Using fnRender with ajax source datatable - json

I was trying just modifying one of the examples to do customize a cell:
var oTable = $('#example').dataTable( {
"bProcessing": true,
"sAjaxSource": "sources/deep.txt",
"aoColumns": [
{ "mDataProp": "engine" },
{ "fnRender": function( oObj ) {
return "Test";
} },
{ "mDataProp": "platform.inner" },
{ "mDataProp": "platform.details.0" },
{ "mDataProp": "platform.details.1" }
]
} );
Which uses a source like:
{ "aaData": [
{
"engine": "Trident",
"browser": "Internet Explorer 4.0",
"platform": {
"inner": "Win 95+",
"details": [
"4",
"X"
]
}
},
...
...
Data is displayed correctly but I started getting "DataTables warning (table id = 'example'): Requested unknown parameter '1' from the data source for row 0"
Anything I'm missing? Or I should be doing this in a different way?

With help of official support I found the answer:
An additional parameter needs to be defined in order to avoid that alert:
{ "sDefaultContent": "",
"fnRender": function( oObj ) {
return "Test";
} }
http://datatables.net/forums/discussion/9030/using-fnrender-with-ajax-source-datatable#Item_1

Are you sure thatyour error isn't here
{ "mDataProp": "platform.details.0" },
{ "mDataProp": "platform.details.1" }
that should be
{ "mDataProp": "platform.details[0]" },
{ "mDataProp": "platform.details[1]" }
since details is an array?

Related

How to do custom window function on JSON object with pandas?

I have a rather nested JSON object below, and I am trying to calculate the user (ie 'profileId') with the most events (ie length of 'parameters' key.
I have the code below to get the length of the parameter, but I am trying to now have that calculation be correct for each record, as they way I have it set now would set it the same value for each record - I looked into pandas window functions https://pandas.pydata.org/docs/user_guide/window.html but am having trouble getting to the correct outcome.
response = response.json()
df = pd.json_normalize(response['items'])
df['calcfield'] = len(df["events"].iloc[0][0].get('parameters'))
the output of df['arrayfield'] is below:
[
{
"type":"auth",
"name":"activity",
"parameters":[
{
"name":"api_name",
"value":"admin"
},
{
"name":"method_name",
"value":"directory.users.list"
},
{
"name":"client_id",
"value":"722230783769-dsta4bi9fkom72qcu0t34aj3qpcoqloq.apps.googleusercontent.com"
},
{
"name":"num_response_bytes",
"intValue":"7158"
},
{
"name":"product_bucket",
"value":"GSUITE_ADMIN"
},
{
"name":"app_name",
"value":"Untitled project"
},
{
"name":"client_type",
"value":"WEB"
}
]
}
] }, {
"kind":"admin#reports#activity",
"id":{
"time":"2022-05-05T23:58:48.914Z",
"uniqueQualifier":"-4002873813067783265",
"applicationName":"token",
"customerId":"C02f6wppb"
},
"etag":"\"5T53xK7dpLei95RNoKZd9uz5Xb8LJpBJb72fi2HaNYM/9DTdB8t7uixvUbjo4LUEg53_gf0\"",
"actor":{
"email":"nancy.admin#hyenacapital.net",
"profileId":"100230688039070881323"
},
"ipAddress":"54.80.168.30",
"events":[
{
"type":"auth",
"name":"activity",
"parameters":[
{
"name":"api_name",
"value":"gmail"
},
{
"name":"method_name",
"value":"gmail.users.messages.list"
},
{
"name":"client_id",
"value":"927538837578.apps.googleusercontent.com"
},
{
"name":"num_response_bytes",
"intValue":"2"
},
{
"name":"product_bucket",
"value":"GMAIL"
},
{
"name":"app_name",
"value":"Zapier"
},
{
"name":"client_type",
"value":"WEB"
}
]
ORIGINAL JSON BLOB I READ IN
{
"kind":"admin#reports#activities",
"etag":"\"5g8\"",
"nextPageToken":"A:1651795128914034:-4002873813067783265:151219070090:C02f6wppb",
"items":[
{
"kind":"admin#reports#activity",
"id":{
"time":"2022-05-05T23:59:39.421Z",
"uniqueQualifier":"5526793068617678141",
"applicationName":"token",
"customerId":"cds"
},
"etag":"\"jkYcURYoi8\"",
"actor":{
"email":"blah#blah.net",
"profileId":"1323"
},
"ipAddress":"107.178.193.87",
"events":[
{
"type":"auth",
"name":"activity",
"parameters":[
{
"name":"api_name",
"value":"admin"
},
{
"name":"method_name",
"value":"directory.users.list"
},
{
"name":"client_id",
"value":"722230783769-dsta4bi9fkom72qcu0t34aj3qpcoqloq.apps.googleusercontent.com"
},
{
"name":"num_response_bytes",
"intValue":"7158"
},
{
"name":"product_bucket",
"value":"GSUITE_ADMIN"
},
{
"name":"app_name",
"value":"Untitled project"
},
{
"name":"client_type",
"value":"WEB"
}
]
}
]
},
{
"kind":"admin#reports#activity",
"id":{
"time":"2022-05-05T23:58:48.914Z",
"uniqueQualifier":"-4002873813067783265",
"applicationName":"token",
"customerId":"df"
},
"etag":"\"5T53xK7dpLei95RNoKZd9uz5Xb8LJpBJb72fi2HaNYM/9DTdB8t7uixvUbjo4LUEg53_gf0\"",
"actor":{
"email":"blah.blah#bebe.net",
"profileId":"1324"
},
"ipAddress":"54.80.168.30",
"events":[
{
"type":"auth",
"name":"activity",
"parameters":[
{
"name":"api_name",
"value":"gmail"
},
{
"name":"method_name",
"value":"gmail.users.messages.list"
},
{
"name":"client_id",
"value":"927538837578.apps.googleusercontent.com"
},
{
"name":"num_response_bytes",
"intValue":"2"
},
{
"name":"product_bucket",
"value":"GMAIL"
},
{
"name":"client_type",
"value":"WEB"
}
]
}
]
}
]
}
Use:
df.groupby('actor.profileId')['events'].apply(lambda x: [len(x.iloc[i][0]['parameters']) for i in range(len(x))])
which returns the list of each profileid count of parameters. Output and the sample data:
actor.profileId
1323 [7]
1324 [7]
Name: events, dtype: object
It's not entirely clear what you asking and df['arrayfield'] isn't in your example provided. However, if you look at the events column after json_normalize, you can use the following line to pull out the length of each parameters key. The blob you gave as an example was set to response...
df = pd.json_normalize(response['items'])
df['calcfield'] = df['events'].str[0].str.get('parameters').str.len()
Becauase each parameters key has 7 elements, it's tough to say this is what you really want.

