purpose of catch any in JVM - exception

In Java bytecode, there is an option to specify the constant pool index 0 as the exception handler type, allowing you to catch all exceptions. However, as I understand it, this is exactly identical to catching Throwable. So what is the purpose of this feature? Did the designers of Java one day envision adding types of exceptions that don't inherit from Throwable? It doesn't look like it, but I can't think of another explanation apart from laziness.

The JVM specification (§4.7.3) states:
If the value of the catch_type item is zero, this exception handler is called for all exceptions. This is used to implement finally (§3.13).
Although the use of catch_type zero is not specifically discussed in §3.13, the hint that it is used when compiling finally clauses in Java gives a clue. It may be that the JVM designers wanted a simple way to refer to all exception types without having to specifically refer to the Throwable class. The use of catch_type zero would be easier for the JVM to identify rather than having to index into the constant pool and resolve the java/lang/Throwable class name there.
In practical terms, as you say a catch_type zero or an index into the constant pool referring to java/lang/Throwable should work identically.

Related

To use mem and then find or to use find and handle the exception?

Suppose, I want to write a function that tries to find a key in a map and returns None if it cannot: try_find: 'a -> ('a, 'b) Map.t -> 'b option, what is the canonical way to do this? To first check that the key exists with mem and then call find? Or to catch the Not_found exception? Batteries seem to do the latter.
On the other hand, in languages like C# or Java people are usually discouraged from using exceptions in such cases, for performance reasons. Is using exceptions on "normal" execution paths a usual thing in Ocaml or is it also discouraged?
OCaml exceptions are as fast as function calls for the default backend. For Javascript backends, it is not always true. The canonical OCaml way is to implement a function that doesn't throw an exception is to use a throwing function and translate the exception to a nullary variant, e.g.,
let try_find x xs = try Some (List.find x xs) with Not_found -> None
Calling mem and find is a loss of performance, as you will actually iterate the list twice.
There are tradeoffs between raising an exception and returning an option type. The standard function List.find will not allocate any new values in the heap, so no garbage will be created. On the other hand, the try_find function will allocate a new value every time something is found (None is a constant so it is not allocated). This will create an extra work for the garbage collector, that will eventually degrade the performance. To me, the semantic benefits of total functions outweigh possible performance degradation. If the latter does matter (in case of tight loops) then I can always optimize it locally by either using an exception in a very tight context, or continuation passing style and/or GADT.
Is using exceptions on "normal" execution paths a usual thing in Ocaml or is it also discouraged?
It wasn't discouraged by the design of the language, and OCaml standard library uses exceptions a lot. However, the language evolves, and new features are added to the language. Moreover, new backends are implemented, like several Javascript backends, Java, and .Net backends. It is not trivial, to provide the same performance guarantees for these backends. So with a time, the popularity of exceptions reduced, and many people started to favor total functions with explicitly encoded errors, cf., the newly added to the standard library result type. Another example is Janestreet Core library (and all other libraries) that disfavor exceptions and use them only for exceptional cases.
You should decide by yourself an exception policy (or borrow the existing one). My personal policy is trying to avoid them in the public interfaces and sparingly use them very locally. I also use exceptions, for logic and programmer errors, basically, for errors, that shouldn't be captured.
From what I've seen, OCaml exceptions are quite efficient, and I see them being used more often than in other functional languages I guess.
I try to avoid them myself as they interfere with reasoning about the program. But a self-contained use in a library doesn't seem so bad.
The efficiency of low-level things like exceptions is something that might vary a lot from platform to platform. I suspect that catching the Not_found exception would be faster for very large maps, as it avoids traversing the map twice. Otherwise it might not matter much.

