Alternative To READ UNCOMMITED With FOR UPDATE - mysql

We have 2 scripts/mysql connections that are grabbing rows from a table. Once a script grabs some rows, the other script must not be able to access those rows.
What I've got so far, that seems to work is this:
SET SESSION TRANSACTION ISOLATION LEVEL READ UNCOMMITTED
START TRANSACTION
SELECT * FROM table WHERE result='new' FOR UPDATE
// Loop over update
UPDATE table SET result='old' WHERE id=...
COMMIT
From what I understand the same connection could read the dirty data, but the other connections shouldn't be able to since the rows are locked. Is this correct?
Also is there a better way of guaranteeing that each row can only be SELECT one time with both scripts running?
edit:
Oh... and the engine is Innodb
edit: Also I'd like to try to avoid deadlocks, unless they really have no effect, in which I could just prepare for them and rerun the query.

SELECT ... FOR UDATE sets exclusive lock on the rows, and if it's not possible it waits for lock to be released, the main aim of SELECT ... FOR UDATE statement is to prevent others from reading the certain rows, while you are manipulating them.
If I get your question right, by 'dirty data' you mean those locked rows?
Don't see why you call them 'dirty', cause they are just locked, but indeed inside of same transaction you can read the rows you've locked (obviuosly).
Regarding your second question
Also is there a better way of guaranteeing that each row can only be
SELECT one time with both scripts running?
SELECT ... FOR UDATE guarantees that in each moment certain rows can be read only inside of one transaction. I dont see a better way to do so, as soon as this statement was specially designed for that purpose.

Related

MariaDB. Use Transaction Rollback without locking tables

On a website, when a user posts a comment I do several queries, Inserts and Updates. (On MariaDB 10.1.29)
I use START TRANSACTION so if any query fails at any given point I can easily do a rollback and delete all changes.
Now I noticed that this locks the tables when I do an INSERT from an other INSERT, and I'm not talking while the query is running, that’s obvious, but until the transaction is not closed.
Then DELETE is only locked if they share a common index key (comments for the same page), but luckily UPDATE is no locked.
Can I do any Transaction that does not lock the table from new inserts (while the transaction is ongoing, not the actual query), or any other method that lets me conveniently "undo" any query done after some point?
PD:
I start Transaction with PHPs function mysqli_begin_transaction() without any of the flags, and then mysqli_commit().
I don't think that a simple INSERT would block other inserts for longer than the insert time. AUTO_INC locks are not held for the full transaction time.
But if two transactions try to UPDATE the same row like in the following statement (two replies to the same comment)
UPDATE comment SET replies=replies+1 WHERE com_id = ?
the second one will have to wait until the first one is committed. You need that lock to keep the count (replies) consistent.
I think all you can do is to keep the transaction time as short as possible. For example you can prepare all statements before you start the transaction. But that is a matter of milliseconds. If you transfer files and it can take 40 seconds, then you shouldn't do that while the database transaction is open. Transfer the files before you start the transaction and save them with a name that indicates that the operation is not complete. You can also save them in a different folder but on the same partition. Then when you run the transaction, you just need to rename the files, which should not take much time. From time to time you can clean-up and remove unrenamed files.
All write operations work in similar ways -- They lock the rows that they touch (or might touch) from the time the statement is executed until the transaction is closed via either COMMIT or ROLLBACK. SELECT...FOR UPDATE and SELECT...WITH SHARED LOCK also get involved.
When a write operation occurs, deadlock checking is done.
In some situations, there is "gap" locking. Did com_id happen to be the last id in the table?
Did you leave out any SELECTs that needed FOR UPDATE?

How to perform check-and-insert in mysql?

In my code I need to do the following:
Check a MySQL table (InnoDB) if a particular row (matching some criteria) exists. If it does, return it. If it doesn't, create it and then return it.
The problem I seem to have is race conditions. Every now and then two processes run so closely together, that they both check the table at the same time, don't see the row, and both insert it - thus duplicate data.
I'm reading MySQL documentation trying to come up with some way to prevent this. What I've come up so far:
Unique indexes seem to be one option, but they're not universal (it only works when the criteria is something unique for all rows).
Transactions even at SERIALIZABLE level don't protect against INSERT, period.
Neither do SELECT ... LOCK IN SHARE MODE or SELECT ... FOR UPDATE.
A LOCK TABLE ... WRITE would do it, but it's a very drastic measure - other processes won't be able to read from the table, and I need to lock ALL tables that I intend to use until I unlock them.
Basically, I'd like to do either of the following:
Prevent all INSERT to the table from processes other than mine, while allowing SELECT/UPDATE (this is probably impossible because it make so little sense most of the time).
Organize some sort of manual locking. The two processes would coordinate among themselves which one gets to do the select/insert dance, while the other waits. This needs some sort of operation that waits until the lock is released. I could probably implement a spin-lock (one process repeatedly checks if the other has released the lock), but I'm afraid that it would be too resource intensive.
I think I found an answer myself. Transactions + SELECT ... FOR UPDATE in an InnoDB table can provide a synchronization lock (aka mutex). Have all processes lock on a specific row in a specific table before they start their work. Then only one will be able to run at a time and the rest will wait until the first one finishes its transaction.