Type of "freeplay" (string) is not supported

I have a json file which looks like this
{
"language":[
{
"lang":"English"
},
{
"lang":"Polish"
},
{
"lang":"German"
},
{
"lang":"Swedish"
},
{
"lang":"Dutch"
},
{
"lang":"Finnish"
},
{
"lang":"Turkish"
}
],
"currency":[
{
"curr" : "dollar"
},
{
"curr" : "pound"
},
{
"curr" : "rupees"
},
{
"curr" : "euro"
},
{
"curr" : "euro"
}
],
"gamename":[
{
"gname":"poker"
},
{
"gname":"slot"
}
],
"freeplay": "false"
}
I installed json-server-init globally and then ran watch command which threw the following error
Type of "freeplay" (string) in linkto.json is not supported. Use
objects or arrays of objects.
Can someone help me in understanding what is wrong or what did I do wrong?
From my understanding of json-server, the value of each key must be a valid JSON object, which is not the case for a simple string.
For example, change the value (contents of other keys omitted) to:
{
"language":[
...
],
"currency":[
...
],
"gamename":[
...
],
"freeplay": {
"enabled": "false"
}
}
if you'd like the request to:
http://localhost:3000/freeplay
to return:
{
"enabled": "false"
}

Set next step for the waterfall dialogue in Microsoft BotBuilder NodeJS SDK

I am using Microsoft Bot Framework for my facebook messenger bot. I want to load the dialog data from json files instead of hard coding in the js file. I would like to configure the next step in the dialog, based on result from the "current" step, which is part of the json file configuration, something like this.
{
"name": "welcome",
"type": "waterfall",
"steps": [
{
"id": 0,
"data": [
{
"type": "text",
"value": "Hey, It's nice to meet you."
},
{
"type": "quickReplies",
"value": "What do you want to do next?",
"options": [
{
"text": "some option 1",
"value": "option1"
},
{
"text": "some option 2",
"value": "option2"
}
]
}
],
"next": [
{
"result": "option1",
"action": "goto step 2"
},
{
"result": "option2",
"action": "goto step 5"
}
]
}
]
}
I would like to process all the incoming messages and respond with correct dialog or correct step in the dialog for the user.
I am trying something like this;
handleMessage = function (session) {
var step = session.dialogData["BotBuilder.Data.WaterfallStep"] || 0;
// check response data from previou step and identify the next step.
// set the waterfall step id
session.dialogData["BotBuilder.Data.WaterfallStep"] = 2;
session.send("Hello");
}
var bot = new builder.UniversalBot(connector, function (session) {
handleMessage(session);
})
.set('storage',tableStorage);
With this code, I am always getting step as zero for session.dialogData["BotBuilder.Data.WaterfallStep"] even after setting this to a different number.
Also, as soon as I set the waterfall step number, all other state data that is stored in my table storage for this conversation is gone.
Storage data before setting waterfall step:
{
"BotBuilder.Data.SessionState": {
"callstack": [
{
"id": "*:/",
"state": {
"BotBuilder.Data.WaterfallStep": 0
}
},
{
"id": "*:welcome",
"state": {
"BotBuilder.Data.WaterfallStep": 1
}
},
{
"id": "BotBuilder:prompt-text",
"state": {
"options": {
"prompt": {
"type": "message",
"agent": "botbuilder",
"source": "facebook",
"address": {
"id": "mid.$cAAAlr-0LRH9niO21L1hV6hs83GuJ",
