HANDLE_ERROR not found error in Cuda - cuda

__global__ void add( int a, int b, int *c ) {
*c = a + b;
}
int main( void ) {
int c;
int *dev_c;
HANDLE_ERROR( cudaMalloc( (void**)&dev_c, sizeof(int) ) );
add<<<1,1>>>( 2, 7, dev_c );
HANDLE_ERROR( cudaMemcpy( &c, dev_c, sizeof(int), cudaMemcpyDeviceToHost ) );
printf( "2 + 7 = %d\n", c );
cudaFree( dev_c );
}
This is the code.
HANDLE_ERROR not found error is being generated. i dont know how to solve it. Tried to grab some header files but can't figure it out...
Any Help Please!!!

If I had to guess, I'd say you're using the book CUDA By Example, which defines the HANDLE_ERROR macro as follows:
static void HandleError( cudaError_t err,
const char *file,
int line ) {
if (err != cudaSuccess) {
printf( "%s in %s at line %d\n", cudaGetErrorString( err ),
file, line );
exit( EXIT_FAILURE );
}
}
#define HANDLE_ERROR( err ) (HandleError( err, __FILE__, __LINE__ ))
Make sure that this code appears somewhere in your source, or somewhere in a header you #include.

You can download the source code for the book here.
The source code also contains the header files (in the common folder), where the missing macros are defined, and which the book quotes in the source codes as (for example)
#include "../common/book.h"
If the links become unavailable, search the books title on the Nvidia Developer site, or the site of the CUDA, you will find the direct link to the book's page, where the source code can be found.

Related

CUDA Adding vectors example giving incorrect answer

I am just beginning CUDA and C and I am trying to do simple addition.
When I try to print the result, I am getting the following as output:
" 3 + 4 is 1"
To compile the code, I am running the command "nvcc test.cu" which generates a.out
Thanks for your help.
Here is test.cu:
#include <stdio.h>
__global__ void add(int a, int b, int *c){
*c = a + b;
}
int main(){
int a,b,c;
int *dev_c;
a=3;
b=4;
cudaMalloc((void**)&dev_c, sizeof(int));
add<<<1,1>>>(a,b,dev_c);
cudaMemcpy(&c, dev_c, sizeof(int), cudaMemcpyDeviceToHost);
printf("%d + %d is %d\n", a, b, c);
cudaFree(dev_c);
return 0;
}
for debugging purposes, you should use printf inside the kernel. But I think your problem is that dev_c is not a raw pointer so cudaMemcpy didn't work well
cudaMemcpy(&c, dev_c, sizeof(int), cudaMemcpyDeviceToHost);

invalid device symbol cudaMemcpyFromSymbol CUDA

I want to calculate the sum of all elements of an array in CUDA. I came up with this code. It compiles without any error. But the result is always zero. I've got the invalid device symbol from cudaMemcpyFromSymbol. I cannot use any libraries like Thrust or Cublas.
#define TRIALS_PER_THREAD 4096
#define NUM_BLOCKS 256
#define NUM_THREADS 256
double *dev;
__device__ volatile double pi_gpu = 0;
__global__ void ArraySum(double *array)
{
unsigned int tid = threadIdx.x + blockDim.x * blockIdx.x;
pi_gpu = pi_gpu + array[tid];
__syncthreads();
}
int main (int argc, char *argv[]) {
cudaMalloc((void **) &dev, NUM_BLOCKS * NUM_THREADS * sizeof(double));
double pi_gpu_h;
ArraySum<<<NUM_BLOCKS, NUM_THREADS>>>(dev);
cudaDeviceSynchronize();
cudaError err = cudaMemcpyFromSymbol(&pi_gpu_h, &pi_gpu, sizeof(double), cudaMemcpyDeviceToHost);
if( cudaSuccess != err )
{
fprintf( stderr, "cudaMemcpyFromSymbolfailed : %s\n", cudaGetErrorString( err ) );
exit( -1 );
}
return pi_gpu_h; // this is always zero!!!
}
The symbol argument in the copy from symbol call is incorrect. It should look like this:
cudaMemcpyFromSymbol(&pi_gpu_h, pi_gpu, sizeof(double), 0, cudaMemcpyDeviceToHost)

NVCC ignoring CUDA code?