Applications of explicitly raising exceptions

What are the applications and advantages of explicitly raising exceptions in a program. For example, if we consider Ada language specifically here provides an interface to raise exceptions in the program. Example:
raise <Exception>;
But what are the advantages and application areas where we would need to raise exceptions explicitly?
For example, in a procedure which accepts one of the parameters as string:
function Fixed_Str_To_Chr_Ptr (Source_String : String) return C.Strings.Chars_Ptr is
...
begin
...
-- Check whether source string is of acceptable length
if Source_String'Length <= 100 then
...
else
...
raise Constraint_Error;
end if;
return Ptr;
exception
when Constraint_Error=>
.. Do Something..
end Fixed_Str_To_Chr_Ptr;
Is there any advantage or good practice if I raise an exception in the above function and handle it when the passed string length bound exceeds the tolerable limits? Or a simple If-else handler logic should do the business?
I'll make my 2 cents an answer in order to bundle the various aspects. Let's start with the general question
But what are the advantages and application areas where we would need to raise exceptions explicitly?
There are a few typical reasons for raising exceptions. Most of them are not Ada-specific.
First of all there may be a general design decision to use or not use exceptions. Some general criteria:
Exception handlers may incur a run time cost even if an exception is actually never thrown (cf. e.g. https://gcc.gnu.org/onlinedocs/gnat_ugn/Exception-Handling-Control.html). That may be unacceptable.
Issues of inter-operability with other languages may preclude the use of exceptions, or at least require that none leave the part programmed in Ada.
To a degree the decision is also a matter of taste. A programmer coming from a language without exceptions may feel more confident with a design which just relies on checking return values.
Some programs will benefit from exceptions more than others. If traditional error handling obscures the actual program structure it may be time for exceptions. If, on the other hand, potential errors are few, easily detected and can be handled locally, exceptions may obscure potential execution paths more than handling errors traditionally would.
Once the general decision to use exceptions has been made the problem arises when and when not it is appropriate to raise them in your code. I mentioned one general criteria in my comment. What comes to mind:
Exceptions should not be part of normal, expected program flow (they are called exceptions, not expectations ;-) ). This is partly because the control flow is harder to see and partly because of the potential run time cost.
Errors which can be handled locally don't need exceptions. (It can still be useful to raise one in order to have a uniform error handling though. I'll discuss that below when I get to your code snippet.)
On the other hand, exceptions are great if a function has no idea how to handle errors. This is particularly true for utility and library functions which can be called from a variety of contexts (GUI, console program, embedded, server ...). Exceptions allow the error to propagate up the call chain until somebody can handle it, without any error handling code in the intervening layers.
Some people say that a library should only expose custom exceptions, at least for any anticipated errors. E.g. when an I/O exception occurs, wrap it in a custom exception and explicitly raise that custom exception instead.
Now to your specific code question:
Is there any advantage or good practice if I raise an exception in the above function and handle it when the passed string length bound exceeds the tolerable limits? Or a simple If-else handler logic should do the business?
I don't particularly like that (although I don't find it terrible) because my general argument above ("if you can handle it locally, don't raise") would indicate that a simple if/else is clearer.1 For example, if the function is long the exception handler will be far away from the error location, so one may wonder where exactly the exception could occur (and finding one raise location is no guarantee that one has found them all, so the reviewer must scrutinize the whole function!).