"channelId": "facebook",
"user": {
"id": "XXXX",
"name": "XXXX"
},
"conversation": {
"isGroup": false,
"id": "XX"
},
"bot": {
"id": "XXX",
"name": "XXX"
},
"serviceUrl": "https://facebook.botframework.com"
},
"text": "what do you want to next"
//ignored for simplicity
},
"promptAfterAction": true,
"libraryNamespace": "*"
},
"turns": 0,
"lastTurn": 1517594116372,
"isReprompt": false
}
}
],
"lastAccess": 1517594112740,
"version": 0
}
}
After I set the waterfall step:
{
"BotBuilder.Data.SessionState": {
"callstack": [
{
"id": "*:/",
"state": {
"BotBuilder.Data.WaterfallStep": 2
}
}
],
"lastAccess": 1517602122416,
"version": 0
}
}
Interestingly the step number is saved to the database (but in session state) but my "session" variable do not have this value anywhere. Also, even after configuring custom state service, the serviceUrl is still https://facebook.botframework.com which I thought is the default state service used if there is no state service set for the bot.
Per your code, as your bot actually contains only one waterfall step: handleMessage(session);, which raised your issue. You can consider to create multiple dialogs from json configration instead of complex waterfall steps.
Here is my quick test, for your information:
const json = `
[{
"name": "welcome",
"type": "waterfall",
"steps": [
{
"id": 0,
"data": [
{
"type": "text",
"value": "Hey, It's nice to meet you."
},
{
"type": "quickReplies",
"value": "What do you want to do next?",
"options": [
{
"text": "some option 1",
"value": "option1"
},
{
"text": "some option 2",
"value": "option2"
}
]
}
],
"next": [
{
"result": "option1",
"action": "dialog2"
},
{
"result": "option2",
"action": "dialog3"
}
]
}
]
},{
"name":"dialog2",
"type": "waterfall",
"steps": [
{
"data": [
{
"type": "text",
"value": "Hey, this is dialig2."
}]
}
]
},{
"name":"dialog3",
"type": "waterfall",
"steps": [
{
"data": [
{
"type": "text",
"value": "Hey, this is dialig3."
}]
}
]
}]
`;
const generateSignleStep = (step) => {
return (session, args, next) => {
step.forEach(sentence => {
switch (sentence.type) {
case 'quickReplies':
let choices = sentence.options.map(item => {
return item.value
});
let card = new builder.ThumbnailCard(session)
.text(sentence.value)
.buttons(sentence.options.map(choice => new builder.CardAction.imBack(session, choice.value, choice.text)))
let message = new builder.Message(session).addAttachment(card);
builder.Prompts.choice(session, message, choices);
break;
case 'text':
default:
session.send(sentence.value)
break;
}
})
}
}
const generatenextAction = (actions) => {
return (session, args, next) => {
const response = args.response;
actions.map(action => {
if (action.result == response.entity) {
session.beginDialog(action.action);
}
})
}
}
const generateWaterfallSteps = (steps) => {
let waterfall = [];
steps.forEach(step => {
waterfall.push(generateSignleStep(step.data));
if (step.next) {
waterfall.push(generatenextAction(step.next));
}
});
return waterfall;
}
var bot = new builder.UniversalBot(connector);
const jsonobj = JSON.parse(json);
jsonobj.forEach(dialog => {
bot.dialog(dialog.name, generateWaterfallSteps(dialog.steps))
.triggerAction({
matches: new RegExp(dialog.name, "g")
})
});
The result is:

