CouchDB: separate collections - mysql

A quick thought today, does CouchDB handle multiple collections of databases?
To explain what I mean, our web app has two types of users, free and commercial which differ greatly in their document and view structure. For all intents and purposes, they are completely different products. A database is created per customer, and contains all their particular data and settings.
Without going into too much needless info, we currently have a mix of commercial-based databases and free-based databases mixed together in one instance of CouchDB. From a purely organisational standpoint, it's quite messy to sift through the (currently 50) free-based databases to find the (currently 3) commercial-based databases. Is there a better way to organise or sort these?
Has anyone got any ideas? I know I could simply add prefixes to the databases, but was after a MySQL-type approach where creating a separate database would be possible.

Other than grouping your data by using a property of each document (i.e. you put all of your free customers in the same db and prefix your views with that property) I don't think there's any way of grouping similar databases together aside from your suggestion of a prefix.
You could always consider running two instances, one for the free users and one for the paid ones.

Why don't you add 2 more properties to your couchdb users document, like .instance and .type, where you could store within .type field 'FreeUserType' or 'PaidUserType' and in .instance field just write some 'ID' of your 'group/collection' this way u can query your users base in very complex way and it will be giving you a lot of flexibility in extending your db with more 'related' data objects that you could 'join' on queries.

Related

Best practices for transforming a relational database to a non relational?

I have a MySQL Database and I need to create a Mongo Database (I don't care about keeping any data).
So are there any good practices for designing the structure (mongoose.Schema) based on the relational tables of MySQL ?
For example, the SQL has a table users and a table courses with relation 1:n, should I also create two collections in MongoDB or would it be better to create a new field courses: [] inside user document and create only the user collection ?
The schema definition should be driven by the use cases of the application.
Under which conditions is data accessed and modified. Which is the leading entity.
e.g. When a user is loaded do you always also want to know the courses of the user? This would be an argument for embedding.
Can you update courses without knowing all of its users, e.g. update the name of a course? Do you want to list an overview of all courses? This would be an argument for extracting into an own collection.
So there is no general guideline for such migration as only from the schema definition, the use cases cannot be derived.
If you don't care about data, the best approach is to redesign it from scratch.
NoSQLs differ from RDBMS in many ways so direct mapping will hardly be efficient and in many cases not possible at all.
First thing you need to answer to yourself (and probably to mention in the question) is why you need to change database in the first place. There are different kind of problems that Mongo can solve better than SQL and they require different data models. None of them come for free so you will need to understand the tradeoffs.
You can start from the very simple rule: in SQL you model your data after your business objects and describe relations between them, in Mongo you model data after queries that you need to respond to. As soon as you grasp the idea it will let you ask answerable questions.
It may worth reading https://www.mongodb.com/blog/post/building-with-patterns-a-summary as a starting point.
An old yet still quite useful https://www.mongodb.com/blog/post/6-rules-of-thumb-for-mongodb-schema-design-part-1 Just keep in mind it was written long time ago when mongo did not have many of v4+ features. Nevertheless it describes philosophy of mongo data modelling with simple examples.It didn't change much since then.

Is sql views the proper solution

I have a table named 'Customers' which has all the information about users with different types (user, drivers, admins) and I cannot separate this table right now because it's working on production and this is not a proper time to do this.
so If I make 3 views: the first has users types only, the second has drivers and the third has admins.
My goal is to use 3 models instead one in the project I'm working on so
is this a good solution and what does it cost on performance?
How big is your table 'Customers'? According to the name it doesn't sounds like heavy one.
How often these views will be queried?
Do you have some indices or pk constraints on the attribute you're are going to use in where clause for the views?
I cannot separate this table right now because it's working on
production and this is not a proper time to do this.
From what you said it sounds like a temporarily solution so it probably the good one. Later you сan replace the views with three tables and it will not affect the interface.
I suggest that it is improper to give end-users logins directly into the database. Instead, all requests should go through a database-access layer (API) that users must log into. This layer can provide the filtering you require without (perhaps) any impact to the user. The layer would, while constructing the needed SELECT, tack on, for example, AND type = 'admin' to achieve the goal.
For performance, you might also need to have type at the beginning of some of the INDEXes.

