Extract 3D coordinates from R PCA - html

I am trying to find a way make 3D PCA visualization from R more portable;
I have run a PCA on 2D matrix using prcomp().
How do I export the 3D coordinates of data points, along with labels and colors (RGB) associated with each?
Whats the practical difference with princomp() and prcomp()?
Any ideas on how to best view the 3D PCA plot using HTML5 and canvas?
Thanks!

Here is an example to work from:
pc <- prcomp(~ . - Species, data = iris, scale = TRUE)
The axis scores are extracted from component x; as such you can just write out (you don't say how you want the exported) as CSV using:
write.csv(pc$x[, 1:3], "my_pc_scores.csv")
If you want to assign information to these scores (the colours and labels, which are not something associated with the PCA but something you assign yourself), then add them to the matrix of scores and then export. In the example above there are three species with 50 observations each. If we want that information exported alongside the scores then something like this will work
scrs <- data.frame(pc$x[, 1:3], Species = iris$Species,
Colour = rep(c("red","green","black"), each = 50))
write.csv(scrs, "my_pc_scores2.csv")
scrs looks like this:
> head(scrs)
PC1 PC2 PC3 Species Colour
1 -2.257141 -0.4784238 0.12727962 setosa red
2 -2.074013 0.6718827 0.23382552 setosa red
3 -2.356335 0.3407664 -0.04405390 setosa red
4 -2.291707 0.5953999 -0.09098530 setosa red
5 -2.381863 -0.6446757 -0.01568565 setosa red
6 -2.068701 -1.4842053 -0.02687825 setosa red
Update missed the point about RGB. See ?rgb for ways of specifying this in R, but if all you want are the RGB strings then change the above to use something like
Colour = rep(c("#FF0000","#00FF00","#000000"), each = 50)
instead, where you specify the RGB strings you want.
The essential difference between princomp() and prcomp() is the algorithm used to calculate the PCA. princomp() uses a Eigen decomposition of the covariance or correlation matrix whilst prcomp() uses the singular value decomposition (SVD) of the raw data matrix. princomp() only handles data sets where there are at least as many samples (rows) and variables (columns) in your data. prcomp() can handle that type of data and data sets where there are more columns than rows. In addition, and perhaps of greater importance depending on what uses you had in mind, the SVD is preferred over the eigen decomposition for it's better numerical accuracy.
I have tagged the Q with html5 and canvas in the hope specialists in those can help. If you don't get any responses, delete point 3 from your Q and start a new one specifically on the topic of displaying the PCs using canvas, referencing this one for detail.

You can find out about any R object by doing str(object_name). In this case:
m <- matrix(rnorm(50), nrow = 10)
res <- prcomp(m)
str(m)
If you look at the help page for prcomp by doing ?prcomp, you can discover that the scores are in res$x and the loadings are in res$rotation. These are labeled by PC already. There are no colors, unless you decide to assign some colors in the course of a plot. See the respective help pages to compare princomp with prcomp for a comparison between the two functions. Basically, the difference between them has to do with the method used behind the scenes. I can't help you with your last question.

You state that your perform PCA on a 2D matrix. If this is your data matrix there is no way to get 3D PCA's. Ofcourse it might be that your 2D matrix is a covariance matrix of the data, in that case you need to use princomp (not prcomp!) and explictely pass the covariance matrix m like this:
princomp(covmat = m)
Passing the covariance matrix like:
princomp(m)
does not yield the correct result.

Related

Can 1D CNNs infer a feature from two other included features?

I'm using a 1D CNN on temporal data. Let's say that I have two features A and B. The ratio between A and B (i.e. A/B) is important - let's call this feature C. I'm wondering if I need to explicitly calculate and include feature C, or can the CNN theoretically infer feature C from the given features A and B?
I understand that in deep learning, it's best to exclude highly-correlated features (such as feature C), but I don't understand why.
The short answer is NO. Using the standard DNN layers will not automatically capture this A/B relationship, because standard layers like Conv/Dense will only perform the matrix multiplication operations.
To simplify the discussion, let us assume that your input feature is two-dimensional, where the first dimension is A and the second is B. Applying a Conv layer to this feature simply learns a weight matrix w and bias b
y = w * [f_A, f_B] + b = w_A * f_A + w_B * f_B + b
As you can see, there is no way for this representation to mimic or even approximate the ratio operation between A and B.
You don't have to use the feature C in the same way as feature A and B. Instead, it may be a better idea to keep feature C as an individual input, because its dynamic range may be very different from those of A and B. This means that you can have a multiple-input network, where each input has its own feature extraction layers and the resulting features from both inputs can be concatenated together to predict your target.

