how can I set the size of a directional light in Three.JS? - shadow

I've added a directional light to my scene, but it doesn't show all the shadow. The shadow gets cut off, just like when the FOV of a spotlight is too small.
When I enable the shadowCameraVisible, i see that my light is like a big box which shows the shadow (which makes sense). The question is: how can I make this 'box' bigger?

Found it! Turns out the shadowcamera has left, right, top and bottom properties:
light.shadowCameraLeft = -3000;
light.shadowCameraRight = 3000;
light.shadowCameraTop = 3500;
light.shadowCameraBottom = -3000;
If you get pixelized shadows, it means your shadow map (read: memory) is not big enough. Experiment which is the lowest map you need, because this seems to be expensive. Example:
light.shadow.mapSize.x = 2048
light.shadow.mapSize.y = 2048

Related

Jittering lines when scrolling a TMX map in cocos2d-x

I feel like I'm missing some fundamental concept as to why I am getting flickering when moving a tile map around.
I create a layer. In it, I add a TMXTiledMap.
_tileMap = TMXTiledMap::create("TMX/32Map.tmx");
_tileMap->setScale(1.f);
_floorLayer = _tileMap->getLayer("Floor");
this->addChild(_tileMap);
for(const auto& l : _tileMap->getChildren()) {
static_cast<SpriteBatchNode*>(l)->getTexture()->setAliasTexParameters();
}
this->scheduleUpdate();
In the update I move the layer.
Vec2 newPos = this->getPosition();
newPos.x = (newPos.x - 1);
newPos.y = (newPos.y - 1);
this->setPosition(newPos);
I realize I'm not moving it by dt. If I move it by dt I get an overall jumpiness to the whole layer. I understand this is due to how it renders partial pixels. But if I move it by one pixel like above, I get this # looking set of lines on the screen about 64 pixels or so on top and bottom and about 224 pixels from the left and right
That is when the window is 1024x768. If I make a 320x240 window, I don't see the lines and if I make it 640x480 I only see them on the left and right sides right near the edge of the screen.
Ultimately I'd just like to smoothly scroll a tile map around. Any help would be super appreciated, because I just can't seem to get started on this project.
For me working solution was to change CC_FIX_ARTIFACTS_BY_STRECHING_TEXEL in ccConfig.h from 1 to 0. Find ccConfig.h in cocos/base/.

Scale, Position & Rotate Parent object to make child object take up entire stage

Using the first photo below, let's say:
The red outline is the stage bounds
The gray box is a Sprite on the stage.
The green box is a child of the gray box and has a rotation set.
both display object are anchored at the top-left corner (0,0).
I'd like to rotate, scale, and position the gray box, so the green box fills the stage bounds (the green box and stage have the same aspect ratio).
I can negate the rotation easily enough
parent.rotation = -child.rotation
But the scale and position are proving tricky (because of the rotation). I could use some assistance with the Math involved to calculate the scale and position.
This is what I had tried but didn't produce the results I expected:
gray.scaleX = stage.stageWidth / green.width;
gray.scaleY = gray.scaleX;
gray.x = -green.x;
gray.y = -green.y;
gray.rotation = -green.rotation;
I'm not terribly experienced with Transformation matrices but assume I will need to go that route.
Here is an .fla sample what I'm working with:
SampleFile
You can use this answer: https://stackoverflow.com/a/15789937/1627055 to get some basics. First, you are in need to rotate around the top left corner of the green rectangle, so you use green.x and green.y as center point coordinates. But in between you also need to scale the gray rectangle so that the green rectangle's dimensions get equal to stage. With uniform scaling you don't have to worry about distortion, because if a gray rectangle is scaled uniformly, then a green rectangle will remain a rectangle. If the green rectangle's aspect ratio will be different than what you want it to be, you'd better scale the green rectangle prior to performing this trick. So, you need to first transpose the matrix to offset the center point, then you need to add rotation and scale, then you need to transpose it away. Try this set of code:
var green:Sprite; // your green rect. The code is executed within gray rect
var gr:Number=green.rotation*Math.PI/180; // radians
var gs:Number=stage.stageWidth/green.width; // get scale ratio
var alreadyTurned:Boolean; // if we have already applied the rotation+scale
function turn():void {
if (alreadyTurned) return;
var mat:flash.geom.Matrix=this.transform.matrix;
mat.scale(gs,gs);
mat.translate(-gs*green.x,-gs*green.y);
mat.rotate(-1*gr);
this.transform.matrix=mat;
alreadyTurned=true;
}
Sorry, didn't have time to test, so errors might exist. If yes, try swapping scale, translate and rotate, you pretty much need this set of operations to make it work.
For posterity, here is what I ended up using. I create a sprite/movieClip inside the child (green) box and gave it an instance name of "innerObj" (making it the actually content).
var tmpRectangle:Rectangle = new Rectangle(greenChild.x, greenChild.y, greenChild.innerObj.width * greenChild.scaleX, greenChild.innerObj.height * greenChild.scaleY);
//temporary reset
grayParent.transform.matrix = new Matrix();
var gs:Number=stage.stageHeight/(tmpRectangle.height); // get scale ratio
var mat:Matrix=grayParent.transform.matrix;
mat.scale(gs,gs);
mat.translate(-gs * tmpRectangle.x, -gs * tmpRectangle.y);
mat.rotate( -greenChild.rotation * Math.PI / 180);
grayParent.transform.matrix = mat;
If the registration point of the green box is at one of it's corners (let's say top left), and in order to be displayed this way it has a rotation increased, then the solution is very simple: apply this rotation with negative sign to the parent (if it's 56, add -56 to parent's). This way the child will be with rotation 0 and parent -> -56;
But if there is no rotation applied to the green box, there is almost no solution to your problem, because of wrong registration point. There is no true way to actually determine if the box is somehow rotated or not. And this is why - imagine you have rotated the green box at 90 degrees, but changed it's registration point and thus it has no property for rotation. How could the script understand that this is not it's normal position, but it's flipped? Even if you get the bounds, you will see that it's a regular rectangle, but nobody know which side is it's regular positioned one.
So the short answer is - make the registration point properly, and use rotation in order to display it like in the first image. Then add negative rotation to the parent, and its all good :)
Edit:
I'm uploading an image so I can explain my idea better:
 