Do Sql Update Statements run at the same time if requested at the same time?

If two independent scripts call a database with update requests to the same field, but with different values, would they execute at the same time and one overwrite the other?
as an example to help ensure clarity, imagine both of these statements being requested to run at the same time, each by a different script, where Status = 2 is called microseconds after Status = 1 by coincidence.
Update My_Table SET Status = 1 WHERE Status= 0;
Update My_Table SET Status = 2 WHERE Status= 0;
What would my results be and why? if other factors play a roll, expand on them as much as you please, this is meant to be a general idea.
Side Note:
Because i know people will still ask, my situation is using MySql with Google App Engine, but i don't want to limit this question to just me should it be useful to others. I am using Status as an identifier for what script is doing stuff to the field. if status is not 0, no other script is allowed to touch it.
This is what locking is for. All major SQL implementations lock DML statements by default so that one query won't overwrite another before the first is complete.
There are different levels of locking. If you've got row locking then your second update will run in parallel with the first, so at some point you'll have 1s and 2s in your table.
Table locking would force the second query to wait for the first query to completely finish to release it's table lock.
You can usually turn off locking right in your SQL, but it's only ever done if you need a performance boost and you know you won't encounter race conditions like in your example.
Edits based on the new MySQL tag
If you're updating a table that used the InnoDB engine, then you're working with row locking, and your query could yield a table with both 1s and 2s.
If you're working with a table that uses the MyISAM engine, then you're working with table locking, and your update statements would end up with a table that would either have all 1s or all 2s.
from https://dev.mysql.com/doc/refman/5.0/en/lock-tables-restrictions.html (MySql)
Normally, you do not need to lock tables, because all single UPDATE statements are atomic; no other session can interfere with any other currently executing SQL statement. However, there are a few cases when locking tables may provide an advantage:
from https://msdn.microsoft.com/en-us/library/ms177523.aspx (sql server)
An UPDATE statement always acquires an exclusive (X) lock on the table it modifies, and holds that lock until the transaction completes. With an exclusive lock, no other transactions can modify data.
If you were having two separate connections executing the two posted update statements, whichever statement was started first, would be the one that completed. THe other statement would not update the data as there would no longer be records with a status of 0
The short answer is: it depends on which statement commits first. Just because one process started an update statement before another doesn't mean that it will complete before another. It might not get scheduled first, it might be blocked by another process, etc.
Ultimately, it's a race condition: the operation that completes (and commits) last, wins.
Since you have TWO scripts doing the same thing and using different values for the UPDATE, they will NOT run at the same time, one of the scripts will run before even if you think you are calling them at the same time. You need to specify WHEN each script should run, otherwise the program will not know what should be 1 and what should be 2.

