How to design a table need to be queried on every field? - mysql

Now I met a application requirement to build a database that can be queried for every field. Say, the table is supposed to have 30 fields.
| f1 | f2 | f3 | ... |f30|
The frontend may needs to query based on multiple or even all fields. For example, need to query all rows with f1 == x AND f2 < y AND f3 > z AND ... AND f30 = abc.
If I create index for each fields, insertion and update operation would be slow. If I just index some fields, query with un-indexed fields would be slow.
I suppose this is a common problem in a lot of application area. Is there any mature solution for this kind of case?

You should set it up as a name/value pair table. One "field" for the field name and one "field" for the value. You would have a third field that would be the "record ID" linking all the record together. So in your example, each "entry" would have 30 records. Then you only need 1 index on the field name+field value, and you can add as many "fields" as you like without needing to alter the table structure.

Indexes implement a space/time tradeoff. An index on every column
consumes more disk space,
makes some SELECT statements faster, and
makes some INSERT, UPDATE, and DELETE statements slower (because the dbms has to maintain the index as well as the row).
Very few user queries will select a random set of columns from your table. You'll probably find that two or three columns are in almost every query. Some kind of index on those columns will speed up all the queries that use them. A good query engine will use the indexes to isolate a subset of all the rows, then do a sequential scan on that subset for all the unindexed columns in the WHERE clause.
Often, that's fast enough for everybody. (Test, don't assume.)
If it isn't fast enough for everybody, then you examine query execution plans and user query patterns, take some performance measurements, add another index, and ask yourself whether you can live with the results. Each additional index will consume disk space, speed up some SELECT statements, and slow down some INSERT and DELETE statements. (It's not common for users to notice how INSERT, UPDATE, and DELETE statements have slowed down; they usually don't slow down by very much.)
At some point, you might find that the SELECTers start complaining about the INSERTers, and vice versa. Unless you're willing to consider more invasive performance improvements
faster hardware,
server tuning,
moving some tables or indexes to faster disks,
perhaps even changing to a different dbms,
you now have a political problem, not a technical one.

Related

Improve Mysql Select Query Performance [duplicate]