As you can see, I've created a green object inside the grey one, and the graphics INSIDE are rotated. The green object itself, has rotation of 0, and origin point - top left.
#Vesper - I don't think that the matrix will fix anything in this situation (remember that the green object has rotation of 0).
Otherwise I agree, that the matrix will do a pretty job, but there are many ways to do it :)

Draw stroke on HTML canvas with different levels of opacity

The problem
I'm trying to create a brush tool with opacity jitter (like in Photoshop). The specific problem is:
Draw a stroke on an HTML canvas with different levels of opacity. Pixels with higher opacity should replace pixels with lower opacity; otherwise, pixels are left unchanged.
Transparency should not be lost in the process. The stroke is drawn on a separate canvas and merged with a background canvas afterwards.
The result should look like this. All code and the corresponding output can be found here (JSFiddle).
Because you can't stroke a single path with different levels of opacity (please correct me if I'm wrong) my code creates a path for each segment with different opacity.
Non-solution 1, Using the 'darken' blend mode
The darken blend mode yields the desired result when using opaque pixels but doesn't seem to work with transparency. Loosing transparency is a dealbreaker.
With opaque pixels:
With transparent pixels:
Non-solution 2, Using the 'destination-out' compositing operator
Before drawing a new stroke segment, subtract its opacity from subjacent pixels by using the 'destination-out' compositing operator. Then add the new stroke segment with 'source-over'. This works almost but it's a little bit off.
Looking for a solution
I want to avoid manipulating each pixel by hand (which I have done in the past). Am I missing something obvious? Is there a simple solution to this problem?
"Links to jsfiddle.net must be accompanied by code."
Because you can't stroke a single path with different levels of opacity (please correct me if I'm wrong)
You're wrong =)
When you use globalCompositeOperation = 'destination-out' (which you are in lineDestinationOut) you need to set the strokeStyle opacity to 1 to remove everything.
However, simply changing that in your fiddle doesn't have the required effect due to the order of your path build. Build the 10% transparent one first, the whole length, then delete and draw the two 40% transparent bits.
Here's a jsfiddle of the code below
var canvas = document.getElementById('canvas');
var cx = canvas.getContext('2d');
cx.lineCap = 'round';
cx.lineJoin = 'round';
cx.lineWidth = 40;
// Create the first line, 10% transparency, the whole length of the shape.
cx.strokeStyle = 'rgba(0,0,255,0.1)';
cx.beginPath();
cx.moveTo(20,20);
cx.lineTo(260,20);
cx.lineTo(220,60);
cx.stroke();
cx.closePath();
// Create the first part of the second line, first by clearing the first
// line, then 40% transparency.
cx.strokeStyle = 'black';
cx.globalCompositeOperation = 'destination-out';
cx.beginPath();
cx.moveTo(20,20);
cx.lineTo(100,20);
cx.stroke();
cx.strokeStyle = 'rgba(0,0,255,0.4)';
cx.globalCompositeOperation = 'source-over';
cx.stroke();
cx.closePath();
// Create the second part of the second line, same as above.
cx.strokeStyle = 'black';
cx.globalCompositeOperation = 'destination-out';
cx.beginPath();
cx.moveTo(180,20);
cx.lineTo(260,20);
cx.stroke();
cx.strokeStyle = 'rgba(0,0,255,0.4)';
cx.globalCompositeOperation = 'source-over';
cx.stroke();
cx.closePath();
Use two layers to draw to:
First calculate the top layer opacity 40% - 10% and set this as alpha on top layer
Set bottom layer to 10%
Set top layer with dashed lines (lineDash) (calculate the dash-pattern size based on size requirements)
Draw lines to both layers and the bottom layer will be a single long line, the top layer will draw a dashed line on top when stroked.
Copy both layers to main canvas when done.
#HenryBlyth's answer is probably the best you're going to get; there's no native API to do what you're being asked to do (which, in my opinion, is kinda weird anyways... opacity isn't really supposed to replace pixels).
To spell out the solution in one paragraph: Split up your "stroke" into individual paths with different opacities. Draw the lowest opacity paths as normal. Then, draw the higher opacities with "desitination-out" to remove the low-opacity paths that overlap. Then, draw the high opacity paths as usual, with "source-over", to create the effect desired.
As suggested in the comments to that answer, #markE's comment about making each path an object that is pre-sorted before drawing is a great suggestion. Since you want to perform manual drawing logic that the native API can't do, turning each path into an object and dealing with them that way will be far easier than manually manipulating each pixel (though that solution would work, it could also drive you mad.)
You mention that each stroke is being done on another canvas, which is great, because you can record the mouseevents that fire as that line is being drawn, create an object to represent that path, and then use that object and others in your "merged" canvas without having to worry about pixel manipulation or anything else. I highly recommend switching to an object-oriented approach like #markE suggested, if possible.

