We have an old application in Turbo Pascal which can save its internal state into a file, and we need to be able to read/write this file in a C# application.
The old application generates the file by dumping various in-memory data structures. In one place, the application just dumps a range of memory, and this memory range contains some arrays. I am trying to noodle out the purpose of the bytes immediately preceding the actual array elements. In particular, the first two items in the block can be represented as:
type
string2 = string[2];
stringarr2 = array[0..64] of string2;
string4 = string[4];
stringarr4 = array[0..64] of string4;
In the data file, I see the following byte sequence:
25 00 02 02 41 42 02 43 44 ...
The 25 is the number of elements in the array. The 02 41 42 is the first string element, "AB"; the 02 43 44 is the second string element, "CD", and so on. I don't know what the 00 02 between the array element count and the first array element refers to. It's possible the array element count is 25 00 and the element size is 02, but each array element is actually 3 bytes in size.
In the place in the file where the array of 4-character strings starts, I see the following:
25 00 04 00 00 04 41 42 43 44 04 45 46 47 48
Again, there's the 25 which is the number of elements in the array; 04 41 42 43 44 is the first element in the array, "ABCD", and so on. In between there are the bytes 00 04 00 00. Maybe they are flags. Maybe they are some kind of indication of the shape of the array (but I don't see how 02 and 04 both indicate a one-dimensional array).
I don't have access to Turbo Pascal to try writing different kinds of arrays to a file, and don't have authorization to install something like Free Pascal, so my opportunities for experimentation along those lines are very limited.
These arrays are not dynamic, since Turbo Pascal didn't have them.
Thanks in advance for any dusty memories.
Pascal arrays have no bookkeeping data. You have an array of five-byte data structures (string[4]), so an array of 65 of them occupies 65*5=325 bytes. If the program wrote more than that, then it's because the program took special measures to write more. The "extra" values weren't just sitting in memory that the program happened to write to disk when it naively wrote the whole data structure with SizeOf. Thus, the only way to know what those bytes mean is to find the source code or the documentation. Merely knowing that it's Turbo Pascal is no help.
It's possible that the first section of the file is intentionally the same size as all the other array elements. For the two-character strings, the "header" is three bytes, and for the four-character strings, the "header" is five bytes, the same as the size of the strings. That would have allowed the program to use a file of string4 data type for the file, and then just skip the file's first record. The zero between the file length and the string length in the header might belong to either of those fields, and the remaining two zero bytes might just be filler.
Besides the layout of the individual strings of characters in the file, you will also need to consider what code page those single-byte characters are from. C# chars are unicode 2 byte chars.
If you're lucky, the original file data contains only ASCII 7 bit characters, which covers characters of the English alphabet. If the original data contains "European" letters such as umlauts or accented characters, these will be "high ascii" char values in the range 128..255. You'll need to perform an encoding conversion to see these characters correctly in C#. Code page 1252 Windows Latin 1 would be a good starting point.
If the original file data contains Japanese, Chinese, Korean, Thai, or characters from other "Eastern" scripts, you have a lot of work ahead of you.
Turbo Pascal strings are prefixed with a length byte. So a string[2] is actually 3 bytes: length, char1 and char2. An array of string[2] will hold all the strings one by one directly after each other in memory. If you do a blockwrite with the array as a parameter it will immediately start with the first string, it will not write any headers etc. So if you have the source you should be able to see what it writes before the array.
Related
We have a 2D datamatrix barcode which outputs as 12002052 (CR+LF after the value). When scanning into Chrome the barcode is triggering the downloads menu - which I have read from other posts that this is due to the CR+LF. To troubleshoot, we generated a new 2D datamatrix barcode with an online generator for 12002052 which scans successfully in Chrome (doesn't trigger the downloads menu) but when scanned into notepad++ (showing all characters) it shows the exact same output as the original/bad barcode.
I took an image of both the good and bad barcode and uploaded them to a datamatrix decoding website (zxing) and what is interesting is the last value in the "raw bytes" is different for each barcode
bad 2D
Raw text 12002052
Raw bytes 8e 82 96 b6 81
Barcode format DATA_MATRIX
Parsed Result Type TEXT
Parsed Result 12002052
good 2D
Raw text 12002052
Raw bytes 8e 82 96 b6 0b
Barcode format DATA_MATRIX
Parsed Result Type TEXT
Parsed Result 12002052
my question is what exactly are the "raw bytes" and how could I possible encode them to hopefully reverse engineer this and find what is differentiating the 2 barcodes?