I've been using indexes on my MySQL databases for a while now but never properly learnt about them. Generally I put an index on any fields that I will be searching or selecting using a WHERE clause but sometimes it doesn't seem so black and white.
What are the best practices for MySQL indexes?
Example situations/dilemmas:
If a table has six columns and all of them are searchable, should I index all of them or none of them?
What are the negative performance impacts of indexing?
If I have a VARCHAR 2500 column which is searchable from parts of my site, should I index it?
You should definitely spend some time reading up on indexing, there's a lot written about it, and it's important to understand what's going on.
Broadly speaking, an index imposes an ordering on the rows of a table.
For simplicity's sake, imagine a table is just a big CSV file. Whenever a row is inserted, it's inserted at the end. So the "natural" ordering of the table is just the order in which rows were inserted.
Imagine you've got that CSV file loaded up in a very rudimentary spreadsheet application. All this spreadsheet does is display the data, and numbers the rows in sequential order.
Now imagine that you need to find all the rows that have some value "M" in the third column. Given what you have available, you have only one option. You scan the table checking the value of the third column for each row. If you've got a lot of rows, this method (a "table scan") can take a long time!
Now imagine that in addition to this table, you've got an index. This particular index is the index of values in the third column. The index lists all of the values from the third column, in some meaningful order (say, alphabetically) and for each of them, provides a list of row numbers where that value appears.
Now you have a good strategy for finding all the rows where the value of the third column is "M". For instance, you can perform a binary search! Whereas the table scan requires you to look N rows (where N is the number of rows), the binary search only requires that you look at log-n index entries, in the very worst case. Wow, that's sure a lot easier!
Of course, if you have this index, and you're adding rows to the table (at the end, since that's how our conceptual table works), you need to update the index each and every time. So you do a little more work while you're writing new rows, but you save a ton of time when you're searching for something.
So, in general, indexing creates a tradeoff between read efficiency and write efficiency. With no indexes, inserts can be very fast -- the database engine just adds a row to the table. As you add indexes, the engine must update each index while performing the insert.
On the other hand, reads become a lot faster.
Hopefully that covers your first two questions (as others have answered -- you need to find the right balance).
Your third scenario is a little more complicated. If you're using LIKE, indexing engines will typically help with your read speed up to the first "%". In other words, if you're SELECTing WHERE column LIKE 'foo%bar%', the database will use the index to find all the rows where column starts with "foo", and then need to scan that intermediate rowset to find the subset that contains "bar". SELECT ... WHERE column LIKE '%bar%' can't use the index. I hope you can see why.
Finally, you need to start thinking about indexes on more than one column. The concept is the same, and behaves similarly to the LIKE stuff -- essentially, if you have an index on (a,b,c), the engine will continue using the index from left to right as best it can. So a search on column a might use the (a,b,c) index, as would one on (a,b). However, the engine would need to do a full table scan if you were searching WHERE b=5 AND c=1)
Hopefully this helps shed a little light, but I must reiterate that you're best off spending a few hours digging around for good articles that explain these things in depth. It's also a good idea to read your particular database server's documentation. The way indices are implemented and used by query planners can vary pretty widely.
Check out presentations like More Mastering the Art of Indexing.
Update 12/2012: I have posted a new presentation of mine: How to Design Indexes, Really. I presented this in October 2012 at ZendCon in Santa Clara, and in December 2012 at Percona Live London.
Designing the best indexes is a process that has to match the queries you run in your app.
It's hard to recommend any general-purpose rules about which columns are best to index, or whether you should index all columns, no columns, which indexes should span multiple columns, etc. It depends on the queries you need to run.
Yes, there is some overhead so you shouldn't create indexes needlessly. But you should create the indexes that give benefit to the queries you need to run quickly. The overhead of an index is usually far outweighed by its benefit.
For a column that is VARCHAR(2500), you probably want to use a FULLTEXT index or a prefix index:
CREATE INDEX i ON SomeTable(longVarchar(100));
Note that a conventional index can't help if you're searching for words that may be in the middle of that long varchar. For that, use a fulltext index.
I won't repeat some of the good advice in other answers, but will add:
Compound Indices
You can create compound indices - an index that includes multiple columns. MySQL can use these from left to right. So if you have:
Table A
Id
Name
Category
Age
Description
if you have a compound index that includes Name/Category/Age in that order, these WHERE clauses would use the index:
WHERE Name='Eric' and Category='A'
WHERE Name='Eric' and Category='A' and Age > 18
but
WHERE Category='A' and Age > 18
would not use that index because everything has to be used from left to right.
Explain
Use Explain / Explain Extended to understand what indices are available to MySQL and which one it actually selects. MySQL will only use ONE key per query.
EXPLAIN EXTENDED SELECT * from Table WHERE Something='ABC'
Slow Query Log
Turn on the slow query log to see which queries are running slow.
Wide Columns
If you have a wide column where MOST of the distinction happens in the first several characters, you can use only the first N characters in your index. Example: We have a ReferenceNumber column defined as varchar(255) but 97% of the cases, the reference number is 10 characters or less. I changed the index to only look at the first 10 characters and improved performance quite a bit.
If a table has six columns and all of them are searchable, should i index all of them or none of them
Are you searching on a field by field basis or are some searches using multiple fields?
Which fields are most being searched on?
What are the field types? (Index works better on INTs than on VARCHARs for example)
Have you tried using EXPLAIN on the queries that are being run?
What are the negetive performance impacts of indexing
UPDATEs and INSERTs will be slower. There's also the extra storage space requirments, but that's usual unimportant these days.
If i have a VARCHAR 2500 column which is searchable from parts of my site, should i index it
No, unless it's UNIQUE (which means it's already indexed) or you only search for exact matches on that field (not using LIKE or mySQL's fulltext search).
Generally I put an index on any fields that i will be searching or selecting using a WHERE clause
I'd normally index the fields that are the most queried, and then INTs/BOOLEANs/ENUMs rather that fields that are VARCHARS. Don't forget, often you need to create an index on combined fields, rather than an index on an individual field. Use EXPLAIN, and check the slow log.
Load Data Efficiently: Indexes speed up retrievals but slow down inserts and deletes, as well as updates of values in indexed columns. That is, indexes slow down most operations that involve writing. This occurs because writing a row requires writing not only the data row, it requires changes to any indexes as well. The more indexes a table has, the more changes need to be made, and the greater the average performance degradation. Most tables receive many reads and few writes, but for a table with a high percentage of writes, the cost of index updating might be significant.
Avoid Indexes: If you don’t need a particular index to help queries perform better, don’t create it.
Disk Space: An index takes up disk space, and multiple indexes take up correspondingly more space. This might cause you to reach a table size limit more quickly than if there are no indexes. Avoid indexes wherever possible.
Takeaway: Don't over index
In general, indices help speedup database search, having the disadvantage of using extra disk space and slowing INSERT / UPDATE / DELETE queries. Use EXPLAIN and read the results to find out when MySQL uses your indices.
If a table has six columns and all of them are searchable, should i index all of them or none of them?
Indexing all six columns isn't always the best practice.
(a) Are you going to use any of those columns when searching for specific information?
(b) What is the selectivity of those columns (how many distinct values are there stored, in comparison to the total amount of records on the table)?
MySQL uses a cost-based optimizer, which tries to find the "cheapest" path when performing a query. And fields with low selectivity aren't good candidates.
What are the negetive performance impacts of indexing?
Already answered: extra disk space, lower performance during insert - update - delete.
If i have a VARCHAR 2500 column which is searchable from parts of my site, should i index it?
Try the FULLTEXT Index.
1/2) Indexes speed up certain select operations but they slow down other operations like insert, update and deletes. It can be a fine balance.
3) use a full text index or perhaps sphinx