HTML5 Canvas and Line Width

I'm drawing line graphs on a canvas. The lines draw fine. The graph is scaled, every segment is drawn, color are ok, etc. My only problem is visually the line width varies. It's almost like the nib of a caligraphy pen. If the stroke is upward the line is thin, if the stroke is horizontal, the line is thicker.
My line thickness is constant, and my strokeStyle is set to black. I don't see any other properties of the canvas that affect such a varying line width but there must be.
Javascript:
var badCanvas = document.getElementById("badCanvas"),
goodCanvas = document.getElementById("goodCanvas"),
bCtx = badCanvas.getContext("2d"),
gCtx = goodCanvas.getContext("2d");
badCanvas.width = goodCanvas.width = badCanvas.height = goodCanvas.height = 300;
// Line example where the lines are blurry weird ect.
// Horizontal
bCtx.beginPath();
bCtx.moveTo(10,10);
bCtx.lineTo(200,10);
bCtx.stroke();
//Verticle
bCtx.beginPath();
bCtx.moveTo(30,30);
bCtx.lineTo(30,200);
bCtx.stroke();
// Proper way to draw them so they are "clear"
//Horizontal
gCtx.beginPath();
gCtx.moveTo(10.5,10.5);
gCtx.lineTo(200.5,10.5);
gCtx.stroke();
//Verticle
gCtx.beginPath();
gCtx.moveTo(30.5,30);
gCtx.lineTo(30.5,200);
gCtx.stroke();
// Change the line width
bCtx.lineWidth = 4;
gCtx.lineWidth = 4;
// Line example where the lines are blurry weird ect.
// Horizontal
bCtx.beginPath();
bCtx.moveTo(10,20.5);
bCtx.lineTo(200,20.5);
bCtx.stroke();
//Verticle
bCtx.beginPath()
bCtx.moveTo(50.5,30);
bCtx.lineTo(50.5,200);
bCtx.stroke();
// Proper way to draw them so they are "clear"
//Horizontal
gCtx.beginPath();
gCtx.moveTo(10,20);
gCtx.lineTo(200,20);
gCtx.stroke();
//Verticle
gCtx.beginPath();
gCtx.moveTo(50,30);
gCtx.lineTo(50,200);
gCtx.stroke();
HTML:
<h2>BadCanvas</h2>
<canvas id="badCanvas"></canvas>
<h2>Good Canvas</h2>
<canvas id="goodCanvas"></canvas>
CSS:
canvas{border:1px solid blue;}
Live Demo
My live demo basically just recreates what the MDN says. For even stroke widths you can use integers for coordinates, for odd stroke widths you want to use .5 to get crisp lines that fill the pixels correctly.
From MDN Article
If you consider a path from (3,1) to (3,5) with a line thickness of
1.0, you end up with the situation in the second image. The actual
area to be filled (dark blue) only extends halfway into the pixels on
either side of the path. An approximation of this has to be rendered,
which means that those pixels being only partially shaded, and results
in the entire area (the light blue and dark blue) being filled in with
a color only half as dark as the actual stroke color. This is what
happens with the 1.0 width line in the previous example code.
To fix this, you have to be very precise in your path creation.
Knowing that a 1.0 width line will extend half a unit to either side
of the path, creating the path from (3.5,1) to (3.5,5) results in the
situation in the third image — the 1.0 line width ends up completely
and precisely filling a single pixel vertical line.
If linewidth is an odd number, just add 0.5 to x or y.
I just solved a problem of a similar nature. It involved a bug in a For loop.
PROBLEM: I had created a for loop to create a series of connected line segments and noticed that the line was thick to start but thinned out significantly by the final segment (no gradients were explicitly used).
FIRST, DEAD END THOUGHT: At first I assumed it was the above pixel issue, but the problem persisted even after forcing all the segments to remain at a constant level.
OBSERVATION: I noticed that I made a newbie's mistake -- I only used a single "ctx.beginPath()" and "ctx.moveTo(posX,posY)" PRIOR to the For loop and a single "ctx.stroke()" AFTER the For loop and the loop itself wrapped a single ctx.lineTo().
SOLUTION: Once I moved all methods (.beginPath(), .moveTo(), .lineTo() and .stroke()) together into the For loop so they would all be hit on each iteration, the problem went away. My connected line had the desired uniform thickness.
Try lineCap = "round" and lineJoin = "round". See "Line Styles" in this PDF to see what these parameters do.
Edit 17-July-2015: Great cheat sheet, but the link is dead. As far as I can tell, there's a copy of it at http://www.cheat-sheets.org/saved-copy/HTML5_Canvas_Cheat_Sheet.pdf.