Translate sql database schema to IndexedDB

I have three tables in my SQL Schema: Clients, with address and so on, orders with order details and files, which stores uploaded files. both the files table and the orders table contain foreign keys referencing the Client tables.
How would I do that in IndexedDB? IÄm new to this whole key-index-thinking and would just like to understand, how the same Thing would be done with indexedDB.
Now I know there is a shim.js file, but I'm trying to understand the concept itself.
Help and tips highly appreciated!
EDIT:
So I would really have to think about which queries I want to allow and then optimize my IndexedDB implementation for those queries, is that the main point here? Basically, I want to to store a customer once and then many orders for that customer and then be able to upload small files (preferably pdfs) for that customer, not even necessarily for each order (although if that's easy to implement, I may do it)... I see every customer as a separate entity, I wont have things like "give me all customers who ordered xy" - I only need to have each customer once and then store all the orders for the customer and all the files. I wanto be able to go: Search for customer with the name of XY - which then gives me a list of all orders and their dates and a list of the files uploaded for that customer (maybe associated to the order).
This question is a bit too broad to answer correctly. Nevertheless, the major concept to learn when transitioning from SQL to No-SQL (indexedDB) is the concept of object stores. Most SQL databases are relational and perform much of the work of optimizing queries for you. indexedDB does not. So the concepts of normalization and denormalization work a bit differently. The focal point is to explicitly plan your own queries. Unlike the design of an app/system that allows simple ad-hoc SQL queries that are designed at a later point in time, and possibly even easily added/changed at a later time, you really need to do a lot of the planning up front for indexedDB.
So it is not quite safe to say that the transition is simply a matter of creating three object stores to correspond to your three relational tables. For one, there is no concept of joining in indexedDB so you cannot join on foreign keys.
It is not clear from your question but your 3 tables are clients, orders, and files. I will go out on a limb here and make some guesses. I would bet you could use a single object store, clients. Then, for each client object, store the normal client properties, store an orders array property, and store a files array property. In the orders array, store order objects.
If your files are binary, this won't work, you will need to use blobs, and may even encounter issues with blob support in various browser indexedDB implementations (Chrome sort of supports it, it is unclear from version to version).
This assumes your typical query plan is that you need to do something like list the orders for a client, and that is the most frequently used type of query.
If you needed to do something across orders, independent of which client an order belongs to, this would not work so well and you would have to iterate over the entire store.
If the clients-orders relation is many to many, then this also would not work so well, because of the need to store the order info redundantly per client. However, one note here, is that this redundant storage is quite common in NoSQL-style databases like indexedDB. The goal is not to perfectly model the data, but to store the data in such a way that it your most frequently occurring queries complete quickly (while still maintaining correctness).
Edit:
Based on your edit, I would suggest a simple prototype that uses three object stores. In your client view page where you display client details, simply run three separate queries.
Get the one entity from the client object store based on client id.
Open a cursor over the orders and get all orders for the client. In the orders store, use a client-id property. Create an index on this client-id property. Open the cursor over the index for a specific client id.
Open a cursor over the files store using a similar tactic as #2.
In your bizlogic layer, enforce your data constraints. For example, when deleting a client, first delete all the files from the files store, then delete all the orders from the orders store, and then delete the single client entity from the client store.
What I am suggesting is to not overthink it. It is not that complicated. So far you have not described something that sounds like it will have performance issues so there is no need for something more elegant.
I will go with Josh answer but if you are still finding it hard to use indexeddb and want to continue using sql. You can use sqlweb - It will let you do operation inside indexeddb by using sql query.
e.g -
var connection = new JsStore.Instance('jsstore worker path');
connection.runSql("select * from Customers").then(function(result) {
console.log(result);
});
Here is the link - http://jsstore.net/tutorial/sqlweb/

