the declaration of accum_contents it says the type may vary, but all occurences of T do need to resolve to the same type.
And that is exactly how parametric polymorphism works in languages of the ML family as well as Haskell: the functions really don't know anything about the polymorphic data they're dealing with. But they are given the specialised operators which have this knowledge, as arguments.
In a language like Java (prior to lambdas), parametric polymorphism doesn't gain you much: since the compiler makes it deliberately hard to define "just a simple helper function" in favour of having only class methods, you can simply go the derive-from-class way right away. But in functional languages, defining small helper functions is the easiest thing imaginable: lambdas!
And so you can do incredible terse code in Haskell:
Prelude> foldr (+) 0 [1,4,6]
11
Prelude> foldr (\x y -> x+y+1) 0 [1,4,6]
14
Prelude> let f start = foldr (\_ (xl,xr) -> (xr, xl)) start
Prelude> :t f
f :: (t, t) -> [a] -> (t, t)
Prelude> f ("left", "right") [1]
("right","left")
Prelude> f ("left", "right") [1, 2]
("left","right")
Note how in the lambda I defined as a helper for f, I didn't have any clue about the type of xl and xr, I merely wanted to swap a tuple of these elements which requires the types to be the same. So that would be a polymorphic lambda, with the type
\_ (xl, xr) -> (xr, xl) :: ∀ a t. a -> (t,t) -> (t,t)
1Apart from the weird explicit malloc stuff, type safety etc.: code like that is extremely hard to work with in languages without garbage collector, because somebody always needs to clean up memory once it's not needed anymore, but if you didn't watch out properly whether somebody still holds a reference to the data and might in fact need it still. That's nothing you have to worry about in Java, Lisp, Haskell...
2There is a completely different approach to this: the one dynamic languages choose. In those languages, every operation needs to make sure it works with any type (or, if that's not possible, raise a well-defined error). Then you can arbitrarily compose polymorphic operations, which is on one hand "nicely trouble-free" (not as trouble-free as with a really clever type system like Haskell's, though) but OTOH incurs quite a heavy overhead, since even primitive operations need type-decisions and safeguards around them.
3I'm of course being unfair here. The OO paradigm has more to it than just type-safe polymorphism, it enables many things e.g. old ML with it's Hindler-Milner type system couldn't do (ad-hoc polymorphism: Haskell has type classes for that, SML has modules), and even some things that are pretty hard in Haskell (mainly, storing values of different types in a variable-size container). But the more you get accustomed to functional programming, the less need you will feel for such stuff.
In C++ polymorphic (or generic) lambda starting from C++14 is a lambda that can take any type as an argument. Basically it's a lambda that has auto parameter type:
auto lambda = [](auto){};
Is there a context that you've heard the term "polymorphic lambda"? We might be able to be more specific.
The simplest way that a lambda can be polymorphic is to accept arguments whose type is (partly-)irrelevant to the final result.
e.g. the lambda
\(head:tail) -> tail
has the type [a] -> [a] -- e.g. it's fully-polymorphic in the inner type of the list.
Other simple examples are the likes of
\_ -> 5 :: Num n => a -> n
\x f -> f x :: a -> (a -> b) -> b
\n -> n + 1 :: Num n => n -> n
etc.
(Notice the Num n examples which involve typeclass dispatch)

Most efficient way to track x and y values of multiple object instances on the stage?

I have an arbitrary number of object instances on the stage. At any one given time the number of objects may be between 10 and 50. Each object instance can move, but the movement is gradual, the current coordinates are not predictable and at any given moment I may need to retrieve the coordinates of a specific object instance.
Is there a common best-practice method to use in this case to track object instance coordinates? I can think of two approaches:
I write a function within the object class that, upon arbitrary event execution, is called on an object instance and returns that object instances coordinates.
Within the object class I declare global static variables that represent x and y values and, upon arbitrary event execution, the variables are updated with the latest values for that object instance.
While I can get both methods to work, I do not know whether one or the other would be detrimental to program performance in the long run. I lean toward the global variables because I expect it is less resource intensive to update and call a variable than to call a function which subsequently updates and calls a variable. Maybe there is even a third option?
