Fermi architecture possible solution to my comparative study? - cuda

I am working on a comparative study in which I have to make a comparison of the serial and parallel versions of an algorithm (NSGA-II algorithm to be precise download link here). NSGA-II is a heuristic optimization method and hence depends on the initial random population generated. If the initial populations generated using the CPU and the GPU are different, then I can not make an impartial speedup study.
I possess a NVIDIA-TESLA-C1060 card which has a compute capability of 1.3. As per this anwer and this NVIDIA document, we can't expect an sm_13 device to always yield an IEEE-754 compliant float (single precision) value. Which in other word means that on my current device, I cant conduct an impartial speedup study of the CUDA program corresponding to its serial counterpart.
My question is: Would switching to Fermi architecture solve the problem?

Floating-point operations will yield different results on different architectures, regardless of whether they support IEEE754 or not, since floating-point is not associative. Even switching compiler on x86 will typically give different results. This whitepaper gives some excellent explanations.
Having said that, your real issue is that you have a data dependent algorithm where the operations are dependent on the random numbers you generate. So if you generate the same numbers on the CPU and the GPU then both runs will be following the same paths. Consider using cuRAND, which can generate the same numbers on both the CPU and GPU.

Related

Is it fair to compare SSE/AVX units to GPU cores?

I have a presentation to make to people who have (almost) no clue of how a GPU works. I think saying that a GPU has a thousand cores where a CPU only has four to eight of them is a non-sense. But I want to give my audience an element of comparison.
After a few months working with NVidia's Kepler and AMD's GCN architectures, I'm tempted to compare a GPU "core" to a CPU's SIMD ALU (I don't know if they have a name for that at Intel). Is it fair ? After all, when looking at an assembly level, those programming models have much in common (at least with GCN, take a look at p2-6 of the ISA manual).
This article states that an Haswell processor can do 32 single-precision operations per cycle, but I suppose there is pipelining or other things happening to achieve that rate. In NVidia parlance, how many Cuda-cores does this processor have ? I would say 8 per CPU-core for 32 bits operations, but this is just a guess based on the SIMD width.
Of course there is many other things to take into account when comparing CPU and GPU hardware, but this is not what I'm trying to do. I just have to explain how the thing is working.
PS: All pointers to CPU hardware documentations or CPU/GPU presentations are greatly appreciated !
EDIT:
Thanks for your answers, sadly I had to chose only one of them. I marked Igor's answer because it sticks the most to my initial question and gave me enough informations to justify why this comparison shouldn't be taken too far, but CaptainObvious provided very good articles.
I'd be very caution on making this kind of comparison. After all even in the GPU world the term "core" depending on the context has really different capability: the new AMD GCN is quite different from the old VLIW4 one which itself is quite different from the CUDA core one.
Besides that, you will bring more puzzlement than understanding to your audience if you make just one small comparison with CPU and that's it. If I were you I'd still go for a more detailed (can still be quick) comparison. For instance someone used to CPU and with little knowledge of GPU, might wonder how come a GPU can have so many registers though it's so expensive (in the CPU world). An explanation to that question is given at the end of this post as well as some more comparison GPU vs CPU.
This other article gives a nice comparison between these two kind of processing units by explaining how GPUs work but also how they evolved and showing the differences with CPUs. It addresses topics like data flow, memory hierarchy but also for what kind of applications a GPU is useful. After all the power a GPU can developed is accessible (efficiently) only for some types of problems.
And personally, If I had to make a presentation about GPU and had the possibility to make only one reference to CPU it would be this: presenting the problems a GPU can solve efficiently vs those a CPU can handle better.
As a bonus even though it's not related directly to your presentation here is an article that put GPGPU in perspective, showing that some speedup claimed by some people are overrated (this is linked to my last point btw :))
Very loosely speaking, it is not entirely unreasonable to say that a Haswell core has about 16 CUDA cores, but you definitely don't want to take that comparison too far. You may want to be cautious about making that statement directly in a presentation, but I've found it to be useful to think of a CUDA core as being somewhat related to a scalar FP unit.
It may help if I explain why Haswell can perform 32 single-precision operations per cycle.
8 single-precision operations execute in each AVX/AVX2 instruction. When writing code that will run on a Haswell CPU, you can use AVX and AVX2 instructions which operate on 256-bit vectors. These 256-bit vectors can represent 8 single-precision FP numbers, 8 integers (32-bit) or 4 double-precision FP numbers.
2 AVX/AVX2 instructions can execute in each core per cycle, although there are some restrictions on which instructions can be paired up.
A fused multiply add (FMA) instruction technically performs 2 single-precision operations. FMA instructions perform "fused" operations such as A = A * B + C, so there are arguably two operations per scalar operand: a multiplication and an addition.
This article explains the above points in more detail: http://www.realworldtech.com/haswell-cpu/4/
In the total accounting, a Haswell core can perform 8 * 2 * 2 single-precision operations per cycle. Since CUDA cores support FMA operations as well, you cannot count that factor of 2 when comparing CUDA cores to Haswell cores.
A Kepler CUDA core has one single-precision floating-point unit, so it can perform one floating-point operation per cycle: http://www.nvidia.com/content/PDF/kepler/NVIDIA-Kepler-GK110-Architecture-Whitepaper.pdf, http://www.realworldtech.com/kepler-brief/
If I was putting together slides on this, I would have one section explaining how many FP operations Haswell can do per cycle: the three points above, plus you have multiple cores and possibly multiple processors. And, I'd have another section explaining how many FP operations a Kepler GPU can do per cycle: 192 per SMX, and you have multiple SMX units on the GPU.
PS.: I may be stating the obvious, but just to avoid confusion: the Haswell architecture also includes an integrated GPU, which has an altogether different architecture from the Haswell CPU.
I completely agree with CaptainObvious, especially that presenting the problems a GPU can solve efficiently vs those a CPU can handle better would be a good idea.
One way I like to compare CPUs and GPUs is by the number of operation/sec that they can perorm. But of course don't compare one cpu core to a multi-core gpu.
A SandyBridge core can perform 2 AVX op/cycles, that is crunch 8 double precision numbers/cycle. Hence, a computer with 16 Sandy-Bridge cores clocked at 2.6 GHz has a peak power of 333 Gflops.
A K20 computing module GK110 has a peak of 1170 Gflops, that is 3.5 times more. This is a fair comparaison in my opinion, and it should be emphasized that the peak performance is much easier to reach on CPU (some applications reach 80%-90% of peak) than on GPU (best cases I know are less than 50% of peak).
So to summerize, I would not go into architecture details, but rather state some shear numbers with the perspective that the peak is often far from reach on GPUs.
It's more fair to compare GPU to vectorized CPU units however if your audience has zero idea of how GPUs work, it seems fair to assume that they have a similar knowledge of vectorized SSE instructions.
For audiences such as these it's important to point out the high level differences, like how blocks of "cores" on the gpu share a scheduler and register file.
I would refer to the GTC Kepler architecture overview for a better idea of what the Kepler architecture looks like.
This is also a reasonably graspable comparison between the two if you want to stick to the "gpu core" idea.