SQL Index to Optimize WHERE Query

I have a Postgres table with several columns, one column is the datetime that the column was last updated. My query is to get all the updated rows between a start and end time. It is my understanding for this query to use WHERE in this query instead of BETWEEN. The basic query is as follows:
SELECT * FROM contact_tbl contact
WHERE contact."UpdateTime" >= '20150610' and contact."UpdateTime" < '20150618'
I am new at creating SQL queries, I believe this query is doing a full table scan. I would like to optimize it if possible. I have placed a Normal index on the UpdateTime column, which takes a long time to create, but with this index the query is faster. One thing I am not sure about is if have to keep recalculating this index if the table gets bigger/columns get changed. Also, I am considering a CLUSTERED index on the UpdateTime row, but I wanted to ask if there was a canonical way of optimizing this/if I was on the right track first
Placing an index on UpdateTime is correct. It will allow the index to be used instead of full table scans.
2 WHERE conditions like the above vs. using the BETWEEN keyword are the exact same:
http://dev.mysql.com/doc/refman/5.7/en/comparison-operators.html#operator_between
BETWEEN is just "syntactical sugar" for those that like that syntax better.
Indexes allow for faster reads, but slow down writes (because like you mention, the new data has to be inserted into the index as well). The entire index does not need to be recalculated. Indexes are smart data structures, so the extra data can be added without a lot of extra work, but it does take some.
You're probably doing many more reads than writes, so using an index is a good idea.
If you're doing lots of writes and few reads, then you'd want to think a bit more about it. It would then come down to business requirements. Although overall the throughput may be slowed, read latency may not be a requirement but write latency may be, in which case you wouldn't want the index.
For instance, think of this lottery example: Everytime someone buys a ticket, you have to record their name and the ticket number. However the only time you ever have to read that data, is after the 1 and only drawing to see who had that ticket number. In this database, you wouldn't want to index the ticket number since they'll be so many writes and very few reads.

Is it OK to index all the fields in this mysql query?