Using JSON API Serializer to create more complicated JSON

The examples here don't go nearly far enough in explaining how to produce a more complicated structure...
If I want to end up with something like:
{
"data": {
"type": "mobile_screens",
"id": "1",
"attributes": {
"title": "Watch"
},
"relationships": {
"mobile_screen_components": {
"data": [
{
"id": "1_1",
"type": "mobile_screen_components"
},
{
"id": "1_2",
"type": "mobile_screen_components"
},
...
]
}
}
},
"included": [
{
"id": "1_1",
"type": "mobile_screen_components",
"attributes": {
"title": "Featured Playlist",
"display_type": "shelf"
},
"relationships": {
"playlist": {
"data": {
"id": "938973798001",
"type": "playlists"
}
}
}
},
{
"id": "938973798001",
"type": "playlists",
"relationships": {
"videos": {
"data": [
{
"id": "5536725488001",
"type": "videos"
},
{
"id": "5535943875001",
"type": "videos"
}
]
}
}
},
{
"id": "5536725488001",
"type": "videos",
"attributes": {
"duration": 78321,
"live_stream": false,
"thumbnail": {
"width": 1280,
"url":
"http://xxx.jpg?pubId=694940094001",
"height": 720
},
"last_published_date": "2017-08-09T18:26:04.899Z",
"streams": [
{
"url":
"http://xxx.m3u8",
"mime_type": "MP4"
}
],
"last_modified_date": "2017-08-09T18:26:27.621Z",
"description": "xxx",
"fn__media_tags": [
"weather",
"personality"
],
"created_date": "2017-08-09T18:23:16.830Z",
"title": "NOAA predicts most active hurricane season since 2010",
"fn__tve_authentication_required": false
}
},
...,
]
}
what is the most simple data structure and serializer I can set up?
I get stumped after something like:
const mobile_screen_components = responses.map((currentValue, index) => {
id[`id_${index}`];
});
const dataSet = {
id: 1,
title: 'Watch',
mobile_screen_components,
};
const ScreenSerializer = new JSONAPISerializer('mobile_screens', {
attributes: ['title', 'mobile_screen_components'],
mobile_screen_components: {
ref: 'id',
}
});
Which only gives me:
{
"data": {
"type": "mobile_screens",
"id": "1",
"attributes": { "title": "Watch" },
"relationships": {
"mobile-screen-components": {
"data": [
{ "type": "mobile_screen_components", "id": "1_0" },
{ "type": "mobile_screen_components", "id": "1_1" },
{ "type": "mobile_screen_components", "id": "1_2" },
{ "type": "mobile_screen_components", "id": "1_3" },
{ "type": "mobile_screen_components", "id": "1_4" },
{ "type": "mobile_screen_components", "id": "1_5" }
]
}
}
}
}
I have no idea how to get the "included" sibling to "data." etc.
So, the question is:
what is the most simple data structure and serializer I can set up?
Below is the simplest object that can be converted to JSON similar to JSON in the question using jsonapi-serializer:
let dataSet = {
id: '1',
title: 'Watch',
mobile_screen_components: [
{
id: '1_1',
title: 'Featured Playlists',
display_type: 'shelf',
playlists: {
id: 938973798001,
videos: [
{
id: 5536725488001,
duration: 78321,
live_stream: false
},
{
id: 5535943875001,
duration: 52621,
live_stream: true
}
]
}
}
]
};
To serialize this object to JSON API, I used the following code:
let json = new JSONAPISerializer('mobile_screen', {
attributes: ['id', 'title', 'mobile_screen_components'],
mobile_screen_components: {
ref: 'id',
attributes: ['id', 'title', 'display_type', 'playlists'],
playlists: {
ref: 'id',
attributes: ['id', 'videos'],
videos: {
ref: 'id',
attributes: ['id', 'duration', 'live_stream']
}
}
}
}).serialize(dataSet);
console.log(JSON.stringify(json, null, 2));
The first parameter of JSONAPISerializer constructor is the resource type.
The second parameter is the serialization options.
Each level of the options equals to the level of the nested object in serialized object.
ref - if present, it's considered as a relationships.
attributes - an array of attributes to show.
Introduction
First of all we have to understand the JSON API document data structure
[0.1] Refering to the top level (object root keys) :
A document MUST contain at least one of the following top-level
members:
data: the document’s “primary data”
errors: an array of error objects
meta: a meta object that contains non-standard meta-information.
A document MAY contain any of these top-level members:
jsonapi: an object describing the server’s implementation
links: a links object related to the primary data.
included: an array of resource objects that are related to the primary data and/or each other (“included resources”).
[0.2]
The document’s “primary data” is a representation of the resource or
collection of resources targeted by a request.
Primary data MUST be either:
a single resource identifier object, or
null, for requests that target single resources
an array of resource identifier
objects, or an empty array ([]), for reqs. that target
collections
Example
The following primary data is a single resource object:
{
"data": {
"type": "articles",
"id": "1",
"attributes": {
// ... this article's attributes
},
"relationships": {
// ... this article's relationships
}
}
}
In the (jsonapi-serializer) documentation : Available serialization option (opts argument)
So in order to add the included (top-level member) I performed the following test :
var JsonApiSerializer = require('jsonapi-serializer').Serializer;
const DATASET = {
id:23,title:'Lifestyle',slug:'lifestyle',
subcategories: [
{description:'Practices for becoming 31337.',id:1337,title:'Elite'},
{description:'Practices for health.',id:69,title:'Vitality'}
]
}
const TEMPLATE = {
topLevelLinks:{self:'http://example.com'},
dataLinks:{self:function(collection){return 'http://example.com/'+collection.id}},
attributes:['title','slug','subcategories'],
subcategories:{ref:'id',attributes:['id','title','description']}
}
let SERIALIZER = new JsonApiSerializer('pratices', DATASET, TEMPLATE)
console.log(SERIALIZER)
With the following output :
{ links: { self: 'http://example.com' },
included:
[ { type: 'subcategories', id: '1337', attributes: [Object] },
{ type: 'subcategories', id: '69', attributes: [Object] } ],
data:
{ type: 'pratices',
id: '23',
links: { self: 'http://example.com/23' },
attributes: { title: 'Lifestyle', slug: 'lifestyle' },
relationships: { subcategories: [Object] } } }
As you may observe, the included is correctly populated.
NOTE : If you need more help with your dataSet, edit your question with the original data.