Select only unlocked rows mysql

I have locked one row in one transaction by following query
START TRANSACTION;
SELECT id FROM children WHERE id=100 FOR UPDATE;
And in another transaction i have a query as below
START TRANSACTION;
SELECT id FROM children WHERE id IN (98,99,100) FOR UPDATE;
It gives error lock wait timeout exceeded.
Here 100 is already locked (in first transaction ) But the ids 98,99 are not locked.Is there any possibility return records of 98,99 if only 100 is row locked in above query.So result should be as below
Id
===
98
99
===
Id 100 should be ignored because 100 is locked by a transaction.
Looks like SKIP LOCKED option mentioned in a previous answer is now available in MySQL. It does not wait to acquire a row lock and allows you to work with rows that are not currently locked.
From MySQL 8.0.0 Release Notes/Changes in MySQL 8.0.1:
InnoDB now supports NOWAIT and SKIP LOCKED options with SELECT ... FOR SHARE and SELECT ... FOR UPDATE locking read statements. NOWAIT causes the statement to return immediately if a requested row is locked by another transaction. SKIP LOCKED removes locked rows from the result set. See Locking Read Concurrency with NOWAIT and SKIP LOCKED.
Sample usage (complete example with outputs can be found in the link above):
START TRANSACTION;
SELECT * FROM tableName FOR UPDATE SKIP LOCKED;
Also, it might be good to include the warning in the Reference Manual here as well:
Queries that skip locked rows return an inconsistent view of the data. SKIP LOCKED is therefore not suitable for general transactional work. However, it may be used to avoid lock contention when multiple sessions access the same queue-like table.
MySQL does not have a way to ignore locked rows in a SELECT. You'll have to find a different way to set a row aside as "already processed".
The simplest way is to lock the row briefly in the first query just to mark it as "already processed", then unlock it and lock it again for the rest of the processing - the second query will wait for the short "marker" query to complete, and you can add an explicit WHERE condition to ignore already-marked rows. If you don't want to rely on the first operation being able to complete successfully, you may need to add a bit more complexity with timestamps and such to clean up after those failed operations.
MySQL does not have this feature. For anyone searching for this topic in general, some RDBMS have better/smarter locking features than others.
For developers constrained to MySQL, the best approach is to add a column (or use an existing, e.g., status column) that can be set to "locked" or "in progress" or similar, execute a SELECT ID, * ... WHERE IN_PROGRESS != 1 FOR UPDATE; to get the row ID you want to lock, issue UPDATE .. SET IN_PROGRESS = 1 WHERE ID = XX to unlock the records.
Using LOCK IN SHARE MODE is almost never the solution because while it'll let you read the old value, but the old value is in the process of being updated so unless you are performing a non-atomic task, there's no point in even looking at that record.
Better* RDBMS recognize this pattern (select one row to work on and lock it, work on it, unlock it) and provide a smarter approach that lets you only search unlocked records. For example, PostgreSQL 9.5+ provide SELECT ... SKIP LOCKED which only selects from within the unlocked subset of rows matching the query. That lets you obtain an exclusive lock on a row, service that record to completion, then update & unlock the record in question without having to block other threads/consumers from being able to work independent of yourself.
*Here "better" means from the perspective of atomic updates, multi-consumer architecture, etc. and not necessarily "better designed" or "overall better." Not trying to start a flamewar here.
As per http://dev.mysql.com/doc/refman/5.0/en/innodb-locking-reads.html
The solution is to perform the SELECT in a locking mode using LOCK IN SHARE MODE:
SELECT * FROM parent WHERE NAME = 'Jones' LOCK IN SHARE MODE;

While in a transaction, how can reads to an affected row be prevented until the transaction is done?

I'm fairly sure this has a simple solution, but I haven't been able to find it so far. Provided an InnoDB MySQL database with the isolation level set to SERIALIZABLE, and given the following operation:
BEGIN WORK;
SELECT * FROM users WHERE userID=1;
UPDATE users SET credits=100 WHERE userID=1;
COMMIT;
I would like to make sure that as soon as the select inside the transaction is issued, the row corresponding to userID=1 is locked for reads until the transaction is done. As it stands now, UPDATEs to this row will wait for the transaction to be finished if it is in process, but SELECTs simply will read the previous value. I understand this is the expected behaviour in this case, but I wonder if there is a way to lock the row in such a way that SELECTs will also wait until the transaction is finished to return the values?
The reason I'm looking for that is that at some point, and with enough concurrent users, it could happen that while the previous transaction is in process someone else reads the "credits" to calculate something else. Ideally the code run by that someone else should wait for the transaction to finish to use the new value, because otherwise it could lead to irreversible desync issues.
Note that I don't want to lock the entire table for reads, just the specific row.
Also, I could add a boolean "locked" field to the tables and set it to 1 every time I'm starting a transaction but I don't really feel this is the most elegant solution here, unless there is absolutely no other way to handle this through mysql directly.
I found a workaround, specifically:
SELECT ... LOCK IN SHARE MODE sets a shared mode lock on the rows
read. A shared mode lock enables other sessions to read the rows but
not to modify them. The rows read are the latest available, so if they
belong to another transaction that has not yet committed, the read
blocks until that transaction ends.
(Source)
It seems that one can just include LOCK IN SHARE MODE in the critical SELECT statements that rely on transactional data and they will indeed wait for current transactions to finish before retrieving the row/s. For this to work the transaction has to use FOR UPDATE explicitly (as opposed to the original example I gave). E.g., given the following:
BEGIN WORK;
SELECT * FROM users WHERE userID=1 FOR UPDATE;
UPDATE users SET credits=100 WHERE userID=1;
COMMIT;
Anywhere else in the code I could use:
SELECT * FROM users WHERE userID=1 LOCK IN SHARE MODE;
Since this statement is not wrapped in a transaction, the lock is released immediately, thus having no impacts in subsequent queries, but if the row involving userID=1 has been selected for update within a transaction this statement would wait until the transaction is done, which is exactly what I was looking for.
You could try the SELECT ... FOR UPDATE locking read.
A SELECT ... FOR UPDATE reads the latest available data, setting exclusive locks on each row it reads. Thus, it sets the same locks a searched SQL UPDATE would set on the rows.
Please go through the following site: http://dev.mysql.com/doc/refman/5.0/en/innodb-locking-reads.html