I have just installed CUDA 5.5 on my notebook and trying out using NVCC to compile a basic hello world program from this link http://computer-graphics.se/hello-world-for-cuda.html
The code I'm trying out is this:
// This is the REAL "hello world" for CUDA!
// It takes the string "Hello ", prints it, then passes it to CUDA with an array
// of offsets. Then the offsets are added in parallel to produce the string "World!"
// By Ingemar Ragnemalm 2010
#include <stdio.h>
const int N = 16;
const int blocksize = 16;
__global__
void hello(char *a, int *b)
{
a[threadIdx.x] += b[threadIdx.x];
}
int main()
{
char a[N] = "Hello \0\0\0\0\0\0";
int b[N] = {15, 10, 6, 0, -11, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0};
char *ad;
int *bd;
const int csize = N*sizeof(char);
const int isize = N*sizeof(int);
printf("%s", a);
cudaMalloc( (void**)&ad, csize );
cudaMalloc( (void**)&bd, isize );
cudaMemcpy( ad, a, csize, cudaMemcpyHostToDevice );
cudaMemcpy( bd, b, isize, cudaMemcpyHostToDevice );
dim3 dimBlock( blocksize, 1 );
dim3 dimGrid( 1, 1 );
hello<<<dimGrid, dimBlock>>>(ad, bd);
cudaMemcpy( a, ad, csize, cudaMemcpyDeviceToHost );
cudaFree( ad );
cudaFree( bd );
printf("%s\n", a);
return EXIT_SUCCESS;
}
It is supposed to print out "Hello world!", but after I compiled using "nvcc hello.cu -o a.out", my output is "Hello Hello", can someone tell me what is going on?
This was caused by a broken CUDA driver installation. A corrected installation allowed what was otherwise correct code to run without error.
[This community wiki entry was assembled from comments to get this question off the unanswered queue]