Large matrix multiplication on gpu

I need to implement a matrix multiplication on GPU with CUDA for large matrices. Size of each matrix alone is bigger than the GPU memory. So I think I need an algorithm to do that efficiently. I went around the internet but couldn't find any. Can anyone give me the name or link of such algorithms.
There isn't really a formal algorithm for this; in general, these sorts of linear algebra operations where the whole problem isn't stored in memory simultaneously are referred to as "out of core" operations.
To solve it, you don't need a particularly elaborate algorithm, just the CUBLAS library and a pencil and paper. For example, you can decompose the matrix product like this:
which gives you four independent sub-matrix multiplication operations. These can be calculated using four calls to CUBLAS gemm using very straightforward host code. You can extend the idea to as many sub-matrices as are required to match the problem size and your GPU capacity. The same principle can also be used to implement matrix multiplication problems on multiple GPUs (see this question for an example).
In the alternative, you can find a working implementation of this precise idea in the Harvard developed SciGPU-GEMM codebase and in the HPL-CUDA linpack implementation (disclaimer: I am affiliated with the latter codebase).

about floating point operation

Recently, I have been making program (FDTD Operation) using the CUDA
development environment, OS is Windows server 2008 , Graphic card is TeslaC2070, compiler is VS2010. This program calculates using single and double precision floating-point.
I was reading the CUDA programming guide 3.2 and 4.0 . In appendix, guide tell me sin(), cos() has maximum accuracy of 2 ULP. My original CPU program produces results which are different to the CUDA Version.
I want to make results correctly same. Is it possible?
To quote Goldberg (a paper that every Computer Scientist, Computational Scientist, and possibly even every scientist who programs, should read):
Due to roundoff errors, the associative laws of algebra do not
necessarily hold for floating-point numbers.
This means that when you change the order of operations—even when using ostensibly associative arithmetic—you are likely to get slightly different answers.
Parallelism, by definition, results in different ordering of operations relative to serial arithmetic. "Embarrasingly parallel" computations, that is, computations where each output element is computed independently from all others, sometimes do not have to worry about this. But collective operations, like reductions or scans, and spatial neighborhood computations, such stencils (as in FDTD), do experience this effect.
In practice, even using a different compiler (and even different compiler options) can change the result of floating point computation, even when compiling the same code, with or without parallelism.

