MySQL foreign key connecting to two tables with a constant? - mysql

We have a MySQL database with employees, companies and addresses tables.
The setup works like this: employees and companies each have an id. Since they are in two different tables, an employee can have id = 1 and the company can have id = 1. Both can have multiple addresses.
Now the address table has two columns that links it either to a company or to a employee:
element_id
element_type_id
element_type_id is either 1 = person or 2 = company
The whole thing is a bit more complex and there are many more tables, but that kinda explains the concept.
The problem is now that we would like to start using the Entity Framework and for that we need to define relationships with foreign keys.
But that sounds pretty much impossible with the setup that we currently have, does it?
Since the address table would need to be combined with the person and the company somewhow....
Any ideas?

This concept is known as polymorphic associations. I once asked a question about it, because I had a similar data structure that I wanted to make referentially sound. In terms of this question your Address corresponds with the Comment table and Employee and Company with Person etc.
The answer was excellent. If you can change the schema I would certainly go for it and use that approach.
If you can't change the schema you can always subtype your Address class in your EF model and use element_type_id as the discriminator column. You would create subtypes EmployeeAddress and CompanyAddress, where Employee refers to the former and Company to the latter. But as "the whole thing is a bit more complex" I'm not sure if this will be feasible in your situation.

You already meantioned yourself that this concept is not fitting into a relational database. It is not wrong, MySQL and all the other just don't support it. And it is not a normalized layout, so it might be regarded bad practice by database engineers.
You should think about separating the address from the relation by creating two additional tables: employee_adresses and company_addresses, each holding a relation to the company and the address or the employee and the address. This way you might get one address that is used for a company and many employees, which might be a good thing (normalized structure).

Related

Relating data from one table to another in mySQL

Here I have a EER diagram I am creating in the MySQL editor.
I want Person to relate to employee. I want some Persons entries to be employees/Customers/etc.
How would I implement this? Would it be a shared key? Join the tables? Related data?
I tried making EmployeeID a foreign key to PersonID. The tables still don't "relate". (There's no way to tell what employee X's name/dob/ect is.)
I encourage you to try again in the direction of making employeeID refer to personID, as a foreign key. You may not have implemented the whole idea.
The technique has a name: Shared Primary Key. If you search on this phrase, you will find articles describing what you have to do when adding a new employee. Without taking the correct steps when a new employee is added, you break the relationship between the two tables.
There is a tag with this name here in StackOverflow. shared-primary-key
What you are basically doing is setting up a situation where employee is a subclass of person. In an object-oriented system, this would be easy. SQL is not object oriented at the base level.

How to spot the relationship in RDBMS?