I believe that 'Raw bytes' would refer to a byte array. Byte arrays are exactly what they sound like, an array of bytes which are 8 bits each. So, the raw bytes '8e 82 96 b6 0b' refer to hexidecimal representations of each byte.
That said, from the string you have provided - I do not get a corresponding byte array that matches the raw text input provided. (There are plenty of string to byte converters online) Perhaps some character encoding other than ASCII or UTF8 is used in this case.
So, I have been assigned a task to read and save values of C-struct that was stored within tifftag of tiff image as byte buffer. This might be quite simple, but I am quite new to this realm of programming.
I know the exact positions I need to read bytes from. When I use python tiff tag readers, I get these weird values of bytes, that I could not make sense of. I was expecting it to be \xb5\x00\x00\x00\x01
format, not something strange like \n\xd7#=\n\xd7#=K.
Here is the snippet of weird buffer values
However, in utility app AsTiffViewer, those are perfectly fine as shown
here.
How do I decode this? What does this all mean?
\n\xd7#=\n\xd7#=K (0A D7 23 3D 0A D7 23 3D - as per AsTiffViewer)
By the way, these 0A D7 23 3D & 0A D7 23 3D are supposed to be two float value, each of them 4 bytes.
I was expecting tiff tag byte buffer to be in format of\xb5\x00\x00\x00\x01 etc, However, it spit out some weird format - \n\xd7#=\n\xd7#=K. I don't know how to decode or read this.
So, after mucking around a bit, I found out that, \n\xd7#=\n\xd7#=K, this is nothing but how python represents float in binary string.
I'm currently working on a problem where I have objects trivially numbered using a binary code. ie object 0 = 000, object 1 = 001, object 2 = 010 ... However, in my case I sometimes don't know where the start of the sequence is (ie 001 could appear as 010 or 100). Is there some optimal way that I can number my objects so that the labels are invariant to permutation? And what are the search terms I need to read up more about this myself?
An obvious solution would be to number them by the number of hot bits (ie 0=0000, 1=0001, 2=0011, 3=0111 ...) but this is a very inefficient code.
Based on the updated comments, a prefix-free code is sufficient. This will allow you to uniquely determine each symbol length. This solves the problem with not knowing where the next symbol starts.
Note that all fixed-length codes are trivially prefix-free. Just consider 8 bits ASCII: every 8 bits a new character starts, and each byte in the stream uniquely represents one ASCII character. The unique prefix length is exactly the fixed length.
There's a trivial conversion from any variable-length encoding that also would work here, despite not being prefix-free. Simply replace the start of each code with "11", each 0 bit with "01", each 1 bit with "10" and the end of each code with "00". Now "00" becomes "11 01 01 00" and "000" becomes "11 01 01 01 00". To parse this, you look for '11...00" to find the symbol boundaries, and then simply decode the bits in between. Depending on the exact stream/message layer, you might even be able to skip the "00".
I would like to store many numbers in 1 cell and save space. The idea is to encode each one to a string of a constant length and store them in a text field (presumably MEDIUMTEXT). What characters can be used so that they are 1 byte only? I assume that special characters are stored in a way that uses more than 1 byte. I can use e.g. base64 but I am not sure how many encoding characters I can add to the base before MySQL uses actually more space to store them than I manage to save.
You say "numbers". What do you mean, really?
Digits? See above.
Integers? (no decimal point, no fraction)
Floats? (with exponent, etc)
Some notes on digits, compression, etc:
1 byte per Ascii character -- 8 bits
1 byte per digit, since it is an ascii character
One random digit, at maximum theoretical compression, is about 0.332 bytes. Visualize it this way: 1000 is 3 digits and 1024 is 10 bits.
MySQL's DECIMAL datatype puts 2 digits into one byte for smaller numbers; for larger numbers it stores 9 digits in 4 bytes.
If you zip up a million digits of pi, it will come very close to the above compression.
A simple Rule of Thumb is that "text" compresses 3:1.
Base64 expands bytes by 8/6 because one 8-bit byte is represented by 64 (2^6) different characters.
Base64 is more useful for avoiding special characters; it is not really a compression technique.
A 4-byte MySQL INT (range of -2 billion to +2 billion, but usually just positive and not evenly distributed), when converted to base64 would take more than 5 bytes for 9-10 digits.
General techniques
Client compression: For 123,2345,88,22, here is one way to handle it. In fact, I recommend this for virtually any text handling where compression is desired in MySQL.
use compress() (or similar function) in your client.
use BLOB (up to 64KB) or MEDIUMBLOB (up to 16MB) in the table
use uncompress() after retrieving the blob.