Obtaining multiple output in regression using deep learning

Given an RGB image of hand and 3d position of the keypoints of the hand as dataset, I want to do this as regression problem in DL. In this case input will be the RGB image, and output should be estimated 3d position of keypoints.
I have seen some info about regression but most of them are trying to estimate one single value. Is it possible to estimate multiple values(or output) all at once?
For now I have referred to this code. This guy is trying to estimate the age of a person in the image.
The output vector from a neural net can represent anything as long as you define loss function well. Say you want to detect (x,y,z) co-ordinates of 10 keypoints, then just have 30 element long output vector say (x1,y1,z1,x2,y2,z2..............,x10,y10,z10), where xi,yi,zi denote coordinates of ith keypoint, basically you can use any order you feel convenient with. Just be careful with your loss function. Say you want to calculate RMSE loss, you would have to extract tripes correctly and then calculate RMSE loss for each keypoint, or if you are fimiliar with linear algebra, just reshape it into a 3x10 matrix correctly and and have your results also as a 3x10 matrix and then just use
loss = tf.sqrt(tf.reduce_mean(tf.squared_difference(Y1, Y2)))
But once you have formulated your net you will have to stick to it.

Can I use autoencoder for clustering?

In the below code, they use autoencoder as supervised clustering or classification because they have data labels.
http://amunategui.github.io/anomaly-detection-h2o/
But, can I use autoencoder to cluster data if I did not have its labels.?
Regards
The deep-learning autoencoder is always unsupervised learning. The "supervised" part of the article you link to is to evaluate how well it did.
The following example (taken from ch.7 of my book, Practical Machine Learning with H2O, where I try all the H2O unsupervised algorithms on the same data set - please excuse the plug) takes 563 features, and tries to encode them into just two hidden nodes.
m <- h2o.deeplearning(
2:564, training_frame = tfidf,
hidden = c(2), auto-encoder = T, activation = "Tanh"
)
f <- h2o.deepfeatures(m, tfidf, layer = 1)
The second command there extracts the hidden node weights. f is a data frame, with two numeric columns, and one row for every row in the tfidf source data. I chose just two hidden nodes so that I could plot the clusters:
Results will change on each run. You can (maybe) get better results with stacked auto-encoders, or using more hidden nodes (but then you cannot plot them). Here I felt the results were limited by the data.
BTW, I made the above plot with this code:
d <- as.matrix(f[1:30,]) #Just first 30, to avoid over-cluttering
labels <- as.vector(tfidf[1:30, 1])
plot(d, pch = 17) #Triangle
text(d, labels, pos = 3) #pos=3 means above
(P.S. The original data came from Brandon Rose's excellent article on using NLTK. )
In some aspects encoding data and clustering data share some overlapping theory. As a result, you can use Autoencoders to cluster(encode) data.
A simple example to visualize is if you have a set of training data that you suspect has two primary classes. Such as voter history data for republicans and democrats. If you take an Autoencoder and encode it to two dimensions then plot it on a scatter plot, this clustering becomes more clear. Below is a sample result from one of my models. You can see a noticeable split between the two classes as well as a bit of expected overlap.
The code can be found here
This method does not require only two binary classes, you could also train on as many different classes as you wish. Two polarized classes is just easier to visualize.
This method is not limited to two output dimensions, that was just for plotting convenience. In fact, you may find it difficult to meaningfully map certain, large dimension spaces to such a small space.
In cases where the encoded (clustered) layer is larger in dimension it is not as clear to "visualize" feature clusters. This is where it gets a bit more difficult, as you'll have to use some form of supervised learning to map the encoded(clustered) features to your training labels.
A couple ways to determine what class features belong to is to pump the data into knn-clustering algorithm. Or, what I prefer to do is to take the encoded vectors and pass them to a standard back-error propagation neural network. Note that depending on your data you may find that just pumping the data straight into your back-propagation neural network is sufficient.

