3-dim putty (ssh) - html

Imagine a 3-dim putty - a polyhedron which every facet is a putty shell.
A few Qs:
1. Is there already such a thing?
2. How can I easily implement a cube/polyhedron that rotates freely, so that on each facet - I can decide what to show (for example, a putty shell). I really don't want to dwell on the graphics part, unless I have to. So any easily prepared graphic would be nice, as long as it supports my requirement. Can openGL help me? JOGL? HTML5? (I don't mind it being in a browser)

Really weird question, not even sure it belongs here, but seems fun anyway...
Have a look here : http://www.jukie.net/bart/blog/popenRWE
So I'd say : start a bash instance with this variant of popen which handles both writes and reads, use the pipes for input and output, forward keyboard strokes to input, and render the output in OpenGL, probably in a rendertexture.
Repeat for each side...
Not html5 or jogl, though. Plain old C or C++.

Compiz's Desktop Cube and six fullscreen Xterms.

Related

Good way to draw Console UIs in Cosmos?

So I'm developing an OS using C# and Cosmos. It's called Memphis, and I want it to be entirely command-line for now (like DOS).
But, something that most command-line OSes I've seen (Arch, DOS, etc) all have something like a console library that lets you create simple UIs with buttons, menus, inputs, etc.
I've already tried to write my own, but it was completely futile. I can draw a window and text on-screen, but not much else (I did have a basic window manager that kind of worked but didn't, you press tab to switch between windows, and left/right to select inputs like buttons, textboxes, etc and it did accept keyboard input and I could see the windows updating, but nothing actually changed despite the code theoretically working)
So I'm looking for a way for me to draw UIs on the console for my OS, but it has to be ENTIRELY managed, and must ONLY use what's in System.Console. It also CANNOT contain events. This is because, Cosmos can only really work with code that's 100% managed, and System.Console is implemented almost fully in Cosmos, and events throw an 'OpCode Mkrefany not yet implemented' when Cosmos' IL2CPU assembler tries to convert the compiled c# code to x86 ASM.

Scala libraries for a GUI with vector graphics

If I wanted to create a "good old" desktop GUI program with some basic selectable vector graphics (arrows, colored boxes, text) to show mostly text and some diagrams (no need for 3D or particles, etc.) that then can be edited by the user, which Scala library would I use, and why? I'd want to build a tool for something similar to drawing diagrams.
Mostly I don't want to use things like D3.js or other web SVG stuff because it is painfully slow and can't show the amounts of content I want it to. But if there are exceptional advantages by using, say, Scala.js, for this purpose, it could be still of interest if there are no better means.
Alternatively, someone can point me to where this had been discussed? Did not find anything on Google or here.
Scala-Swing is a wrapper for Java Swing which is quite nice. As you may know, below Swing lies Java2D, so you will most likely want to look for Java2D based libraries. There aren't that many for Scala that I'm aware of, but more for Java (which you can easily use).
JFreeChart and scala-chart - more for charting
JGraph
JUNG
Processing might have some libraries for your use case
JHotDraw - not sure it's still maintained
NetBeans - not sure it's still maintained
Prefuse
And of course, if it's simple enough, there is nothing wrong with using Java2D directly.

how to create applications with Clozure Common Lisp (on Microsoft Windows)