How do I create and distribute diagonal stripes on a rectangle?

I would like to be able to create bar charts with JFreeChart that looks similar to the following picture.
It is a very basic mono-colored bar chart, but with one "fancy" detail: the diagonal stripes. I was thinking that this could be made possible by overlaying another picture on top of the normal bar. This picture would have the same dimensions as the bar, have diagonal white stripes and a transparent background. I am not quite sure how to do this though, as I have very little GUI experience, but I found a very useful article that deals with overlaying images on top of graphics from JFreeChart, so I am quite certain I should be able to pull that of.
But how should I create the diagonal stripes?
I see how I could distribute the lines from the lower left corner to the upper right corner, but not the capped lines in the upper left and lower right corner. Can I somehow paint outside the rectangle (and not have it included in the picture)?
edit: After some searching I cannot see that my suggestion of overlaying an image with a transparent background would work, as I cannot find any examples on how to do this. On the other hand, merely painting the lines on the rectangle is probably easier.
Using a gradient fill to draw lines
On trashgod's tip I tried filling a shape with a gradient that had sharp edges to simulate line drawing. This would prevent a lot of calculations and could potentially be a lot simpler. It worked quite ok for thick lines, but not for thinner lines. Using the following code produces the fill in the first picture:
rect.setSpace(spaceBetweenLines);
Color bg = Color.YELLOW;
Color fg = Color.BLUE;
rect.setPaint(new LinearGradientPaint(
(float) startX, (float) startY, (float) (startX + spaceBetweenLines), (float) (startY + spaceBetweenLines),
new float[] {0,.1f,.1001f}, new Color[] {fg,fg,bg}, MultipleGradientPaint.CycleMethod.REPEAT)
);
Drawing lines using graphic primitives
Although simpler it did not work in my case. The more elaborate, but to me, more natural way of doing it, is simply drawing lines on top of the shape (rectangle, cirle, ...). The following code was used in producing the second image. Observe the use of the clip(Shape s) to restrict the line drawing to the shape underneath. The reason for not simply drawing a rectangle and using clip() to limit the shape is that the clip() operation is not aliased, thus producing jaggies. Therefore I have to draw the shape first to get smooth edges, then set the clip to prevent overflow in the forthcoming line drawing, and finally draw the lines.
public void paint(Graphics g) {
Graphics2D g2 = (Graphics2D) g;
g2.setRenderingHint(RenderingHints.KEY_ANTIALIASING, RenderingHints.VALUE_ANTIALIAS_ON);
g2.setPaint(getBackground());
g2.fill(getShape());
g2.setClip(getShape());
// draw diagonal lines
g2.setPaint(getLineColor());
for (int x = (int) this.x, y = (int) (this.y); y - height < (this.y + height + getSpace()); ) {
g2.drawLine(x, y , x + (int) width , y - (int) width);
y += getSpace();
}
The source code for BarChartDemo1 shows how to apply a GradientPaint, but you may want to experiment with LinearGradientPaint to get the diagonal effect.
I want to paint the bars, not the background.
If you already have a suitable image, TexturePaint may be an alternative.