Wrong results of a CUDA dynamic parallelism code

I recently bumped in the problem illustrated at Uncorrectable ECC error. Shortly speaking, from time to time I receive an Uncorrectable ECC error and my dynamic parallelism code generates uncorrect results. The most probable hypothesis of the uncorrectable ECC error is a corrupted driver stack, which has also been indirectly confirmed by the experience of another user (see the above post). I would now like to face the second issue, i.e., the algorithmic one. To this end, I'm dealing with the reproducer reported below which, since the original code generating uncorrect results uses dynamic parallelism, uses this CUDA feature too.
I do not see any evindent issue with this code. I think that the synchronization regarding the child kernel launch should be ok: the first __syncthreads() should not be necessary and the cudaDeviceSynchronize() should ensure that all the memory writes of the child kernel are accomplished before the printf.
My question is: is this code wrong or the wrong results are due to a non-programming issue?
My configuration: CUDA 5.0, Windows 7, 4-GPU system equipped with Kepler K20c, driver 327.23.
#include <stdio.h>
#include <conio.h>
#define K 6
#define BLOCK_SIZE 256
#define gpuErrchk(ans) { gpuAssert((ans), __FILE__, __LINE__); }
inline void gpuAssert(cudaError_t code, char *file, int line, bool abort=true)
{
if (code != cudaSuccess)
{
fprintf(stderr,"GPUassert: %s %s %d\n", cudaGetErrorString(code), file, line);
if (abort) { getch(); exit(code); }
}
}
int iDivUp(int a, int b) { return ((a % b) != 0) ? (a / b + 1) : (a / b); }
__global__ void child_kernel(double* P1)
{
int m = threadIdx.x;
P1[m] = (double)m;
}
__global__ void parent_kernel(double* __restrict__ x, int M)
{
int i = threadIdx.x + blockDim.x * blockIdx.x;
if(i<M) {
double* P1 = new double[13];
dim3 dimBlock(2*K+1,1); dim3 dimGrid(1,1);
__syncthreads();
child_kernel<<<dimGrid,dimBlock>>>(P1);
cudaDeviceSynchronize();
for(int m=0; m<2*K+1; m++) printf("%f %f\n",P1[m],(double)m);
}
}
int main() {
const int M = 19000;
//gpuErrchk(cudaSetDevice(0));
double* x = (double*)malloc(M*sizeof(double));
for (int i=0; i<M; i++) x[i] = (double)i;
double* d_x; gpuErrchk(cudaMalloc((void**)&d_x,M*sizeof(double)));
gpuErrchk(cudaMemcpy(d_x,x,M*sizeof(double),cudaMemcpyHostToDevice));
dim3 dimBlock(BLOCK_SIZE,1); dim3 dimGrid(iDivUp(M,BLOCK_SIZE));
parent_kernel<<<dimGrid,dimBlock>>>(d_x,M);
gpuErrchk(cudaPeekAtLastError());
gpuErrchk(cudaDeviceSynchronize());
getch();
return 0;
}
I'm pretty sure you're exceeding the launch pending limit. It's nearly impossible to tell with your code as-is, but I've modified it and added error checking on the child kernel launch.
When I do that, I get launch errors, signified by a printout of !. Skipping the launch error cases, all of my in-kernel checking of P1[m] vs. m passes (I get no * printout at all.)
#include <stdio.h>
#define K 6
#define BLOCK_SIZE 256
#define gpuErrchk(ans) { gpuAssert((ans), __FILE__, __LINE__); }
inline void gpuAssert(cudaError_t code, char *file, int line, bool abort=true)
{
if (code != cudaSuccess)
{
fprintf(stderr,"GPUassert: %s %s %d\n", cudaGetErrorString(code), file, line);
if (abort) { exit(code); }
}
}
int iDivUp(int a, int b) { return ((a % b) != 0) ? (a / b + 1) : (a / b); }
__global__ void child_kernel(unsigned long long* P1)
{
int m = threadIdx.x;
P1[m] = (unsigned long long)m;
}
__global__ void parent_kernel(double* __restrict__ x, int M)
{
int i = threadIdx.x + blockDim.x * blockIdx.x;
if(i<M) {
unsigned long long* P1 = new unsigned long long[13];
dim3 dimBlock(2*K+1,1); dim3 dimGrid(1,1);
__syncthreads();
child_kernel<<<dimGrid,dimBlock>>>(P1);
cudaDeviceSynchronize();
cudaError_t err = cudaGetLastError();
if (err != cudaSuccess) printf("!");
else for(unsigned long long m=0; m<dimBlock.x; m++) if (P1[m] != m) printf("*");
}
}
int main() {
const int M = 19000;
//gpuErrchk(cudaSetDevice(0));
double* x = (double*)malloc(M*sizeof(double));
for (int i=0; i<M; i++) x[i] = (double)i;
double* d_x; gpuErrchk(cudaMalloc((void**)&d_x,M*sizeof(double)));
gpuErrchk(cudaMemcpy(d_x,x,M*sizeof(double),cudaMemcpyHostToDevice));
dim3 dimBlock(BLOCK_SIZE,1); dim3 dimGrid(iDivUp(M,BLOCK_SIZE));
parent_kernel<<<dimGrid,dimBlock>>>(d_x,M);
gpuErrchk(cudaPeekAtLastError());
gpuErrchk(cudaDeviceSynchronize());
return 0;
}
Feel free to add further decoding of the err variable in the parent kernel to convince yourself that you are exceeding the launch pending limit. As another test, you can set M to 2048 instead of 19000 in your host code, and all the ! printouts go away. (launch pending limit default == 2048)
As I've stated in the comments, I think the uncorrectable ECC error is a separate issue, and I suggest trying the driver 321.01 that I linked in the comments.