It depends a bit on the specific circumstances though. Raising an exception may be elegant if an error can happen in several places. For example, if several strings can be too short it may be nice to have a centralized error handling through the exception handler, instead of scattering if/then/elses (nested??) across the function body. The situation is so common that a legitimate case can be made for using goto constructs in languages without exceptions. An exception is then clearly superior.
1But in all reality, how do you handle that error there? Do you have a guaranteed logging facility? What do you return? Does the caller know the result can be invalid? Maybe you should throw and not catch.
There are two problems with the given example:
It's simple enough that control flow doesn't need the exception. That won't always be the case, however, and I'll come back to that in a moment.
Constraint_Error is a spectacularly bad exception to raise, to detect a string length error. The standard exceptions Program_Error, Constraint_Error, Storage_Error ought to be reserved for programming error conditions, and in most circumstances ought to bring down the executable before it can do any damage, with enough debugging information (a stack traceback at the very least) to let you find the mistake and guarantee it never happens again.
It's remarkably satisfying to get a Constraint_Error pointing spookily close to your mistake, instead of whatever undefined behaviour happens much later on... (It's useful to learn how to turn on stack tracebacks, which aren't generally on by default).
Instead, you probably want to define your own String_Size_Error exception, raise that and handle it. Then, anything else in your unshown code that raises Constraint_Error will be properly debugged instead of silently generating a faulty Chars_Ptr.
For a valid use case for raising exceptions, consider a circuit simulator such as SPICE (or a CFD simulator for gas flow, etc). These tools, even when working properly, are prone to failures thanks to numerical problems that happen in matrix computations. (Two terms cancel, producing zero +/- rounding error, which causes infeasibly large numbers or divide-by-zero later on). It's often an iterative approximation, where the error should reduce in each step until it's an acceptably low value. But if a failure occurs, the error term will start growing...
Typically the simulation happens step by step, where each step is a sufficiently small time step, maybe 1 us or 1 ns. The main loop requests a step, and this request is passed to thousands of agents in the simulation representing components in a circuit, or triangles in a CFD mesh.
Any one of those agents may fail to compute a solution, and the cleanest way to handle a failure is to raise an exception, maybe Convergence_Error. There may be thousands of possible points where an exception can be raised.
Testing thousands of return codes would get ugly fast. But with exceptions, the main loop only needs one handler, which takes some corrective action such as reducing the simulation step size and running the step again.
Sanitizing user text input in a browser may be another good use case, closer to the example code.
One word on the runtime cost of exceptions : the Gnat compiler and its RTS supports a "Zero Cost Exception" (ZCX) model - at least for some targets. There's a larger penalty when an exception is raised, as a tradeoff against eliminating the penalty in the normal case. If the penalty matters to you, refer to the documentation to see if it's worthwhile 9or even possible) in your case.
You raise an exception explicitly to control which exception is reported to the user of a subprogram. - Or in some cases just to control the message associated with the raised exception.
In very special cases you may also raise an exception as a program flow control.
Exceptions should stay true to their name, which is to represent exceptional situations.