I understand that this is a somewhat subjective question. I am asking with respect to resource consumption so please answer in that respect.
I don't understand.. The x and y properties are both stored on the object (if it's a DisplayObject) and readable.. Why do you need to store these in a global or whatever?
If you're not using DisplayObject as a base, then just create the properties yourself with appropriate getters.
If you want to get the coordinates of all your objects, add them to an array, let's say objectList.
Then just use a loop to check the values:
for each(var i:MovieClip in objectList)
{
trace(i.x, i.y);
}
I think I'm misunderstanding the question, though.
definitely 1.
for code readability use a get property, ie
public function get x():Number { return my_x; }
The problem with 2, is you may well also need to keep track of which object those coords are for - not to mention it is just messy... Globals can get un-managable quickly, hence all this reesearch into OOP and encapsuilation, and doing away with (mostly) the need for globals..
with only 50 or less object - don't even consider performance issues...
And remember that old mantra - "Premature optimisation is the root of programming evil" ;-)

Is there a relationship between calling a function and instantiating an object in pure functional languages?

Imagine a simple (made up) language where functions look like:
function f(a, b) = c + 42
where c = a * b
(Say it's a subset of Lisp that includes 'defun' and 'let'.)
Also imagine that it includes immutable objects that look like:
struct s(a, b, c = a * b)
Again analogizing to Lisp (this time a superset), say a struct definition like that would generate functions for:
make-s(a, b)
s-a(s)
s-b(s)
s-c(s)
Now, given the simple set up, it seems clear that there is a lot of similarity between what happens behind the scenes when you either call 'f' or 'make-s'. Once 'a' and 'b' are supplied at call/instantiate time, there is enough information to compute 'c'.
You could think of instantiating a struct as being like a calling a function, and then storing the resulting symbolic environment for later use when the generated accessor functions are called. Or you could think of a evaluting a function as being like creating a hidden struct and then using it as the symbolic environment with which to evaluate the final result expression.
Is my toy model so oversimplified that it's useless? Or is it actually a helpful way to think about how real languages work? Are there any real languages/implementations that someone without a CS background but with an interest in programming languages (i.e. me) should learn more about in order to explore this concept?
Thanks.
EDIT: Thanks for the answers so far. To elaborate a little, I guess what I'm wondering is if there are any real languages where it's the case that people learning the language are told e.g. "you should think of objects as being essentially closures". Or if there are any real language implementations where it's the case that instantiating an object and calling a function actually share some common (non-trivial, i.e. not just library calls) code or data structures.
Does the analogy I'm making, which I know others have made before, go any deeper than mere analogy in any real situations?
You can't get much purer than lambda calculus: http://en.wikipedia.org/wiki/Lambda_calculus. Lambda calculus is in fact so pure, it only has functions!
A standard way of implementing a pair in lambda calculus is like so:
pair = fn a: fn b: fn x: x a b
first = fn a: fn b: a
second = fn a: fn b: b
So pair a b, what you might call a "struct", is actually a function (fn x: x a b). But it's a special type of function called a closure. A closure is essentially a function (fn x: x a b) plus values for all of the "free" variables (in this case, a and b).
So yes, instantiating a "struct" is like calling a function, but more importantly, the actual "struct" itself is like a special type of function (a closure).
If you think about how you would implement a lambda calculus interpreter, you can see the symmetry from the other side: you could implement a closure as an expression plus a struct containing the values of all the free variables.
Sorry if this is all obvious and you just wanted some real world example...
Both f and make-s are functions, but the resemblance doesn't go much further. Applying f calls the function and executes its code; applying make-s creates a structure.
In most language implementations and modelizations, make-s is a different kind of object from f: f is a closure, whereas make-s is a constructor (in the functional languages and logic meaning, which is close to the object oriented languages meaning).
If you like to think in an object-oriented way, both f and make-s have an apply method, but they have completely different implementations of this method.
If you like to think in terms of the underlying logic, f and make-s have a type build on the samme type constructor (the function type constructor), but they are constructed in different ways and have different destruction rules (function application vs. constructor application).
If you'd like to understand that last paragraph, I recommend Types and Programming Languages by Benjamin C. Pierce. Structures are discussed in §11.8.