Sobel filter in x direction in CUDA

I am trying to apply a sobel filter on a grayscale image in the x direction on each pixel and displaying the result.
X direction sobel filter is:-
-1 0 1
-2 0 2
-1 0 1
I am not getting the required results. Can someone point out my mistakes? I am trying to use textures and I am not so sure as to whether I have used it correctly:
#include <cuda.h>
#include<iostream>
using namespace std;
#define CudaSafeCall( err ) __cudaSafeCall( err, __FILE__, __LINE__ )
#define CudaCheckError() __cudaCheckError( __FILE__, __LINE__ )
texture <float,2,cudaReadModeElementType> tex1;
//Kernel for x direction sobel
__global__ void implement_x_sobel(float* garbage,float* output,int width,int height,int widthStep)
{
int x=blockIdx.x*blockDim.x+threadIdx.x;
int y=blockIdx.y*blockDim.y+threadIdx.y;
float output_value=((0*tex2D(tex1,x,y))+(2*tex2D(tex1,x+1,y))+(-2*tex2D(tex1,x- 1,y))+(0*tex2D(tex1,x,y+1))+(1*tex2D(tex1,x+1,y+1))+(-1*tex2D(tex1,x-1,y+1))+ (1*tex2D(tex1,x+1,y-1))+(0*tex2D(tex1,x,y-1))+(-1*tex2D(tex1,x-1,y-1)));
output[y*widthStep+x]=output_value;
}
//Kernel for y direction sobel
//__global__ void implement_y_sobel(float* input,float* output,int width,int height,int widthStep)
//{
//}
//Host Code
inline void __cudaSafeCall( cudaError err, const char *file, const int line )
{
#ifdef CUDA_ERROR_CHECK
if ( cudaSuccess != err )
{
printf("cudaSafeCall() failed at %s:%i : %s\n",
file, line, cudaGetErrorString( err ) );
exit( -1 );
}
#endif
return;
}
inline void __cudaCheckError( const char *file, const int line )
{
#ifdef CUDA_ERROR_CHECK
cudaError err = cudaGetLastError();
if ( cudaSuccess != err )
{
printf("cudaCheckError() failed at %s:%i : %s\n",
file, line, cudaGetErrorString( err ) );
exit( -1 );
}
#endif
return;
}
void sobel(float* input,float* output,int width,int height,int widthStep)
{
cudaChannelFormatDesc channelDesc=cudaCreateChannelDesc(32,32,0,0,cudaChannelFormatKindFloat);
cudaArray * cuArray;
CudaSafeCall(cudaMallocArray(&cuArray,&channelDesc,width,height));
cudaMemcpyToArray(cuArray,0,0,input,widthStep*height,cudaMemcpyHostToDevice);
tex1.addressMode[0]=cudaAddressModeClamp;
tex1.addressMode[1]=cudaAddressModeClamp;
tex1.filterMode=cudaFilterModeLinear;
tex1.normalized=false;
cudaBindTextureToArray(tex1,cuArray,channelDesc);
float * D_output_x;
float * garbage=NULL;
CudaSafeCall(cudaMalloc(&D_output_x,widthStep*height));
dim3 blocksize(16,16);
dim3 gridsize;
gridsize.x=(width+blocksize.x-1)/blocksize.x;
gridsize.y=(height+blocksize.y-1)/blocksize.y;
//kernel call
implement_x_sobel<<<gridsize,blocksize>>>(garbage,D_output_x,width,height,widthStep/sizeof(float));
cudaThreadSynchronize();
CudaCheckError();
CudaSafeCall(cudaMemcpy(output,D_output_x,height*widthStep,cudaMemcpyDeviceToHost));
cudaFree(D_output_x);
cudaFree(garbage);
cudaFreeArray(cuArray);
}
My main file:-
#include<iostream>
#include <stdio.h>
#include <stdlib.h>
#include<opencv/highgui.h>
#include<opencv/cv.h>
#include"header.h"
using namespace std;
void main()
{
IplImage* img1=cvLoadImage("C://test.jpg",CV_LOAD_IMAGE_GRAYSCALE);
if( !img1) {
printf("ERROR: couldnt load file!\n");
}
IplImage* img2=cvCreateImage(cvGetSize(img1),IPL_DEPTH_32F,img1->nChannels);
IplImage* img3=cvCreateImage(cvGetSize(img1),IPL_DEPTH_32F,img1->nChannels);
unsigned char * pseudo_input=(unsigned char *)img1->imageData;
float * output=(float*)img2->imageData;
float *input=(float*)img3->imageData;
int s=img1->widthStep/sizeof(float);
for(int w=0;w<=(img1->height);w++)
for(int h=0;h<(img1->width*img1->nChannels);h++)
{
input[w*s+h]= pseudo_input[w*s+h];
}
sobel(input,output,img1->width,img1->height,img1->widthStep);
cvShowImage("Original Image",img1);
cvShowImage("Sobeled Image",img2);
cvWaitKey(0);
}}
cudaCreateChannelDesc expects as first 4 parameters the number of bits for x, y, z, and w components. It should be 32 for float texture.
cudaChannelFormatDesc channelDesc = cudaCreateChannelDesc(32, 32, 0, 0, cudaChannelFormatKindFloat);
It is hard to diagnose the problem without more information. If you are getting no meaningful output (e.g. texture is reading all 0's), that implies a problem with your texture setup or binding.
If you are off by a little bit, that is probably because you need to offset the coordinates by 0.5f, and while you are at it, be more careful about explicitly converting your ints to floats. The code won't run any slower if you declare and assign float-valued variables before calling tex2D().