I have this mysql query and I am not sure what are the implications of indexing all the fields in the query . I mean is it OK to index all the fields in the CASE statement, Join Statement and Where Statement? Are there any performance implications of indexing fields?
SELECT roots.id as root_id, root_words.*,
CASE
WHEN root_words.title LIKE '%text%' THEN 1
WHEN root_words.unsigned_title LIKE '%normalised_text%' THEN 2
WHEN unsigned_source LIKE '%normalised_text%' THEN 3
WHEN roots.root LIKE '%text%' THEN 4
END as priorities
FROM roots INNER JOIN root_words ON roots.id=root_words.root_id
WHERE (root_words.unsigned_title LIKE '%normalised_text%') OR (root_words.title LIKE '%text%')
OR (unsigned_source LIKE '%normalised_text."%') OR (roots.root LIKE '%text%') ORDER by priorities
Also, How can I further improve the speed of the query above?
Thanks!
You index columns in tables, not queries.
None of the search criteria you've specified will be able to make use of indexes (since the search terms begin with a wild card).
You should make sure that the id column is indexed, to speed the JOIN. (Presumably, it's already indexed as a PRIMARY KEY in one table and a FOREIGN KEY in the other).
To speed up this query you will need to use full text search. Adding indexes will not speed up this particular query and will cost you time on INSERTs, UPDATEs, and DELETEs.
Caveat: Indexes speed up retrieval time but cause inserts and updates to run slower.
To answer the implications of indexing every field, there is a performance hit when using indexes whenever the data that is indexed is modified, either through inserts, updates, or deletes. This is because SQL needs to maintain the index. It's a balance between how often the data is read versus how often it is modified.
In this specific query, the only index that could possibly help would be in your JOIN clause, on the fields roots.id and root_words.root_id.
None of the checks in your WHERE clause could be indexed, because of the leading '%'. This causes SQL to scan every row in these tables for a matching value.
If you are able to remove the leading '%', you would then benefit from indexes on these fields... if not, you should look into implementing full-text search; but be warned, this isn't trivial.
Indexing won't help when used in conjunction with LIKE '%something%'.
It's like looking for words in a dictionary that have ae in them somewhere. The dictionary (or Index in this case) is organised based on the first letter of the word, then the second letter, etc. It has no mechanism to put all the words with ae in them close together. You still end up reading the whole dictionary from beginning to end.
Indexing the fields used in the CASE clause will likely not help you. Indexing helps by making it easy to find records in a table. The CASE clause is about processing the records you have found, not finding them in the first place.
Optimisers can also struggle with optimising multiple unrelated OR conditions such as yours. The optimiser is trying to narrow down the amount of effort to complete your query, but that's hard to do when unrelated conditions could make a record acceptable.
All in all your query would benefit from indexes on roots(root_id) and/or roots(id), but not much else.
If you were to index additional fields though, the two main costs are:
- Increased write time (insert, update or delete) due to additional indexes to write to
- Increased space taken up on the disk

MySQL indexes - what are the best practices?