I am a new one to Common Lisp (using Clozure Common Lisp under Microsoft Windows), who is familiar with c and python before. So maybe the questions are stupid here, but be patient to give me some help.
1) What's is the usual way to run a common lisp script?
Now, I wrote a bat file under windows to call ccl exe(wx86cl.exe) and evaluate (progn (load "my_script_full_path") (ccl:quit)) every time when I want to "run" my script. Is this a standard way to "run" a script for common lisp?
Any other suggestion about this?
2) What's the difference between (require 'cxml) and (asdf:operate 'asdf:load-op :cxml)?
They are seems to be the same for my script, which one should I use?
3) ignore it, not a clear question
4) When I want to load some library (such as require 'cxml), it always takes time(3s or even 5s) to load cxml every time when I "run" my script, there is also much log to standard output I show below, it seems like checking something internal. Does it means I have to spent 3-5s to load cxml every time when I want to run a simple test? It seems like a little inefficient and the output is noisy. Any suggestion?
My Script
(require 'cxml) (some-code-using-cxml)
And the output
; Loading system definition from D:/_play_/lispbox-0.7/quicklisp/dists/quicklisp/software/cxml-20101107-git/cxml.asd into #<Package "ASDF0">
;;; Checking for wide character support... yes, using code points.
; Registering #<SYSTEM "cxml-xml">
......
some my script output
---EDIT TO ADD MORE----
5) I must say that I almost forget the way of dumping image to accelerate the loading speed of lisp library. So, what is the normal process for us to develop a (maybe very simple) lisp script?
Base on the answer of what I got now, I guess maybe
a) edit your script
b) test it via a REPL environment, SLIME is a really good choice, and there should be many loop between a <==> b
c) dump the image to distribute it?( I am no sure about this)
6) Furthermore, what is the common way/form for us to release/distribute the final program?
For a lisp library, we just release our source code, and let someone else can "load/require" them.
For a lisp program, we dump a image to distribute it when we confirm that all functions go well.
Am I right?
What form do we use in a real product? Do we always dump all the thing into a image at final to speed up the loading speed?
1) Yes, the normal way to run a whole programme is to use a launcher script. However, windows has much, much better scripting support these days than just the bat interpreter. Windows Scripting Host and PowerShell ship as standard.
1a) During development, it is usual to simply type things in a the REPL (Read-Eval-Print-Loop, i.e. the lisp command line), or to use something like SLIME (for emacs or xemacs) as a development environment. If you don't know what they are, look them up. You may wish to use Cygwin to install xemacs, which will give you access to a range of linux-ish tools.
2) Require is, IIRC, a part of the standard. ASDF is technically not, it is a library that operates to make libraries work more conveniently. ASDF has a bunch of features that you will eventually want if you really get into writing large Lisp programmes.
3) Question unclear, pass.
4) See 1a) - do your tests and modifications in a running instance, thus avoiding the need to load the library more than once (just as you would in Python - you found the python repl, right?). In addition, when your programme is complete, you can probably dump an image which has all of your libraries pre-loaded.
Edit: additional answers:
5) Yes
6) Once you have dumped the image, you will still need to distribute the lisp binary to load the memory image. To make this transparent to the user, you will also have to have a loader script (or binary) to run the lisp binary with the image.
You don't have to start the lisp from scratch and load everything over again each time you want to run a simple test. For more efficient development, interactively evaluate code in the listener (REPL) of a running lisp environment.
For distribution, I use Zachary Beane's Buildapp tool. Very easy to install and use.
Regarding distribution -
I wrote a routine (it's at home and unavailable at the moment) that will write out the current image as a standard executable and quit. It works for both CLISP and SBCL.
I can rummage it up if you like.

Can I write a program in binary directly ? How can I get the computer to execute it?