Mongodb insert with multiple conditions

I'm having multiple documents in a collection, each document has this data structure :
{
_id: "some object id",
data1: [
{
data2_id : 13233,
data2: [
{
sub_data1: "text1",
sub_data2: "text2",
sub_data3: "text3",
},
{
sub_data1: "text4",
sub_data2: "text5",
sub_data3: "text6",
}
]
},
{
data2_id : 53233,
data2: [
{
sub_data1: "text4",
sub_data2: "text5",
sub_data3: "text6",
}
...
]
},
{
data2_id : 56233,
data2: [
{
sub_data1: "text7",
sub_data2: "text8",
sub_data3: "text9",
}
...
]
},
{
data2_id : 53236,
data2: [
{
sub_data1: "text10",
sub_data2: "text22",
sub_data3: "text33",
}
...
]
}
]
}
I'd like to update to a set of ids that maches some condition, update only the sub object within the document.
I've tries this:
db.collection.update({
"$and": [
{
"_id": {
"$in": [
{
"$id": "54369aca9bc25af3ca8b4568"
},
{
"$id": "54369aca9bc25af3ca8b4562"
}
]
}
},
{
"data1.data2": {
"$elemMatch": {
"sub_data1": "text4",
"sub_data2": "text5"
}
}
}
]
},
{
"data1.data2.$.sub_data3" : "text updated"
}
)
But I get the following error:
Update of data into MongoDB failed: dev.**.com:27017: cannot use the part (data2 of data1.data2.0.sub_data3) to traverse the element...
Any Ideas?
There is an open issue here that imposes a limitation when trying to update elements of an array nested within another array.
Besides, there are some improvements you can do here:
For your query you don't need the $and
db.collection.update(
{
"_id": {
"$in": [
{"$id": "54369aca9bc25af3ca8b4568"},
{"$id": "54369aca9bc25af3ca8b4562"}
]},
"data1.data2": {
"$elemMatch": {
"sub_data1": "text4",
"sub_data2": "text5"
}
},{..update...})
You might want to use $set:
db.collection.update(query,{ $set:{"name": "Mike"} })
Otherwise, you might lose the rest of the data within your document.