I've been using indexes on my MySQL databases for a while now but never properly learnt about them. Generally I put an index on any fields that I will be searching or selecting using a WHERE clause but sometimes it doesn't seem so black and white.
What are the best practices for MySQL indexes?
Example situations/dilemmas:
If a table has six columns and all of them are searchable, should I index all of them or none of them?
What are the negative performance impacts of indexing?
If I have a VARCHAR 2500 column which is searchable from parts of my site, should I index it?
You should definitely spend some time reading up on indexing, there's a lot written about it, and it's important to understand what's going on.
Broadly speaking, an index imposes an ordering on the rows of a table.
For simplicity's sake, imagine a table is just a big CSV file. Whenever a row is inserted, it's inserted at the end. So the "natural" ordering of the table is just the order in which rows were inserted.
Imagine you've got that CSV file loaded up in a very rudimentary spreadsheet application. All this spreadsheet does is display the data, and numbers the rows in sequential order.
Now imagine that you need to find all the rows that have some value "M" in the third column. Given what you have available, you have only one option. You scan the table checking the value of the third column for each row. If you've got a lot of rows, this method (a "table scan") can take a long time!
Now imagine that in addition to this table, you've got an index. This particular index is the index of values in the third column. The index lists all of the values from the third column, in some meaningful order (say, alphabetically) and for each of them, provides a list of row numbers where that value appears.
Now you have a good strategy for finding all the rows where the value of the third column is "M". For instance, you can perform a binary search! Whereas the table scan requires you to look N rows (where N is the number of rows), the binary search only requires that you look at log-n index entries, in the very worst case. Wow, that's sure a lot easier!
Of course, if you have this index, and you're adding rows to the table (at the end, since that's how our conceptual table works), you need to update the index each and every time. So you do a little more work while you're writing new rows, but you save a ton of time when you're searching for something.
So, in general, indexing creates a tradeoff between read efficiency and write efficiency. With no indexes, inserts can be very fast -- the database engine just adds a row to the table. As you add indexes, the engine must update each index while performing the insert.
On the other hand, reads become a lot faster.
Hopefully that covers your first two questions (as others have answered -- you need to find the right balance).
Your third scenario is a little more complicated. If you're using LIKE, indexing engines will typically help with your read speed up to the first "%". In other words, if you're SELECTing WHERE column LIKE 'foo%bar%', the database will use the index to find all the rows where column starts with "foo", and then need to scan that intermediate rowset to find the subset that contains "bar". SELECT ... WHERE column LIKE '%bar%' can't use the index. I hope you can see why.
Finally, you need to start thinking about indexes on more than one column. The concept is the same, and behaves similarly to the LIKE stuff -- essentially, if you have an index on (a,b,c), the engine will continue using the index from left to right as best it can. So a search on column a might use the (a,b,c) index, as would one on (a,b). However, the engine would need to do a full table scan if you were searching WHERE b=5 AND c=1)
Hopefully this helps shed a little light, but I must reiterate that you're best off spending a few hours digging around for good articles that explain these things in depth. It's also a good idea to read your particular database server's documentation. The way indices are implemented and used by query planners can vary pretty widely.
Check out presentations like More Mastering the Art of Indexing.
Update 12/2012: I have posted a new presentation of mine: How to Design Indexes, Really. I presented this in October 2012 at ZendCon in Santa Clara, and in December 2012 at Percona Live London.
Designing the best indexes is a process that has to match the queries you run in your app.
It's hard to recommend any general-purpose rules about which columns are best to index, or whether you should index all columns, no columns, which indexes should span multiple columns, etc. It depends on the queries you need to run.
Yes, there is some overhead so you shouldn't create indexes needlessly. But you should create the indexes that give benefit to the queries you need to run quickly. The overhead of an index is usually far outweighed by its benefit.