I know that may seem weird and looking for troubles but I think experiencing what the ancient programmers experienced before is something interesting. So how can I execute a program written only in binary? (Suppose that I know what I am doing and not using assembly of course.)
I just want to write a series of bits like 111010111010101010101 and execute that. So how can I do that?
Use a hex editor. You'll need to find out the relevant executable format for your operating system, of course - assuming you want to use an operating system... I suppose you could always write your own bootloader and just run the code directly that way, if you want to get all hardcore.
I don't think you'll really be experiencing what programmers experienced back then though - for one thing, you won't be using punch cards, paper tape etc. For another, your context is completely different - you know what computers are like now, so it'll feel painfully primitive to you... whereas back then, it would have been bleeding edge and exciting just on those grounds.
Use a hex editor, write your bits and save it as an executable file (either just with the file extension .exe in Windows or with chmod a+x filename in Linux).
The problem is: You'd also have to write all the OS-specific stuff in binary format, and you'll have to have a table that translates from assembler code to binary stuff.
Why not, if you want to experience low-level programming, give D.E. Knuth's assembler MMIX a try?
It really depends on the platform you are using. But that's sort of irrelevant based on your proposed purpose. The earliest programmers of modern computers as you think of them did not program in binary -- they programmed in assembly.
You will learn nothing trying to program in binary for a specific Operating System and specific CPU type using a hex editor.
If you want to find out how pre-assembly programmers worked (with plain binary data), look up Punch Cards.
.
Use a hex editor to create your file, be sure to use a format that the loader of your respective OS understands and then double click it.
most assemblers (MMIX assembler for instance see www.mmix.cs.hm.edu) dont care if
you write instructions or data.
So instead of wirting
Main ADD $0,$0,3
SUB $1,$0,4
...
you can write
Main TETRA #21000003
TETRA #25010004
...
So this way you can assemble your program by hand and then have the assembler transform it in a form the loader needs. Then you execute it. Normaly you use hex notatition not binary because keeping track of so many digits is difficult. You can also use decimal, but the charts that tell you which instructions have which codes are typically in hex notation.
Good luck! I had to do things like this when I started programming computers. Everybody was glad to have an assembler or even a compiler then.
Martin
Or he is just writing some malicious code.
I've seen some funny methods that use a AVR as a keyboard emulator, open some simple text editor, write the code that's in the AVR eeprom memory, and pipe it to "debug" (in windows systems), and run it. It's a good way to escape some restrictions too ;)
I imagine that by interacting directly with hardware you could write in binary. To flip the proper binary bits, you could use a magnetized needle on your disk drive. Or butterflies.

What do you think of developing for the command line first?

