MFT Custom image Filters - windows-runtime

I am currently developing a Metro Style App which uses an MFT (Media Foundation Transform) to filter the webcam's video stream into grayscale, as demonstrated in this sample.
However, now I want to apply other types of filters, such as exposure, hue, luminance, texture, vignette, etc. This answer says I am supposed to modify the TransformChroma method in order to achieve this. Unfortunately, I can't figure out how to get the Y value, I can only get the U and V. How do I get the Y value in the formats NV12, YUY2, and UYVY?
All help is greatly appreciated and I always accept an answer!

You would need to change the signature of the method (an poto take another parameter and modify the TransformImage_UYVY, TransformImage_YUY2 and TransformImage_NV12 methods to pass that parameter into the updated method. You would need to figure out how to extract that value for yourself though though. For example looking at this piece of code below you can see how the U and V values are extracted and that the Y value is split in two bytes - you would need to do some bit logic to join these. You can find descriptions of these formats online, e.g. here.
// Byte order is U0 Y0 V0 Y1
// Each WORD is a byte pair (U/V, Y)
// Windows is little-endian so the order appears reversed.
BYTE u = pSrc_Pixel[x] & 0x00FF;
BYTE v = pSrc_Pixel[x+1] & 0x00FF;
TransformChroma(mat, &u, &v);

Related

Having issue with max_norm parameter of torch.nn.Embedding

I use torch.nn.Embedding to embed my model’s categorical input features, however, I face problems when I set the max_norm parameter to not None.
There is a note on the pytorch docs page that explains how to use max_norm parameter through the following example:
n, d, m = 3, 5, 7
embedding = nn.Embedding(n, d, max_norm=True)
W = torch.randn((m, d), requires_grad=True)
idx = torch.tensor(\[1, 2\])
a = embedding.weight.clone() # W.t() # weight must be cloned for this to be differentiable
b = embedding(idx) # W.t() # modifies weight in-place
out = (a.unsqueeze(0) + b.unsqueeze(1))
loss = out.sigmoid().prod()
loss.backward()
I can’t easily understand this example from the docs. What is the purpose of having both ‘a’ and ‘b’ and why ‘out’ is defined as, out = (a.unsqueeze(0) + b.unsqueeze(1))?
Do we need to first clone the entire embedding tensor as in ‘a’, and then finding the embeddings for our desired indices as in ‘b’? Then how do ‘a’ and ‘b’ need to be added?
In my code, I don’t have W explicitly, I am assuming that W is representative of the weights applied by the torch.nn.Linear layers. So, I just need to prepare the input (which includes the embeddings for categorical features) that goes into my network.
I greatly appreciate any instructions on this, as understanding this example would help me adapt my code accordingly.
Because W in the line computing a requires gradients, we must save embedding.weight to compute those gradients in the backward pass. However, in the line computing b, executing embedding(idx) will scale embedding.weight by max_norm - in place. So, without cloning it in line a, embedding.weight will be modified when line b is executed - changing what was saved for the backward pass to update W. Hence the requirement to clone embedding.weight - to save it before it gets scaled in line b.
If you don't use embedding.weight outside of the normal forward pass, you don't need to worry about all this.
If you get an error, post it (and your code).

how can I implement a function to load data into a design matrix and an output vector in octave

I have a .txt file with dimensions 100x4 but i want to generalise and make an initial matrix with m x n+1 dimension as the code should work fine with any data file. m is the number of training examples and n is the number of training features and the last column is the output vector.
function [X,y]= loadData(filename)
data=load(filename);
X=load(filename);
y=load(filename);
m=rows(filename);
n=size(filename);
end
expected value of elements in the matrix do not match the found value.
what is the mistake?
First of all you are loading 3 times the same things, so at the end data, X, and y contain exactly the same things.
Then you are passing filename -that is a string- to rows() and size(), so do not expect getting the sizes of some arrays: these functions won't open any file, they just operate on the string in this case. In octave a string is considered as a 1xl matric, l being the length of the string.

Riding the wave Numerical schemes for hyperbolic PDEs, lorena barba lessons, assistance needed