For a column that is VARCHAR(2500), you probably want to use a FULLTEXT index or a prefix index:
CREATE INDEX i ON SomeTable(longVarchar(100));
Note that a conventional index can't help if you're searching for words that may be in the middle of that long varchar. For that, use a fulltext index.
I won't repeat some of the good advice in other answers, but will add:
Compound Indices
You can create compound indices - an index that includes multiple columns. MySQL can use these from left to right. So if you have:
Table A
Id
Name
Category
Age
Description
if you have a compound index that includes Name/Category/Age in that order, these WHERE clauses would use the index:
WHERE Name='Eric' and Category='A'
WHERE Name='Eric' and Category='A' and Age > 18
but
WHERE Category='A' and Age > 18
would not use that index because everything has to be used from left to right.
Explain
Use Explain / Explain Extended to understand what indices are available to MySQL and which one it actually selects. MySQL will only use ONE key per query.
EXPLAIN EXTENDED SELECT * from Table WHERE Something='ABC'
Slow Query Log
Turn on the slow query log to see which queries are running slow.
Wide Columns
If you have a wide column where MOST of the distinction happens in the first several characters, you can use only the first N characters in your index. Example: We have a ReferenceNumber column defined as varchar(255) but 97% of the cases, the reference number is 10 characters or less. I changed the index to only look at the first 10 characters and improved performance quite a bit.
If a table has six columns and all of them are searchable, should i index all of them or none of them
Are you searching on a field by field basis or are some searches using multiple fields?
Which fields are most being searched on?
What are the field types? (Index works better on INTs than on VARCHARs for example)
Have you tried using EXPLAIN on the queries that are being run?
What are the negetive performance impacts of indexing
UPDATEs and INSERTs will be slower. There's also the extra storage space requirments, but that's usual unimportant these days.
If i have a VARCHAR 2500 column which is searchable from parts of my site, should i index it
No, unless it's UNIQUE (which means it's already indexed) or you only search for exact matches on that field (not using LIKE or mySQL's fulltext search).
Generally I put an index on any fields that i will be searching or selecting using a WHERE clause
I'd normally index the fields that are the most queried, and then INTs/BOOLEANs/ENUMs rather that fields that are VARCHARS. Don't forget, often you need to create an index on combined fields, rather than an index on an individual field. Use EXPLAIN, and check the slow log.
Load Data Efficiently: Indexes speed up retrievals but slow down inserts and deletes, as well as updates of values in indexed columns. That is, indexes slow down most operations that involve writing. This occurs because writing a row requires writing not only the data row, it requires changes to any indexes as well. The more indexes a table has, the more changes need to be made, and the greater the average performance degradation. Most tables receive many reads and few writes, but for a table with a high percentage of writes, the cost of index updating might be significant.
Avoid Indexes: If you don’t need a particular index to help queries perform better, don’t create it.
Disk Space: An index takes up disk space, and multiple indexes take up correspondingly more space. This might cause you to reach a table size limit more quickly than if there are no indexes. Avoid indexes wherever possible.
Takeaway: Don't over index
In general, indices help speedup database search, having the disadvantage of using extra disk space and slowing INSERT / UPDATE / DELETE queries. Use EXPLAIN and read the results to find out when MySQL uses your indices.
If a table has six columns and all of them are searchable, should i index all of them or none of them?
Indexing all six columns isn't always the best practice.
(a) Are you going to use any of those columns when searching for specific information?
(b) What is the selectivity of those columns (how many distinct values are there stored, in comparison to the total amount of records on the table)?
MySQL uses a cost-based optimizer, which tries to find the "cheapest" path when performing a query. And fields with low selectivity aren't good candidates.
What are the negetive performance impacts of indexing?
Already answered: extra disk space, lower performance during insert - update - delete.
If i have a VARCHAR 2500 column which is searchable from parts of my site, should i index it?
Try the FULLTEXT Index.
1/2) Indexes speed up certain select operations but they slow down other operations like insert, update and deletes. It can be a fine balance.
3) use a full text index or perhaps sphinx