Why do GPU based algorithms perform faster

I just implemented an algorithm on the GPU that computes the difference btw consecutive indices of an array. I compared it with a CPU based implementation and noticed that for large sized array, the GPU based implementation performs faster.
I am curious WHY does the GPU based implementation perform faster. Please note that i know the surface reasoning that a GPU has several cores and can thus do the operation is parallel i.e., instead of visiting each index sequentially, we can assign a thread to compute the difference for each index.
But can someone tell me a deeper reason as to why GPU's perform faster. What is so different about their architecture that they can beat a CPU based implementation
They don't perform faster, generally.
The point is: Some algorithms fit better into a CPU, some fit better into a GPU.
The execution model of GPUs differs (see SIMD), the memory model differs, the instruction set differs... The whole architecture is different.
There are no obvious way to compare a CPU versus a GPU. You can only discuss whether (and why) the CPU implementation A of an algorithm is faster or slower than a GPU implementation B of this algorithm.
This ended up kind of vague, so a tip of an iceberg of concrete reasons would be: The strong side of CPU is random memory access, branch prediction, etc. GPU excels when there's a high amount of computation with high data locality, so that your implementation can achieve a nice ratio of compute-to-memory-access. SIMD makes GPU implementations slower than CPU where there's a lot of unpredictable braching to many code paths, for example.
The real reason is that a GPU not only has several cores, but it has many cores, typically hundreds of them! Each GPU core however is much slower than a low-end CPU.
But the programming mode is not at all like multi-cores CPUs. So most programs cannot be ported to or take benefit from GPUs.
While some answers have already been given here and this is an old thread, I just thought I'd add this for posterity and what not:
The main reason that CPU's and GPU's differ in performance so much for certain problems is design decisions made on how to allocate the chip's resources. CPU's devote much of their chip space to large caches, instruction decoders, peripheral and system management, etc. Their cores are much more complicated and run at much higher clock rates (which produces more heat per core that must be dissipated.) By contrast, GPU's devote their chip space to packing as many floating-point ALU's on the chip as they can possibly get away with. The original purpose of GPU's was to multiply matricies as fast as possible (because that is the primary type of computation involved in graphics rendering.) Since matrix multiplication is an embarrasingly parallel problem (e.g. each output value is computed completely independently of every other output value) and the code path for each of those computations is identical, chip space can be saved by having several ALU's follow the instructions decoded by a single instruction decoder, since they're all performing the same operations at the same time. By contrast, each of a CPU's cores must have its own separate instruction decoder since the cores are not following identical code paths, which makes each of a CPU's cores much larger on the die than a GPU's cores. Since the primary computations performed in matrix multiplication are floating-point multiplication and floating-point addition, GPU's are implemented such that each of these are single-cycle operations and, in fact, even contain a fused multiply-and-add instruction that multiplies two numbers and adds the result to a third number in a single cycle. This is much faster than a typical CPU, where floating-point multiplication is often a many-cycle operation. Again, the trade-off here is that the chip space is devoted to the floating-point math hardware and other instructions (such as control flow) are often much slower per core than on a CPU or sometimes even just don't exist on a GPU at all.
Also, since GPU cores run at much lower clock rates than typical CPU cores and don't contain as much complicated circuitry, they don't produce as much heat per core (or use as much power per core.) This allows more of them to be packed into the same space without overheating the chip and also allows a GPU with 1,000+ cores to have similar power and cooling requirements to a CPU with only 4 or 8 cores.

Have you successfully used a GPGPU? [closed]