I was studying about relationships in RDBMS.I have understood the basic concept behind mapping relation ship,but I am not able to spot them.
The three possibilities :
one to many(Most common) requires a PK - FK relationsip.Two tables involved
many to many(less common) requires a junction table.Three tables Involved
one to one(very rare). One table involved.
When I begin a project,I am not able to separate the first two conditions and I am not clear in my head.
Examples when I study help for a brief moment,but not when I need to put these principles in to practice.
This is the place where most begineers falter.
How can I spot these relationships.Is there a simpler way?
Don't look at relationships from a technical perspective. Use analogies and real-life examples when trying to envision relationships in your head.
For example, let's say we have a library database.
A library must have books.
M:M
Each Book may have been written by multiple Authors and each Author may have written multiple Books. Thus it is a many-to-many relationship which will reflect into 3 tables in the database.
1:M
Each Book must also have a Publisher, but a Book may only have one Publisher and a Publisher can publish many Books. Thus it is a one-to-many relationship and it reflects with the PublisherId being referenced in the Books table.
A simple analogy like this one explains relationships to their core. When you try to look at them through a technical lens you're only making it harder on yourself. What's actually difficult is applying real world data scenarios when constructing your database.
I think the reason you are not getting the answers that you need is because of the way you are framing the question. Instead of asking “How do I spot the correct type of relationship between entities”, think about “How do my functional needs dictate what relationship to implement”. Database design doesn’t drive the function; it’s the functional needs that drive the relationships you need to implement.
When designing a database structure, you need to identify all the entities. Entities are all the facts that you want to store: lists of things like book titles, invoices, countries, dog species, etc. Then to identify your relationships, you have to consider the types of questions you will want to ask your database. It takes a bit of forward thinking sometimes… just because nobody is asking the question now doesn’t mean that it might not ever be asked. So you can’t ask the universe “what is the relationship between these lists of facts?” because there is no definitive answer. You define the universe… I only want to know answers to these types of questions; therefore I need to use this type of relationship.
Let’s examine an example relation between two common entities: a table of customers and a table of store locations. There is no “correct” way to relate these entities without first defining what you need to know about them. Let’s say you work for a retailer and you want to give a customer a default store designation so they can see products on the website that their local store has in stock. This only requires a one-to-many relationship between a store and the customer. Designing the relationship this way ensures that one store can have many customers as their default and each customer can only have one default store. To implement this relationship is as easy as adding a DefaultStore field to your Customer table as a foreign key that links to the primary key of the Store table.
The same two entities above might have alternate requirements for the relationship definition in a different context. Let’s say that I need to be able to give the customer the opportunity to select a list of favorite stores so that they can query about in stock information about all of them at once. This requires a many-to-many relationship because you want one customer to be able to relate to many stores and each store can also relate to many customers. To implement a many-to-many relationship requires a little more overhead because you will have to create a separate table to define the relationship links, but you get this additional functionality. You might call your relationship table something like CustomerStoreFavorites and would have as its primary key as the combined primary keys from each of the entities: (CustomerID, StoreID). You could also add attributes to the relationship, like possibly a LastOrderDate field to specify the last date that the customer ordered something from a particular store.
You could technically define both types of relationships for the same two entities. As an example: maybe you need to give the customer the option to select a default store, but you also need to be able to record the last date that a customer ordered something from a particular store. You could implement the DefaultStore field on the Customer table with the foreign key to the Store table and also create a relationship table to track all the stores that a customer has ordered from.
If you had some weird situation where every customer had their own store, then you wouldn’t even need to create two tables for your entities because you can fit all the attributes for both the customer and the store into one table.
In short, the way you determine which type of relationship to implement is to ask yourself what questions you will need to ask the database. The way you design it will restrict the relational data you can collect as well as the queries you can ask. If I design a one-to-many relationship from the store to the customer, I won’t be able to ask questions about all the stores that each customer has ordered from unless I can get to that information though other relationships. For example, I could create an entity called "purchases" which has a one-to-many relationship to the customer and store. If each purchase is defined to relate to one customer and one store, now I can query “what stores has this customer ordered from?” In fact with this structure I am able to capture and report on a much richer source of information about all of the customer's purchases at any store. So you also need to consider the context of all the other relationships in your database to decide which relationship to implement between two particular entities.
There is no magic formula, so it just takes practice, experience, and a little creativity. ER Diagrams are a great way to get your design out of your head and onto paper so that you can analyze your design and ensure that you can get the right types of questions answered. There are also a lot of books and resources to learn about database architecture. One good book I learned a lot from was “Database System Concepts” by Abraham Silberschatz and Henry Korth.
Say you have two tables A and B. Consider an entry from A and think of how many entries from B it could possibly be related with at most: only one, or more? Then consider an entry from B and think of how many entries in A it could be related with.
Some examples:
Table A: Mothers, Table B: Children. Each child has only one mother but a mother may have one or more children. Mothers and Children have a one-to-many relationship.
Table A: Doctors, Table B: Patients. Each patient may be visiting one or more doctors and each doctor treats one or more patients. So they have a many-to-many relationship.
An example of one to one:
LicencePlate to Vehicle. One licence plate belongs to one vehicle and one vehicle has one licence plate.

What is the Best Practice for Composite Key with JPA?

I am creating a DB for my project and I am facing a doubt regarding best practice.
My concrete case is:
I have a table that stores the floors of a building called "floor"
I have a second table that stores the buildings called "building"
I have a third table that stores the relationship between them, called building_x_floor
The problem is this 3rd table.
What should I do?
Have only two columns, one holding a FK to the PK of building and another holding an FK to the PK of floor;
Have the two columns above and a third column with a PK and control consistency with trigger, forbidding to insert a replicated touple of (idbuilding, idfloor)?
My first thought was to use the first option, but I googling around and talking I heard that it is not always the best option.
So I am asking for guidance.
I am Using MySQL 5.6.17
You don't need third table. Because there is one-to-many relationship between building and floor.
So one building has many floors and a floor belongs to one building. Don't get things complicated. Even though you need a table with composite keys, you should be careful. You need to override equals and hashCode methods.
I am still not confortable with that approach. I am not saying it is wrong or innapropriate, very far from that. I am trying to understand how the informations would be organized and how performatic it would be.
If I have a 1:* relationship, like a student may be attending to more than one subject along its university course within a semester I would Have the 3rd table with (semester, idstudent, iddiscipline).
If I try to get rid of the join table my relationship would be made with a FK inside student table or inside subject table. And it does not make sense to do that because student table is a table for a set of information related with registering the info of a person while the discipline table holds the data of a discipline, like content, hours...it is more a parametric table.
So I would need a table for the join.

How can I implement a dual relationship (Null, Not Null) in MySQL without creating two classes?