What are your opinions on developing for the command line first, then adding a GUI on after the fact by simply calling the command line methods?
eg.
W:\ todo AddTask "meeting with John, re: login peer review" "John's office" "2008-08-22" "14:00"
loads todo.exe and calls a function called AddTask that does some validation and throws the meeting in a database.
Eventually you add in a screen for this:
============================================================
Event: [meeting with John, re: login peer review]
Location: [John's office]
Date: [Fri. Aug. 22, 2008]
Time: [ 2:00 PM]
[Clear] [Submit]
============================================================
When you click submit, it calls the same AddTask function.
Is this considered:
a good way to code
just for the newbies
horrendous!.
Addendum:
I'm noticing a trend here for "shared library called by both the GUI and CLI executables." Is there some compelling reason why they would have to be separated, other than maybe the size of the binaries themselves?
Why not just call the same executable in different ways:
"todo /G" when you want the full-on graphical interface
"todo /I" for an interactive prompt within todo.exe (scripting, etc)
plain old "todo <function>" when you just want to do one thing and be done with it.
Addendum 2:
It was mentioned that "the way [I've] described things, you [would] need to spawn an executable every time the GUI needs to do something."
Again, this wasn't my intent. When I mentioned that the example GUI called "the same AddTask function," I didn't mean the GUI called the command line program each time. I agree that would be totally nasty. I had intended (see first addendum) that this all be held in a single executable, since it was a tiny example, but I don't think my phrasing necessarily precluded a shared library.
Also, I'd like to thank all of you for your input. This is something that keeps popping back in my mind and I appreciate the wisdom of your experience.
I would go with building a library with a command line application that links to it. Afterwards, you can create a GUI that links to the same library. Calling a command line from a GUI spawns external processes for each command and is more disruptive to the OS.
Also, with a library you can easily do unit tests for the functionality.
But even as long as your functional code is separate from your command line interpreter, then you can just re-use the source for a GUI without having the two kinds at once to perform an operation.
Put the shared functionality in a library, then write a command-line and a GUI front-end for it. That way your layer transition isn't tied to the command-line.
(Also, this way adds another security concern: shouldn't the GUI first have to make sure it's the RIGHT todo.exe that is being called?)
Joel wrote an article contrasting this ("unix-style") development to the GUI first ("Windows-style") method a few years back. He called it Biculturalism.
I think on Windows it will become normal (if it hasn't already) to wrap your logic into .NET assemblies, which you can then access from both a GUI and a PowerShell provider. That way you get the best of both worlds.
My technique for programming backend functionality first without having the need for an explicit UI (especially when the UI isn't my job yet, e.g., I'm desigining a web application that is still in the design phase) is to write unit tests.
That way I don't even need to write a console application to mock the output of my backend code -- it's all in the tests, and unlike your console app I don't have to throw the code for the tests away because they still are useful later.
I think it depends on what type of application you are developing. Designing for the command line puts you on the fast track to what Alan Cooper refers to as "Implementation Model" in The Inmates are Running the Asylum. The result is a user interface that is unintuitive and difficult to use.
37signals also advocates designing your user interface first in Getting Real. Remember, for all intents and purposes, in the majority of applications, the user interface is the program. The back end code is just there to support it.
It's probably better to start with a command line first to make sure you have the functionality correct. If your main users can't (or won't) use the command line then you can add a GUI on top of your work.
This will make your app better suited for scripting as well as limiting the amount of upfront Bikeshedding so you can get to the actual solution faster.
If you plan to keep your command-line version of your app then I don't see a problem with doing it this way - it's not time wasted. You'll still end up coding the main functionality of your app for the command-line and so you'll have a large chunk of the work done.
I don't see working this way as being a barrier to a nice UI - you've still got the time to add one and make is usable etc.
I guess this way of working would only really work if you intend for your finished app to have both command-line and GUI variants. It's easy enough to mock a UI and build your functionality into that and then beautify the UI later.
Agree with Stu: your base functionality should be in a library that is called from the command-line and GUI code. Calling the executable from the UI is unnecessary overhead at runtime.
#jcarrascal
I don't see why this has to make the GUI "bad?"
My thought would be that it would force you to think about what the "business" logic actually needs to accomplish, without worrying too much about things being pretty. Once you know what it should/can do, you can build your interface around that in whatever way makes the most sense.
Side note: Not to start a separate topic, but what is the preferred way to address answers to/comments on your questions? I considered both this, and editing the question itself.
I did exactly this on one tool I wrote, and it worked great. The end result is a scriptable tool that can also be used via a GUI.
I do agree with the sentiment that you should ensure the GUI is easy and intuitive to use, so it might be wise to even develop both at the same time... a little command line feature followed by a GUI wrapper to ensure you are doing things intuitively.
If you are true to implementing both equally, the result is an app that can be used in an automated manner, which I think is very powerful for power users.