Applying a Kalman filter on a leg follower robot

I was asked to create a leg follower robot (I already did it) and in the second part of this assignment I have to develop a Kalman filter in order to improve the following process of the robot. The robot gets from the person the distance where she is to the robot and also the angle (it is a relative angle, because the reference is the robot itself, not absolute x-y coordinates)
About this assignment I have a serious doubt. Everything I have read, every sample I have seen about kalman filter has been in one dimension (a car running distance or a rock falling from a building) and according to the task I would have to apply it in 2 dimensions. Is it possible to apply a kalman filter like this?
If it is possible to calculate kalman filter in 2 dimensions then I would understand that what is asked to do is to follow the legs in a linnearized way, despite a person walks weirdly (with random movements) --> About this I have the doubt of how to establish the function of the state matrix, could anyone please tell me how to do it or to tell me where I can find more information about this?
thanks.
Well you should read up on Kalman Filter. Basically what it does is estimate a state through its mean and variance separately. The state can be whatever you want. You can have local coordinates in your state but also global coordinates.
Note that the latter will certainly result in nonlinear system dynamics, in which case you could use the Extended Kalman Filter, or to be more correct the continuous-discrete Kalman Filter, where you treat the system dynamics in a continuous manner and the measurements in discrete time.
Example with global coordinates:
Assuming you have a small cubic mass which can drive forward with velocity v. You could simply model the dynamics in local coordinates only, where your state s would be s = [v], which is a linear model.
But, you could also incorporate the global coordinates x and y, assuming we are moving on a plane only. Then you would have s = [x, y, phi, v]'. We need phi to keep track of the current orientation since the cube can only move forward in respect to its orientation of course. Let's define phi as the angle between the cube's forward direction and the x-axis. Or in other words: With phi=0 the cube would move along the x-axis, with phi=90° it would move along the y-axis.
The nonlinear system dynamics with global coordinates can then be written as
s_dot = [x_dot, y_dot, phi_dot, v_dot]'
with
x_dot = cos(phi) * v
y_dot = sin(phi) * v
phi_dot = ...
v_dot = ... (Newton's Law)
In EKF (Extended Kalman Filter) Prediction step you would use the (discretized) equations above to predict the mean of the state in the first step of and the linearized (and discretized) equations for prediction of the Variance.
There are two things to keep in mind when you decide what your state vector s should look like:
You might be tempted to use my linear example s = [v] and then integrate the velocity outside of the Kalman Filter in order to obtain the global coordinate estimates. This would work, but you would lose the awesomeness of the Kalman Filter since you would only integrate the mean of the state, not its variance. In other words, you would have no idea what the current uncertainties for your global coordinates are.
The second step of the Kalman Filter, the measurement or correction update, requires that you can describe your sensor output as a function of your states. So you may have to add states to your representation just so that you can express your measurements correctly as z[k] = h(s[k], w[k]) where z are measurements and w is a noise vector with Gaussian distribution.

How to get the predicted values in training data set for Least Squares Support Vector Regression

I would like to make a prediction by using Least Squares Support Vector Machine for Regression, which is proposed by Suykens et al. I am using LS-SVMlab, which you can find the MATLAB toolbox here. Let's consider I have an independent variable X and a dependent variable Y, that both are simulated. I am following the instructions in the tutorial.
>>X = linspace(-1,1,50)’;
>>Y = (15*(X.^2-1).^2.*X.^4).*exp(-X)+normrnd(0,0.1,length(X),1);
>>type = ’function estimation’;
>>[gam,sig2] = tunelssvm({X,Y,type,[], [],’RBF_kernel’},’simplex’,...’leaveoneoutlssvm’,’mse’});
>>[alpha,b] = trainlssvm({X,Y,type,gam,sig2,’RBF_kernel’});
>>plotlssvm({X,Y,type,gam,sig2,’RBF_kernel’},{alpha,b});
The code above finds the best parameters using simplex method and leave-one-out cross validation and trains the model and give me alphas (support vector values for all the data points in the training set) and b coefficients. However, it does not give me the predictions of the variable Y. It only draws the plot. In some articles, I saw plots like the one below,
As I said before, the LS-SVM toolbox does not give me the predicted values of Y, it only draws the plot but no values in the workspace. How can I get these values and draw a graph of predicted values together with actual values?
There is one solution that I think of. By using X values in the training set, I re-run the model and get the prediction of values Y by using simlssvm command but it does not seem reasonable to me. Any solution that you can offer? Thanks in advance.
I am afraid you have answered your own question. The only way to obtain the prediction for the training points in LS-SVMLab is by simulating the training points after training your model.
[yp,alpha,b,gam,sig2,model] = lssvm(x,y,'f')
when u use this function yp is the predicted value