Is my toy model so oversimplified that it's useless?
Essentially, yes. Your simplified model basically boils down to saying that each of these operations involves performing a computation and putting the result somewhere. But that is so general, it covers anything that a computer does. If you didn't perform a computation, you wouldn't be doing anything useful. If you didn't put the result somewhere, you would have done work for nothing as you have no way to get the result. So anything useful you do with a computer, from adding two registers together, to fetching a web page, could be modeled as performing a computation and putting the result somewhere that it can be accessed later.
There is a relationship between objects and closures. http://people.csail.mit.edu/gregs/ll1-discuss-archive-html/msg03277.html
The following creates what some might call a function, and others might call an object:
Taken from SICP ( http://mitpress.mit.edu/sicp/full-text/book/book-Z-H-21.html )
(define (make-account balance)
(define (withdraw amount)
(if (>= balance amount)
(begin (set! balance (- balance amount))
balance)
"Insufficient funds"))
(define (deposit amount)
(set! balance (+ balance amount))
balance)
(define (dispatch m)
(cond ((eq? m 'withdraw) withdraw)
((eq? m 'deposit) deposit)
(else (error "Unknown request -- MAKE-ACCOUNT"
m))))
dispatch)

Good way to procedurally generate a "blob" graphic in 2D

I'm looking to create a "blob" in a computationally fast manner. A blob here is defined as a collection of pixels that could be any shape, but all connected. Examples:
.ooo....
..oooo..
....oo..
.oooooo.
..o..o..
...ooooooooooooooooooo...
..........oooo.......oo..
.....ooooooo..........o..
.....oo..................
......ooooooo....
...ooooooooooo...
..oooooooooooooo.
..ooooooooooooooo
..oooooooooooo...
...ooooooo.......
....oooooooo.....
.....ooooo.......
.......oo........
Where . is dead space and o is a marked pixel. I only care about "binary" generation - a pixel is either ON or OFF. So for instance these would look like some imaginary blob of ketchup or fictional bacterium or whatever organic substance.
What kind of algorithm could achieve this? I'm really at a loss
David Thonley's comment is right on, but I'm going to assume you want a blob with an 'organic' shape and smooth edges. For that you can use metaballs. Metaballs is a power function that works on a scalar field. Scalar fields can be rendered efficiently with the marching cubes algorithm. Different shapes can be made by changing the number of balls, their positions and their radius.
See here for an introduction to 2D metaballs: https://web.archive.org/web/20161018194403/https://www.niksula.hut.fi/~hkankaan/Homepages/metaballs.html
And here for an introduction to the marching cubes algorithm: https://web.archive.org/web/20120329000652/http://local.wasp.uwa.edu.au/~pbourke/geometry/polygonise/
Note that the 256 combinations for the intersections in 3D is only 16 combinations in 2D. It's very easy to implement.
EDIT:
I hacked together a quick example with a GLSL shader. Here is the result by using 50 blobs, with the energy function from hkankaan's homepage.
Here is the actual GLSL code, though I evaluate this per-fragment. I'm not using the marching cubes algorithm. You need to render a full-screen quad for it to work (two triangles). The vec3 uniform array is simply the 2D positions and radiuses of the individual blobs passed with glUniform3fv.
/* Trivial bare-bone vertex shader */
#version 150
in vec2 vertex;
void main()
{
gl_Position = vec4(vertex.x, vertex.y, 0.0, 1.0);
}
/* Fragment shader */
#version 150
#define NUM_BALLS 50
out vec4 color_out;
uniform vec3 balls[NUM_BALLS]; //.xy is position .z is radius
bool energyField(in vec2 p, in float gooeyness, in float iso)
{
float en = 0.0;
bool result = false;
for(int i=0; i<NUM_BALLS; ++i)
{
float radius = balls[i].z;
float denom = max(0.0001, pow(length(vec2(balls[i].xy - p)), gooeyness));
en += (radius / denom);
}
if(en > iso)
result = true;
return result;
}
void main()
{
bool outside;
/* gl_FragCoord.xy is in screen space / fragment coordinates */
outside = energyField(gl_FragCoord.xy, 1.0, 40.0);
if(outside == true)
color_out = vec4(1.0, 0.0, 0.0, 1.0);
else
discard;
}
Here's an approach where we first generate a piecewise-affine potato, and then smooth it by interpolating. The interpolation idea is based on taking the DFT, then leaving the low frequencies as they are, padding with zeros at high frequencies, and taking an inverse DFT.