Closed. This question is opinion-based. It is not currently accepting answers.
Want to improve this question? Update the question so it can be answered with facts and citations by editing this post.
Closed 4 years ago.
Improve this question
I am interested to know whether anyone has written an application that takes advantage of a GPGPU by using, for example, nVidia CUDA. If so, what issues did you find and what performance gains did you achieve compared with a standard CPU?
I have been doing gpgpu development with ATI's stream SDK instead of Cuda.
What kind of performance gain you will get depends on a lot of factors, but the most important is the numeric intensity. (That is, the ratio of compute operations to memory references.)
A BLAS level-1 or BLAS level-2 function like adding two vectors only does 1 math operation for each 3 memory references, so the NI is (1/3). This is always run slower with CAL or Cuda than just doing in on the cpu. The main reason is the time it takes to transfer the data from the cpu to the gpu and back.
For a function like FFT, there are O(N log N) computations and O(N) memory references, so the NI is O(log N). If N is very large, say 1,000,000 it will likely be faster to do it on the gpu; If N is small, say 1,000 it will almost certainly be slower.
For a BLAS level-3 or LAPACK function like LU decomposition of a matrix, or finding its eigenvalues, there are O( N^3) computations and O(N^2) memory references, so the NI is O(N). For very small arrays, say N is a few score, this will still be faster to do on the cpu, but as N increases, the algorithm very quickly goes from memory-bound to compute-bound and the performance increase on the gpu rises very quickly.
Anything involving complex arithemetic has more computations than scalar arithmetic, which usually doubles the NI and increases gpu performance.
(source: earthlink.net)
Here is the performance of CGEMM -- complex single precision matrix-matrix multiplication done on a Radeon 4870.
I have written trivial applications, it really helps if you can parallize floating point calculations.
I found the following course cotaught by a University of Illinois Urbana Champaign professor and an NVIDIA engineer very useful when I was getting started: http://courses.ece.illinois.edu/ece498/al/Archive/Spring2007/Syllabus.html (includes recordings of all lectures).
I have used CUDA for several image processing algorithms. These applications, of course, are very well suited for CUDA (or any GPU processing paradigm).
IMO, there are three typical stages when porting an algorithm to CUDA:
Initial Porting: Even with a very basic knowledge of CUDA, you can port simple algorithms within a few hours. If you are lucky, you gain a factor of 2 to 10 in performance.
Trivial Optimizations: This includes using textures for input data and padding of multi-dimensional arrays. If you are experienced, this can be done within a day and might give you another factor of 10 in performance. The resulting code is still readable.
Hardcore Optimizations: This includes copying data to shared memory to avoid global memory latency, turning the code inside out to reduce the number of used registers, etc. You can spend several weeks with this step, but the performance gain is not really worth it in most cases. After this step, your code will be so obfuscated that nobody understands it (including you).
This is very similar to optimizing a code for CPUs. However, the response of a GPU to performance optimizations is even less predictable than for CPUs.
I have been using GPGPU for motion detection (Originally using CG and now CUDA) and stabilization (using CUDA) with image processing.
I've been getting about a 10-20X speedup in these situations.
From what I've read, this is fairly typical for data-parallel algorithms.
While I haven't got any practical experiences with CUDA yet, I have been studying the subject and found a number of papers which document positive results using GPGPU APIs (they all include CUDA).
This paper describes how database joins can be paralellized by creating a number of parallel primitives (map, scatter, gather etc.) which can be combined into an efficient algorithm.
In this paper, a parallel implementation of the AES encryption standard is created with comparable speed to discreet encryption hardware.
Finally, this paper analyses how well CUDA applies to a number of applications such as structured and unstructured grids, combination logic, dynamic programming and data mining.
I've implemented a Monte Carlo calculation in CUDA for some financial use. The optimised CUDA code is about 500x faster than a "could have tried harder, but not really" multi-threaded CPU implementation. (Comparing a GeForce 8800GT to a Q6600 here). It is well know that Monte Carlo problems are embarrassingly parallel though.
Major issues encountered involves the loss of precision due to G8x and G9x chip's limitation to IEEE single precision floating point numbers. With the release of the GT200 chips this could be mitigated to some extent by using the double precision unit, at the cost of some performance. I haven't tried it out yet.
Also, since CUDA is a C extension, integrating it into another application can be non-trivial.
I implemented a Genetic Algorithm on the GPU and got speed ups of around 7.. More gains are possible with a higher numeric intensity as someone else pointed out. So yes, the gains are there, if the application is right
I wrote a complex valued matrix multiplication kernel that beat the cuBLAS implementation by about 30% for the application I was using it for, and a sort of vector outer product function that ran several orders of magnitude than a multiply-trace solution for the rest of the problem.
It was a final year project. It took me a full year.
http://www.maths.tcd.ie/~oconbhup/Maths_Project.pdf
I have implemented Cholesky Factorization for solving large linear equation on GPU using ATI Stream SDK. My observations were
Got performance speedup upto 10 times.
Working on same problem to optimize it more, by scaling it to multiple GPUs.
Yes. I have implemented the Nonlinear Anisotropic Diffusion Filter using the CUDA api.
It is fairly easy, since it's a filter that must be run in parallel given an input image. I haven't encountered many difficulties on this, since it just required a simple kernel. The speedup was at about 300x. This was my final project on CS. The project can be found here (it's written in Portuguese thou).
I have tried writing the Mumford&Shah segmentation algorithm too, but that has been a pain to write, since CUDA is still in the beginning and so lots of strange things happen. I have even seen a performance improvement by adding a if (false){} in the code O_O.
The results for this segmentation algorithm weren't good. I had a performance loss of 20x compared to a CPU approach (however, since it's a CPU, a different approach that yelded the same results could be taken). It's still a work in progress, but unfortunaly I left the lab I was working on, so maybe someday I might finish it.