If I have a TABLE that consists of a LIST of attributes of one TYPE and another TABLE that is also composed by the same TYPE of LIST, so how can I implements them into MySQL without having to create two TABLES of the same TYPE?
For example:
Like the EMPLOYEE table, the COMPANY table has a list of ADDRESSES.
And I want to implement without having to make one table ADDRESS for COMPANY and another for EMPLOYEE, as in this case:
To me the solution seems to be a dual relationship where one of the foreign keys must be null while the other may not be, but I don't even know how to do it.
I believe your underlying hyopthesis is flawed: a one-person Company, founded by an Employee, could be registered at the founder's personal adress. Therefore an Employee may have the same address as a Company.
Likewise, two Employees may share the same address (a husband and a wife could be coworkers). Therefore I would define the relationship between adress and each of the other two entities a regular many-to-many, without any further condition.
You might be worried that changing the address of (eg.) a Company would wrongly alter the Employee's address. But instead of updating the Address entity, treat this case as creating a new Address and linking the (eg.) Company to this new Address.
Now, if you really need to implement the constraint, regardless of the (oh so dull ;) reality, I see no other option but implementing a form of inheritance as decribed here.
Notice that:
your initial design actually implements the Single Table Inheritance pattern
your alternative proposal (based on two separate address tables) actually implements the Concrete Table Inheritance pattern1
In your initial design, the constraint can be implemented with a simple CHECK constraint2 on the address table, the condition being company_id IS NULL XOR employee_id IS NULL
1 Migrating to the Class Table Inheritance pattern is "left as an exercise". However this pattern does not help in enforcing this constraint (in fact, this elegant pattern has serious additional limitations with enforcing integrity constraints in general). Nevertheless the constraint could still be enforced with a CHECK constraint.
2 MySQL does not enforce CHECK constraints, but a similar effect can be achieved through the use of triggers.

Determing correct key values for multiple MySQL tables

I am trying to determine how the tables need to be linked in which ways.
The employees tables is directly linked to a number of tables which provide more information. A few of those tables have even more details.
Employees have a unique employeeid but I understand best practice is to still have a id?
Customers have a unique customerid
Employees have a manager
Managers are employees
Customers have a manager associated with them. manager associated with them
Employees may have a academic, certification and/or professional information.
With all of this said what would be the best recommendation for creating primary and foreign keys? Is there a better way to handle the design?
EDIT
Updated diagram to reflect feedback thus far. See comments to understand changes taking place.
Though your question is sensible, before you go any further in design, I would suggest for you to spend some time understanding relationships, foreign keys and how they propagate through relationships.
The diagram is utterly wrong. It will help it you start naming primary keys with full name, TableNameID, like EmployeeID; then it will become obvious how keys propagate through relationships. If you had full names you would have noticed that all your arrows are pointing in the wrong direction; parent and child are reversed. Anyway, takes some practice. So I would suggest that you rework the diagram and post the new version, so that we can comment on that one. It should start looking something like this (just a small segment)
EDIT
This is supposed to point you to towards the next step. See if you can read description (specification) and follow the diagram at the same time.
Each employee has one manager, a manager manages many employees.
A manager is an employee.
Each customer is managed by an employee who acts as an account manager for that customer.
Account manages for a customer may change over time.
Each employee is a member of one team, each team has many employees.
Employee performance for each employee is tracked over time.
Employee may have many credentials, each credential belongs to one employee only.
Credential is academic or professional.
Employees have unique employeeID but I understand best practice is to
still have a id?
No. (But keep reading.) You need an id number in two cases: 1) when you don't have any other way to identify an entity, and 2) when you're trying to improve join performance. And that doesn't always work. ID numbers always require more joins, but when the critical information is carried in human-readable codes or in natural keys, you don't need a join to get to it. Also, routine use of ID numbers often introduces data integrity problems, because unique constraints on natural keys are often omitted. For example, USPS postal codes for state names are unique, but tables that use ID numbers instead of USPS postal codes often omit the unique constraint on that two-character column. In your case, you need a unique constraint on employee number regardless. (But keep reading.)
Employees have a manager.
Does the table "team" implement this requirement? If the "manager" table identifies managers, then your other manager columns should reference "manager". (In this diagram, that's customers, team, and customer_orders.)
Managers are employees.
And that information is stored in the table "manager"?
Customers have a manager associated with them.
And so does each order. Did you mean to do that?
Employees may have a academic, certification and/or professional
information.
But apparently you can't record any of that information unless you store a skill first. That doesn't sound like a good approach. Give it some more thought.
Whenever you design tables with overlapping predicates (overlapping meanings), you need to stop and sit on your hands for a few minutes. In this case, the predicates of the tables "employees" and "customers" overlap.
If employees can be customers, which is the case for almost every business, then you have set the stage for update anomalies. An employee's last name changes. Clearly, you must update "employees". But do you have to update "customers" too? How do you know? You can't really tell, because those two tables have independent id numbers.
An informal rule of thumb: if any real-world entity has more than one primary key identifying it in your database, you have a problem. In this case, an employee who is also a customer would have two independent primary keys identifying that person--an employee id and a customer id.
Consider adding a table of persons, some of whom will be employees, and some of whom will be customers. If your database is well-designed and useful, I'll bet that later some of the persons will be prospects, some will be job applicants, and so on. You will need an id number for persons, because in the most general case all you can count on knowing is their name.
At some point, you'll have to take your database design knowledge to the next level. For an early start, read this article on people's names.