MySQL: low cardinality/selectivity columns = how to index?

I need to add indexes to my table (columns) and stumbled across this post:
How many database indexes is too many?
Quote:
“Having said that, you can clearly add a lot of pointless indexes to a table that won't do anything. Adding B-Tree indexes to a column with 2 distinct values will be pointless since it doesn't add anything in terms of looking the data up. The more unique the values in a column, the more it will benefit from an index.”
Is an Index really pointless if there are only two distinct values? Given a table as follows (MySQL Database, InnoDB)
Id (BIGINT)
fullname (VARCHAR)
address (VARCHAR)
status (VARCHAR)
Further conditions:
The Database contains 300 Million records
Status can only be “enabled” and “disabled”
150 Million records have status= enabled and 150 Million records have
stauts= disabled
My understanding is, without having an index on status, a select with where status=’enabled’ would result in a full tablescan with 300 Million Records to process?
How efficient is the lookup when I use a BTREE index on status?
Should I index this column or not?
What alternatives (maybe any other indexes) does MySQL InnoDB provide to efficiently look records up by the "where status="enabled" clause in the given example with a very low cardinality/selectivity of the values?
The index that you describe is pretty much pointless. An index is best used when you need to select a small number of rows in comparison to the total rows.
The reason for this is related to how a database accesses a table. Tables can be assessed either by a full table scan, where each block is read and processed in turn. Or by a rowid or key lookup, where the database has a key/rowid and reads the exact row it requires.
In the case where you use a where clause based on the primary key or another unique index, eg. where id = 1, the database can use the index to get an exact reference to where the row's data is stored. This is clearly more efficient than doing a full table scan and processing every block.
Now back to your example, you have a where clause of where status = 'enabled', the index will return 150m rows and the database will have to read each row in turn using separate small reads. Whereas accessing the table with a full table scan allows the database to make use of more efficient larger reads.
There is a point at which it is better to just do a full table scan rather than use the index. With mysql you can use FORCE INDEX (idx_name) as part of your query to allow comparisons between each table access method.
Reference:
http://dev.mysql.com/doc/refman/5.5/en/how-to-avoid-table-scan.html
I'm sorry to say that I do not agree with Mike. Adding an index is meant to limit the amount of full records searches for MySQL, thereby limiting IO which usually is the bottleneck.
This indexing is not free; you pay for it on inserts/updates when the index has to be updated and in the search itself, as it now needs to load the index file (full text index for 300M records is probably not in memory). So it might well be that you get extra IO in stead of limitting it.
I do agree with the statement that a binary variable is best stored as one, a bool or tinyint, as that decreases the length of a row and can thereby limit disk IO, also comparisons on numbers are faster.
If you need speed and you seldom use the disabled records, you may wish to have 2 tables, one for enabled and one for disabled records and move the records when the status changes. As it increases complexity and risk this would be my very last choice of course. Definitely do the move in 1 transaction if you happen to go for it.
It just popped into my head that you can check wether an index is actually used by using the explain statement. That should show you how MySQL is optimizing the query. I don't really know hoe MySQL optimizes queries, but from postgresql I do know that you should explain a query on a database approximately the same (in size and data) as the real database. So if you have a copy on the database, create an index on the table and see wether it's actually used. As I said, I doubt it, but I most definitely don't know everything:)
If the data is distributed like 50:50 then query like where status="enabled" will avoid half scanning of the table.
Having index on such tables is completely depends on distribution of data, i,e : if entries having status enabled is 90% and other is 10%. and for query where status="disabled" it scans only 10% of the table.
so having index on such columns depends on distribution of data.
#a'r answer is correct, however it needs to be pointed out that the usefulness of an index is given not only by its cardinality but also by the distribution of data and the queries run on the database.
In OP's case, with 150M records having status='enabled' and 150M having status='disabled', the index is unnecessary and a waste of resource.
In case of 299M records having status='enabled' and 1M having status='disabled', the index is useful (and will be used) in queries of type SELECT ... where status='disabled'.
Queries of type SELECT ... where status='enabled' will still run with a full table scan.
You will hardly need all 150 mln records at once, so I guess "status" will always be used in conjunction with other columns. Perhaps it'd make more sense to use a compound index like (status, fullname)
Jan, you should definitely index that column. I'm not sure of the context of the quote, but everything you said above is correct. Without an index on that column, you are most certainly doing a table scan on 300M rows, which is about the worst you can do for that data.
Jan, as asked, where your query involves simply "where status=enabled" without some other limiting factor, an index on that column apparently won't help (glad to SO community showed me what's up). If however, there is a limiting factor, such as "limit 10" an index may help. Also, remember that indexes are also used in group by and order by optimizations. If you are doing "select count(*),status from table group by status", an index would be helpful.
You should also consider converting status to a tinyint where 0 would represent disabled and 1 would be enabled. You're wasting tons of space storing that string vs. a tinyint which only requires 1 byte per row!
I have a similar column in my MySQL database. Approximately 4 million rows, with the distribution of 90% 1 and 10% 0.
I've just discovered today that my queries (where column = 1) actually run significantly faster WITHOUT the index.
Foolishly I deleted the index. I say foolishly, because I now suspect the queries (where column = 0) may have still benefited from it. So, instead I should explicitly tell MySQL to ignore the index when I'm searching for 1, and to use it when I'm searching for 0. Maybe.