Why throw an exception in Prolog instead a simple fail?

I'm programming in Prolog and sometimes I want to get a fail but instead I get an exception, which I can't understand why should be a difference between them. If something couldn't execute that's mean that the predicate didn't succed, so it's a simple fail. Am I missing something?
A failure means that what you're trying to prove is false. An exception means that what you're trying to prove doesn't make sense (e.g. trying to compute the square root of an atom) for some reason or that you bumped into some system limitation (e.g. exhausting available memory).
But you can easily convert any exception into a failure by writing:
catch(Goal, _, fail)

What is the difference between message-passing and method-invocation?

Is there a difference between message-passing and method-invocation, or can they be considered equivalent? This is probably specific to the language; many languages don't support message-passing (though all the ones I can think of support methods) and the ones that do can have entirely different implementations. Also, there are big differences in method-invocation depending on the language (C vs. Java vs Lisp vs your favorite language). I believe this is language-agnostic. What can you do with a passed-method that you can't do with an invoked-method, and vice-versa (in your favorite language)?
Using Objective-C as an example of messages and Java for methods, the major difference is that when you pass messages, the Object decides how it wants to handle that message (usually results in an instance method in the Object being called).
In Java however, method invocation is a more static thing, because you must have a reference to an Object of the type you are calling the method on, and a method with the same name and type signature must exist in that type, or the compiler will complain. What is interesting is the actual call is dynamic, although this is not obvious to the programmer.
For example, consider a class such as
class MyClass {
void doSomething() {}
}
class AnotherClass {
void someMethod() {
Object object = new Object();
object.doSomething(); // compiler checks and complains that Object contains no such method.
// However, through an explicit cast, you can calm the compiler down,
// even though your program will crash at runtime
((MyClass) object).doSomething(); // syntactically valid, yet incorrect
}
}
In Objective-C however, the compiler simply issues you a warning for passing a message to an Object that it thinks the Object may not understand, but ignoring it doesn't stop your program from executing.
While this is very powerful and flexible, it can result in hard-to-find bugs when used incorrectly because of stack corruption.
Adapted from the article here.
Also see this article for more information.
as a first approximation, the answer is: none, as long as you "behave normally"
Even though many people think there is - technically, it is usually the same: a cached lookup of a piece of code to be executed for a particular named-operation (at least for the normal case). Calling the name of the operation a "message" or a "virtual-method" does not make a difference.
BUT: the Actor language is really different: in having active objects (every object has an implicit message-queue and a worker thread - at least conceptionally), parallel processing becones easier to handle (google also "communicating sequential processes" for more).
BUT: in Smalltalk, it is possible to wrap objects to make them actor-like, without actually changing the compiler, the syntax or even recompiling.
BUT: in Smalltalk, when you try to send a message which is not understoof by the receiver (i.e. "someObject foo:arg"), a message-object is created, containing the name and the arguments, and that message-object is passed as argument to the "doesNotUnderstand" message. Thus, an object can decide itself how to deal with unimplemented message-sends (aka calls of an unimplemented method). It can - of course - push them into a queue for a worker process to sequentialize them...
Of course, this is impossible with statically typed languages (unless you make very heavy use of reflection), but is actually a VERY useful feature. Proxy objects, code load on demand, remote procedure calls, learning and self-modifying code, adapting and self-optimizing programs, corba and dcom wrappers, worker queues are all built upon that scheme. It can be misused, and lead to runtime bugs - of course.
So it it is a two-sided sword. Sharp and powerful, but dangerous in the hand of beginners...
EDIT: I am writing about language implementations here (as in Java vs. Smalltalk - not inter-process mechanisms.
IIRC, they've been formally proven to be equivalent. It doesn't take a whole lot of thinking to at least indicate that they should be. About all it takes is ignoring, for a moment, the direct equivalence of the called address with an actual spot in memory, and consider it simply as a number. From this viewpoint, the number is simply an abstract identifier that uniquely identifies a particular type of functionality you wish to invoke.
Even when you are invoking functions in the same machine, there's no real requirement that the called address directly specify the physical (or even virtual) address of the called function. For example, although almost nobody ever really uses them, Intel protected mode task gates allow a call to be made directly to the task gate itself. In this case, only the segment part of the address is treated as an actual address -- i.e., any call to a task gate segment ends up invoking the same address, regardless of the specified offset. If so desired, the processing code can examine the specified offset, and use it to decide upon an individual method to be invoked -- but the relationship between the specified offset and the address of the invoked function can be entirely arbitrary.
A member function call is simply a type of message passing that provides (or at least facilitates) an optimization under the common circumstance that the client and server of the service in question share a common address space. The 1:1 correspondence between the abstract service identifier and the address at which the provider of that service reside allows a trivial, exceptionally fast, mapping from one to the other.
At the same time, make no mistake about it: the fact that something looks like a member function call doesn't prevent it from actually executing on another machine or asynchronously, or (frequently) both. The typical mechanism to accomplish this is proxy function that translates the "virtual message" of a member function call into a "real message" that can (for example) be transmitted over a network as needed (e.g., Microsoft's DCOM, and CORBA both do this quite routinely).
They really aren't the same thing in practice. Message passing is a way to transfer data and instructions between two or more parallel processes. Method invocation is a way to call a subroutine. Erlang's concurrency is built on the former concept with its Concurrent Oriented Programing.
Message passing most likely involves a form of method invocation, but method invocation doesn't necessarily involve message passing. If it did it would be message passing. Message passing is one form of performing synchronization between to parallel processes. Method invocation generally means synchronous activities. The caller waits for the method to finish before it can continue. Message passing is a form of a coroutine. Method-invocation is a form of subroutine.
All subroutines are coroutines, but all coroutines are not subroutines.
Is there a difference between message-passing and method-invocation, or can they be considered equivalent?
They're similar. Some differences:
Messages can be passed synchronously or asynchronously (e.g. the difference between SendMessage and PostMessage in Windows)
You might send a message without knowing exactly which remote object you're sending it to
The target object might be on a remote machine or O/S.