Here's code requiring only standard Python libraries:
import cmath
from math import atan2
from random import random
def convexHull(pts): #Graham's scan.
xleftmost, yleftmost = min(pts)
by_theta = [(atan2(x-xleftmost, y-yleftmost), x, y) for x, y in pts]
by_theta.sort()
as_complex = [complex(x, y) for _, x, y in by_theta]
chull = as_complex[:2]
for pt in as_complex[2:]:
#Perp product.
while ((pt - chull[-1]).conjugate() * (chull[-1] - chull[-2])).imag < 0:
chull.pop()
chull.append(pt)
return [(pt.real, pt.imag) for pt in chull]
def dft(xs):
pi = 3.14
return [sum(x * cmath.exp(2j*pi*i*k/len(xs))
for i, x in enumerate(xs))
for k in range(len(xs))]
def interpolateSmoothly(xs, N):
"""For each point, add N points."""
fs = dft(xs)
half = (len(xs) + 1) // 2
fs2 = fs[:half] + [0]*(len(fs)*N) + fs[half:]
return [x.real / len(xs) for x in dft(fs2)[::-1]]
pts = convexHull([(random(), random()) for _ in range(10)])
xs, ys = [interpolateSmoothly(zs, 100) for zs in zip(*pts)] #Unzip.
This generates something like this (the initial points, and the interpolation):
Here's another attempt:
pts = [(random() + 0.8) * cmath.exp(2j*pi*i/7) for i in range(7)]
pts = convexHull([(pt.real, pt.imag ) for pt in pts])
xs, ys = [interpolateSmoothly(zs, 30) for zs in zip(*pts)]
These have kinks and concavities occasionally. Such is the nature of this family of blobs.
Note that SciPy has convex hull and FFT, so the above functions could be substituted by them.
You could probably design algorithms to do this that are minor variants of a range of random maze generating algorithms. I'll suggest one based on the union-find method.
The basic idea in union-find is, given a set of items that is partitioned into disjoint (non-overlapping) subsets, to identify quickly which partition a particular item belongs to. The "union" is combining two disjoint sets together to form a larger set, the "find" is determining which partition a particular member belongs to. The idea is that each partition of the set can be identified by a particular member of the set, so you can form tree structures where pointers point from member to member towards the root. You can union two partitions (given an arbitrary member for each) by first finding the root for each partition, then modifying the (previously null) pointer for one root to point to the other.
You can formulate your problem as a disjoint union problem. Initially, every individual cell is a partition of its own. What you want is to merge partitions until you get a small number of partitions (not necessarily two) of connected cells. Then, you simply choose one (possibly the largest) of the partitions and draw it.
For each cell, you will need a pointer (initially null) for the unioning. You will probably need a bit vector to act as a set of neighbouring cells. Initially, each cell will have a set of its four (or eight) adjacent cells.
For each iteration, you choose a cell at random, then follow a pointer chain to find its root. In the details from the root, you find its neighbours set. Choose a random member from that, then find the root for that, to identify a neighbouring region. Perform the union (point one root to the other, etc) to merge the two regions. Repeat until you're happy with one of the regions.
When merging partitions, the new neighbour set for the new root will be the set symmetric difference (exclusive or) of the neighbour sets for the two previous roots.
You'll probably want to maintain other data as you grow your partitions - e.g. the size - in each root element. You can use this to be a bit more selective about going ahead with a particular union, and to help decide when to stop. Some measure of the scattering of the cells in a partition may be relevant - e.g. a small deviance or standard deviation (relative to a large cell count) probably indicates a dense roughly-circular blob.
When you finish, you just scan all cells to test whether each is a part of your chosen partition to build a separate bitmap.
In this approach, when you randomly choose a cell at the start of an iteration, there's a strong bias towards choosing the larger partitions. When you choose a neighbour, there's also a bias towards choosing a larger neighbouring partition. This means you tend to get one clearly dominant blob quite quickly.