I am a beginner python user who is trying to get a feel for computer science, I've been learning how to use it by studying concepts/subjects I'm already familiar with, such as Computation Fluid Mechanics & Finite Element Analysis. I got my degree in mechanical engineering, so not much CS background.
I'm studying a series by Lorena Barba on jupyter notebook viewer, Practical Numerical Methods, and i'm looking for some help, hopefully someone familiar with the subjects of CFD & FEA in general.
if you click on the link below and go to the following output line, you'll find what i have below. Really confused on this block of code operated within the function that is defined.
Anyway. If there is anyone out there, with any suggestions on how to tackle learning python, HELP
In[9]
rho_hist = [rho0.copy()]
rho = rho0.copy() **# im confused by the role of this variable here**
for n in range(nt):
# Compute the flux.
F = flux(rho, *args)
# Advance in time using Lax-Friedrichs scheme.
rho[1:-1] = (0.5 * (rho[:-2] + rho[2:]) -
dt / (2.0 * dx) * (F[2:] - F[:-2]))
# Set the value at the first location.
rho[0] = bc_values[0]
# Set the value at the last location.
rho[-1] = bc_values[1]
# Record the time-step solution.
rho_hist.append(rho.copy())
return rho_hist
http://nbviewer.jupyter.org/github/numerical-mooc/numerical-mooc/blob/master/lessons/03_wave/03_02_convectionSchemes.ipynb
The intent of the first two lines is to preserve rho0 and provide copies of it for the history (copy so that later changes in rho0 do not reflect back here) and as the initial value for the "working" variable rho that is used and modified during the computation.
The background is that python list and array variables are always references to the object in question. By assigning the variable you produce a copy of the reference, the address of the object, but not the object itself. Both variables refer to the same memory area. Thus not using .copy() will change rho0.
a = [1,2,3]
b = a
b[2] = 5
print a
#>>> [1, 2, 5]
Composite objects that themselves contain structured data objects will need a deepcopy to copy the data on all levels.
Numpy array values changed without being aksed?
how to pass a list as value and not as reference?

Is it possible to plot complex variable in wxMaxima or Octave?

For example , if I want to plot Sin(z) where z is a complex variable , how I will achieve it in either Octave or Maxima?
I don't know about Octave, but here is a message about that, with some code you can try in Maxima: https://www.ma.utexas.edu/pipermail/maxima/2007/006644.html
There may be more specific information for wxMaxima -- you can try their user forum: https://sourceforge.net/p/wxmaxima/discussion/435775/
(referring Octave 4.0.0)
How do you want to try to represent the output of the function? Plotting either the real or imaginary parts of the output can be done fairly simply using a 3-dimensional graph, where the x and y axes are the real and imaginary components of z, and the vertical axis is either the real or imaginary values of sin(z). Producing those are fairly simple in Octave. Here's a link to a script you can save and run to show an example.
Simply change the g = exp(f) line to g = sin(f).
Octave-help mailing list example
Note that the imaginary part plot is commented out. Just switch the # between the different plot commands if you want to see that part.
Now, are you instead looking for options to map the Z plane (z=x+iy) to the W plane (w=u+iv) and represent closed contours mapped by w=sin(z)? in that case you'll need to do parametric plotting as described on this FIT site. There is a link to his Matlab program at the bottom of the explanation that provides one method of using color coding to match z->w plane contour mapping.
Those m-files are written for Matlab, so a few things do not work, but the basic plotting is compatible with Octave 4.0.0. (the top level ss13.m file will fail on calls to flops and imwrite)
But, if you put your desired function in myfun13.m for f, df and d2f, (sin(z), cos(z), -sin(z) respectively), then run cvplot13, you'll get color maps showing the correspondence between z and w planes.
wxMaxima has a plot3d that can do it. Since the expression to plot is in terms of x and y, I plotted the function's magnitude with abs(f(x+%i*y)):
plot3d(abs((x+%i*y-3)*(x+%i*y-5)*(x+%i*y-6)), [x,2,7], [y,-1,1], [grid,100,100], [z,0,5])$

Possible to call subfunction in S-function level-2

I have been trying to convert my level-1 S-function to level-2 but I got stuck at calling another subfunction at function Output(block) trying to look for other threads but to no avail, do you mind to provide related links?
My output depends on a lot processing with the inputs, this is the reason I need to call the sub-function in order to calculate and then return output values, all the examples that I can see are calculating their outputs directly in "function Output(block)", in my case I thought it is not possible.
I then tried to use Interpreted Matlab Function block but failed due to the output dimension is NOT the same as input dimension, also it does not support the return of more than ONE output................
Dear Sir/Madam,
I read in S-function documentation that "S-function level-1 supports vector inputs and outputs. DOES NOT support multiple input and output ports".
Does the second sentence mean the input and output dimension MUST BE SAME?
I have been using S-function level-1 to do the following:
[a1, b1] = choose_cells(c, d);
where a1 and b1 are outputs, c and d are inputs. All the variables are having a single value, except d is an array with 6 values.
Referring to the image attached, we all know that in S-function block, the input dimension must be SAME as output dimension, else we will get error, in this case, the input dimension is 7 while the output dimension is 2, so I have to include the "Terminator" blocks in the diagram for it to work perfectly, otherwise, I will get an error.
My problem is, when the system gets bigger, the array d could contain hundreds of variables, using this method, it means I would have to add hundreds of "Terminator" blocks in order to get this work, this definitely does not sound practical.
Could you please suggest me a wise way to implement this?
Thanks in advance.
http://imgur.com/ib6BTTp
http://imageshack.us/content_round.php?page=done&id=4tHclZ2klaGtl66S36zY2KfO5co