I usually start with a class library and a separate, really crappy and basic GUI. As the Command Line involves parsing the Command Line, I feel like i'm adding a lot of unneccessary overhead.
As a Bonus, this gives an MVC-like approach, as all the "real" code is in a Class Library. Of course, at a later stage, Refactoring the library together with a real GUI into one EXE is also an option.
If you do your development right, then it should be relatively easy to switch to a GUI later on in the project. The problem is that it's kinda difficult to get it right.
Kinda depends on your goal for the program, but yeah i do this from time to time - it's quicker to code, easier to debug, and easier to write quick and dirty test cases for. And so long as i structure my code properly, i can go back and tack on a GUI later without too much work.
To those suggesting that this technique will result in horrible, unusable UIs: You're right. Writing a command-line utility is a terrible way to design a GUI. Take note, everyone out there thinking of writing a UI that isn't a CLUI - don't prototype it as a CLUI.
But, if you're writing new code that does not itself depend on a UI, then go for it.
A better approach might be to develop the logic as a lib with a well defined API and, at the dev stage, no interface (or a hard coded interface) then you can wright the CLI or GUI later
I would not do this for a couple of reasons.
Design:
A GUI and a CLI are two different interfaces used to access an underlying implementation. They are generally used for different purposes (GUI is for a live user, CLI is usually accessed by scripting) and can often have different requirements. Coupling the two together is not a wise choice and is bound to cause you trouble down the road.
Performance:
The way you've described things, you need to spawn an executable every time the GUI needs to d o something. This is just plain ugly.
The right way to do this is to put the implementation in a library that's called by both the CLI and the GUI.
John Gruber had a good post about the concept of adding a GUI to a program not designed for one: Ronco Spray-On Usability
Summary: It doesn't work. If usability isn't designed into an application from the beginning, adding it later is more work than anyone is willing to do.
#Maudite
The command-line app will check params up front and the GUI won't - but they'll still be checking the same params and inputting them into some generic worker functions.
Still the same goal. I don't see the command-line version affecting the quality of the GUI one.
Do a program that you expose as a web-service. then do the gui and command line to call the same web service. This approach also allows you to make a web-gui, and also to provide the functionality as SaaS to extranet partners, and/or to better secure the business logic.
This also allows your program to more easily participate in a SOA environement.
For the web-service, don't go overboard. do yaml or xml-rpc. Keep it simple.
In addition to what Stu said, having a shared library will allow you to use it from web applications as well. Or even from an IDE plugin.
There are several reasons why doing it this way is not a good idea. A lot of them have been mentioned, so I'll just stick with one specific point.
Command-line tools are usually not interactive at all, while GUI's are. This is a fundamental difference. This is for example painful for long-running tasks.
Your command-line tool will at best print out some kind of progress information - newlines, a textual progress bar, a bunch of output, ... Any kind of error it can only output to the console.
Now you want to slap a GUI on top of that, what do you do ? Parse the output of your long-running command line tool ? Scan for WARNING and ERROR in that output to throw up a dialog box ?
At best, most UI's built this way throw up a pulsating busy bar for as long as the command runs, then show you a success or failure dialog when the command exits. Sadly, this is how a lot of UNIX GUI programs are thrown together, making it a terrible user experience.
Most repliers here are correct in saying that you should probably abstract the actual functionality of your program into a library, then write a command-line interface and the GUI at the same time for it. All your business logic should be in your library, and either UI (yes, a command line is a UI) should only do whatever is necessary to interface between your business logic and your UI.
A command line is too poor a UI to make sure you develop your library good enough for GUI use later. You should start with both from the get-go, or start with the GUI programming. It's easy to add a command line interface to a library developed for a GUI, but it's a lot harder the other way around, precisely because of all the interactive features the GUI will need (reporting, progress, error dialogs, i18n, ...)
Command line tools generate less events then GUI apps and usually check all the params before starting. This will limit your gui because for a gui, it could make more sense to ask for the params as your program works or afterwards.
If you don't care about the GUI then don't worry about it. If the end result will be a gui, make the gui first, then do the command line version. Or you could work on both at the same time.
--Massive edit--
After spending some time on my current project, I feel as though I have come full circle from my previous answer. I think it is better to do the command line first and then wrap a gui on it. If you need to, I think you can make a great gui afterwards. By doing the command line first, you get all of the arguments down first so there is no surprises (until the requirements change) when you are doing the UI/UX.
That is exactly one of my most important realizations about coding and I wish more people would take such approach.
Just one minor clarification: The GUI should not be a wrapper around the command line. Instead one should be able to drive the core of the program from either a GUI or a command line. At least at the beginning and just basic operations.
When is this a great idea?
When you want to make sure that your domain implementation is independent of the GUI framework. You want to code around the framework not into the framework
When is this a bad idea?
When you are sure your framework will never die