For an array of numbers, use json_encode for the array, then feed into compress+blob, above. It will work for any sized "numbers" and provide nearly maximal compresssion.
You cannot efficiently reach into a MEDIUMTEXT or BLOB to get one number out of an array. The entire cell will be fetched.
That leads to another general statement... If you have a lot of stuff that you don't need to sort on, nor fetch individually, JSON is a good approach. Think of it as from MySQL's point of view an opaque blob. The application writes and rereads it as one big thing, then picks it apart.
The JSON will possibly encode the above example as ["123","2345","88","22"], which will be slightly fatter after compression. But, any good compression algorithm will notice and take advantage of the repetition.
Take advantage of the data
17,22738 48,77795 300
17,22792 48,77795 297
17,22853 48,77764 294
17,22874 48,77743 297
17,22887 48,77704 300
17,22968 48,77671 305
17,23069 48,77563 296
17,23092 48,77561 292
-->
17,22738 48,77795 300
54 0 -3
61 -31 -3
21 -21 3
13 -39 3
81 -33 5
1 -108 -9
23 -2 -4
The numbers stay relatively constant. Take advantage of it by starting with raw data, but then switching to deltas. Try it will about 10 times as much data; I suspect you will continue to get better than 2x compression before zipping, but maybe slightly less than 2x after zipping. (Zipping can take advantage of the repetition of 48,777; I am taking more advantage of it by tossing most of it.)
I am using Docklight Scripting to put together a VBScript that communicates with a device via RS232. All the commands are sent in Hex.
When I want to read from the device, I send a 32-bit address, a 16-bit read length, and an 8-bit checksum.
When I want to write to the device, I send a 16-bit data length, the data, followed by an 8-bit checksum.
In Hex, the data that is sent to the device is the following:
AA0001110200060013F81800104D
AA 00 01 11 02 0006 0013F818 0010 4D
(spaced for ease of reading)
AA000111020006 is the protocol header, where:
AA is the Protocol Byte
00 is the Source ID
01 is the Dest ID
11 is the Message Type
02 is the Command Byte
0006 is the Length Byte(s)
The remainder of the string is broken down as follows:
0013F818 is the 32-bit address
0010 is the 16 bit read length
4D is the 8-bit checksum
If the string is not correct, or the checksum is invalid the device replies back with an error string. However, I am not getting an error. The device replies back with the following hex string:
AA0100120200100001000000000100000000000001000029
AA 01 00 12 02 0010 00010000000001000000000000010000 29
(spaced for ease of reading)
Again, the first part of the string (AA00011102) is a part of the protocol header, where:
AA is the Protocol Byte
01 is the Source ID
00 is the Dest ID
12 is the Message Type
02 is the Command Byte
The difference between what is sent to the device, and what the device replies back with is that the length bytes is not a "static" part of the protocol header, and will change based of the request. The remainder of the string is broken down as follows:
0010 is the Length Byte(s)
00010000000001000000000000010000 is the data
29 is the 8-bit Check Sum
The goal is to read a timer that is stored in the NVM. The timer is stored in the upper halves of 60 4-byte NVM words.
The instructions specify that I need to read the first two bytes of each word, and then sum the results.
Verbatim, the instructions say:
Read the NVM elapsed timer. The timer is stored in the upper halves of 60 4-byte words.
Read the first two bytes of each word of the timer. Read the 16 bit values of these locations:
13F800H, 13F804H, 13808H, and continue to 13F8ECH.
Sum the results. Multiply the sum by 409.6 seconds, then divide by 3600 to get the results in hours.
My knowledge of bits, and bytes, and all other things is a bit cloudy. The first thing I need to confirm is that I am understanding the read protocol correctly.
I am assuming that when I specify 0010 as the 16 bit read length, that translates to the 16-bit values that the instructions want me to read.
The second thing I need to understand a little better is that when it tells me to read the first two bytes of each word, what exactly constitutes the first two bytes of each word?
I think what confuses me a little more is that the instructions say the timer is stored in the upper half of the 4 byte word (which to me seems like the first half).
I've sat with another colleague of mine for a day trying to figure out how to make this all work, and we haven't had any consistent results with our trials.
I have looked on the internet to find something that would explain this better in the context being used.
Another worry is that the technical data I am using to accomplish this project isn't 100% accurate in their instructions, and they have conflicting information or skipping information throughout their publication (which is probably close to 1000 pages long).
What I would really appreciate is someone who has a much better understanding of hex / binary to review the instructions I've posted, and provide some feedback on my interpretation of the instructions provided, and provide any information.