MySQL Relational Database with Large Data Sets Unique to Each User

I am working on a project which involves building a social network-style application allowing users to share inventory/product information within their network (for sourcing).
I am a decent programmer, but I am admittedly not an expert with databases; even more so when it comes to database design. Currently, user/company information is stored via a relational database scheme in MySQL which is working perfectly.
My problem is that while my relational scheme works brilliantly for user/company information, it is confusing me on how to implement inventory information. The issue is that each "inventory list" will definitely contain differing attributes specific to the product type, but identical to the attributes of each other product in the list. My first thought was to create a table for each "inventory list". However, I feel like this would be very messy and would complicate future attempts at KDD. I also (briefly) considered using a 'master inventory' and storing the information (e.g. the variable categories and data as a JSON string. But I figured JSON strings MySQL would just become a larger pain in the ass.
My question is essentially how would someone else solve this problem? Or, more generally, sticking with principles of relational database management, what is the "correct" way to associate unique, large data sets of similar type with a parent user? The thing is, I know I could easily jerry-build something that would work, but I am genuinely interested in what the consensus is on how to solve this problem.
Thanks!
I would check out this post: Entity Attribute Value Database vs. strict Relational Model Ecommerce
The way I've always seen this done is to make a base table for inventory that stores universally common fields. A product id, a product name, etc.
Then you have another table that has dynamic attributes. A very popular example of this is Wordpress. If you look at their data model, they use this idea heavily.
One of the good things about this approach is that it's flexible. One of the major negatives is that it's slow and can produce complex code.
I'll throw out an alternative of using a document database. In that case, each document can have a different schema/structure and you can still run queries against them.

Max Tables & Design Pattern

I am working on an app right now which has the potential to grow quite large. The whole application runs through a single domain, with customers being given sub-domains, which means that it all, of course, runs through a common code-base.
What I am struggling with is the database design. I am not sure if it would be better to have a column in each table specifying the customer id, or to create a new set of tables (in the same database), or to create a complete new database per customer.
The nice thing about a "flag" in the database specifying the customer id is that everything is in a single location. The downfalls are obvious- Tables can (will) get huge, and maintenance can become a complete nightmare. If growth occurs, splitting this up over several servers is going to be a huge pain.
The nice thing about creating new tables it is easy to do, and also keeps the tables pretty small. And since customers data doesn't need to interact, there aren't any problems there. But again, maintenance might become an issue (Although I do have a migrations library that will do updates on the fly per customer, so that is no big deal). The other issue is I have no idea how many tables can be in a single database. Does anyone know what the limit is, and what the performance issues would be?
The nice thing about creating a new database per customer, is that when I need to scale, I will be able to, quite nicely. There are several sites that make use of this design (wordpress.com, etc). It has been shown to be effective, but also have some downfalls.
So, basically I am just looking for some advice on which direction I should (could) go.
Single Database Pros
One database to maintain. One database to rule them all, and in the darkness - bind them...
One connection string
Can use Clustering
Separate Database per Customer Pros
Support for customization on per customer basis
Security: No chance of customers seeing each others data
Conclusion
The separate database approach would be valid if you plan to support customer customization. Otherwise, I don't see the security as a big issue - if someone gets the db credentials, do you really think they won't see what other databases are on that server?
Multiple Databases.
Different customers will have different needs, and it will allow you to serve them better.
Furthermore, if a particular customer is hammering the database, you don't want that to negatively affect the site performance for all your other customers. If everything is on one database, you have no damage control mechanism.
The risk of accidentally sharing data between customers is much smaller with separate database. If you'd like to have all data in one place, for example for reporting, set up a reporting database the customers cannot access.
Separate databases allow you to roll out, and test, a bugfix for just one customer.
There is no limit on the amount of tables in MySQL, you can make an insane amount of them. I'd call anything above a hundred tables per database a maintenance nightmare though.
Are you planning to develop a Cloud App?
I think that you don´t need to make tables or data bases by customer. I recommend you to use a more scalable relational database management system. Personally I don´t know the capabilities of MySQL, but i´m pretty sure that it should support distributed data base model in order to handle the load.
creating tables or databases per customer can lead you to a maintenance nightmare.
I have worked with multi-company databases and every table contains customer ids and to access its data we develop views per customer (for reporting purposes)
Good luck,
You can do whatever you want.
If you've got the customer_id in each column, then you've got to write the whole application that way. That's not exactly true as there should be enough to add that column only to some tables, the rest could be done using some simple joins.
If you've got one database per user, there won't be any additional code in the application so that could be easier.
If you take to first approach there won't be a problem to move to many databases as you can have the customer_id column in all those tables. Of course then there will be the same value in this column in each table, but that's not a problem.
Personally I'd take the simple one customer one database approach. Easier to user more database servers for all customers, more difficult to show a customer data that belongs some other customer.