Try Catch blocks inside or outside of functions and error handing

This is more a general purpose programming question than language specific. I've seen several appraoches to try and catches.
One is you do whatever preprocessing on data you need, call a function with the appropriate arguments and wrap it into a try/catch block.
The other is to simply call a function pass the data and rely on try catches within the function, with the function returning a true/false flag if errors occured.
Third is a combination with a try catch outside the function and inside. However if the functions try catch catches something, it throws out another exception for the try catch block outside the function to catch.
Any thoughts on the pros/cons of these methods for error control or if there is an accepted standard? My googling ninja skills have failed me on finding accurate data on this.
In general, an exception should only be caught if it can actually be handled.
It makes no sense to catch an exception for no purpose other than to log it. The exception is that exceptions should be caught at the "top level" so that it can be logged. All other code should allow exceptions to propagate to the code that will log them.
I think the best way to think about this is in terms of program state. You don't want a failed operation to damage program state. This paper describes the concept of "Exception Safety".
In general, you first need to decide what level of exception safety a function needs to guarantee. The levels are
Basic Guarnantee
Strong Guarantee
NoThrow Guarantee
The basic Guarantee simply means that in the face of an exception or other error, no resources are leaked, the strong guarantee says that the program state is rolled back to before the exception, and nothrow methods never throw exceptions.
I personally use exceptions when an unexpected, runtime failure occurs. Unexpected means to me that such a failure should not occur in the normal course of operations. Runtime means that the error is due to the state of some external component outside of my control, as opposed to due to logic errors on my part. I use ASSERT()'s to catch logic errors, and I use boolean return values for expected errors.
Why? ASSERT isn't compiled into release code, so I don't burden my users with error checking for my own failures. That's what unit tests and ASSERTS are for. Booleans because throwing an exception can give the wrong message. Exceptions can be expensive, too. If I throw exceptions in the normal course of application execution, then I can't use the MS Visual Studio debugger's excellent "Catch on thrown" exception feature, where I can have the debugger break a program at the point that any exception is thrown, rather than the default of only stopping at unhandled (crashing) exceptions.
To see a C++ technique for the basic Guarantee, google "RAII" (Resource Acquisition is Initialiation). It's a technique where you wrap a resource in an object whose constructor allocates the resource and whos destructor frees the resource. Since C++ exceptions unwind the stack, it guarantees that resources are freed in the face of exceptions. You can use this technique to roll back program state in the face of an exception. Just add a "Commit" method to an object, and if an object isn't committed before it is destroyed, run the "Rollback" operation that restores program state in the destructor.
Every "module" in an application is responsible for handling its own input parameters. Normally, you should find issues as soon as possible and not hand garbage to another part of the application and rely on them to be correct. There are exceptions though. Sometimes validating an input parameter basically needs reimplementing what the callee is supposed to do (e.g. parsing an integer) in the caller. In this case, it's usually appropriate to try the operation and see if it works or not. Moreover, there are some operations that you can't predict their success without doing them. For example, you can't reliably check if you can write to a file before writing to it: another process might immediately lock the file after your check.
There are no real hard and fast rules around exception handling that I have encountered, however I have a number of general rules of thumb that I like to apply.
Even if some exceptions are handled at the lower layer of your system make sure there is a catch all exception handler at the entry point of your system (e.g. When you implement a new Thread (i.e. Runnable), Servlet, MessasgeDrivenBean, server socket etc). This is often the best place to make the final decision as how your system should continue (log and retry, exit with error, roll back transaction)
Never throw an execption within a finally block, you will lose the original exception and mask the real problem with an unimportant error.
Apart from that it depends on the function that you are implementing. Are you in a loop, should the rest of the items be retried or the whole list aborted?
If you rethrow an exception avoid logging as it will just add noise to your logs.
I generally consider if as the caller of the method I can use an exception in any way (like, to recover from it by taking a different approach) or if it makes no difference and just went wrong if the exception occurs. So in the former case I'll declare the method to throw the exception while in the latter I'll catch it inside of the method and don't bother the caller with it.
The only question on catching exceptions is "are there multiple strategies for getting something done?"
Some functions can meaningfully catch certain exceptions and try alternative strategies in the event of those known exceptions.
All other exceptions will be thrown.
If there are not any alternative strategies, the exception will be simply thrown.
Rarely do you want a function to catch (and silence) exceptions. An exception means that something is wrong. The application -- as a whole -- should be aware of unhandled exceptions. It should at least log them, and perhaps do even more: shut down or perhaps restart.