What is the purpose of a ModelLocator Singleton in ActionScript - actionscript-3

The use I have for it is for storing user credentials, and calling a transfer object that functions as a sort of "cache" for the current session in all of the flex modules.
Thinking about objects that have to be present in every module. Is there any alternative to a singleton instance for this?

Yes! Automated dependency injection frameworks, such as Mate, Robotlegs, Parsley, or Swiz. Check out http://www.developria.com/2010/06/robotlegs-for-framework-beginn.html and http://www.developria.com/2010/05/mate-for-framework-beginners.html for a more in-depth look about how two of these work.
For just a few reasons you should avoid Singletons, see http://misko.hevery.com/2008/08/17/singletons-are-pathological-liars

Related

Why to use Singleton patern?

So.. I can't understand why should I even use the Singleton pattern in ActionScript 3. Can anyone explain me this? Maybe I just don't understand the purpose of it. I mean how it differs from other patterns? How it works?
I checked the PureMVC source and it's full of Singletons. Why are they using them in the View, Module, Controller?
I have next to no practical experience with PureMVC so I can't argue for or against their use of Singletons. Hence, I'll try to keep my answer more generic.
A singleton is a type of object that can only be instantiated once and is globally accessible.
Typically, this kind of pattern is used in order to have easy access to services of some kind, perhaps a service facade used to retrieve data from a server or an application model that holds information about settings or such.
The singleton pattern is by many considered to be an anti-pattern for a number of reasons, a few of which are mentioned below:
They carry state, making certain tasks such as unit testing virtually impossible.
They inherently violate the Single Responsibility Principle.
They promote tight coupling between classes due to them being globally accessible.
I won't list all of the reasons why a singleton may be an anti pattern, there are plenty of resources on the subject.
The singleton pattern restricts the instantiation of an object to only one instance. Sometimes in systems this pattern is used so an object that controls parts of the system can't be just created at-will. If you have some object that manages settings, for example, you would want something that changes settings to only modify that one object, and not create a new one.

Dependency injection - best practice for fully decoupled components?

I want to use dependency injection (Unity) and at the moment I'm thinking about how to setup my project (it's a fancy demo I'm working on).
So, to fully decouple all components and have no more assembly dependencies, is it advisable to create an assembly ".Contracts" or something similar and put all interfaces and shared data structures there?
Would you consider this the best practice or am I on a wrong track here?
What I want to accomplish:
Full testability, I want all components as sharply decouples as possible and inject everything, no component will ever talk directly to a concrete implementation anymore.
The first and probably most important step is to program to interfaces, rather than concrete implementations.
Doing so, the application will be loosely coupled whether or not DI is used.
I wouldn't separate interfaces in other assembly. If you have to interact with something that is a part of your domain, why separate it? Examples of interfaces are repositories, an email sender, etc. Supose you have a Model assembly where you have your domain objects. This assembly exposes the interfaces, and implementations, obviously, reference Model in order to implement them.

Prefetching data in with Linq-to-SQL, IOC and Repository pattern

using Linq-to-SQL I'd like to prefetch some data.
1) the common solution is to deal with DataLoadOptions, but in my architecture it won't work because :
the options have to be set before the first query
I'm using IOC, so I don't directly instanciate the DataContext (I cannot execute code at instanciation)
my DataContext is persistent for the duration of a web request
2) I have seen another possibility based on loading the data and its childs in a method, then returning only the data (so the child is already loaded) see an example here
Nonetheless, in my architecture, it cannot not work :
My queries are cascaded out of my repository and can be consumed by many services that will add clauses
I work with interfaces, the concrete instances of the linq-to-sql objects do not leave the repositories (yes, you can work with interfaces AND add clauses)
My repositories are generic
Yes, this architecture is quiet complicated, but it's very cool as I can play with the code like lego ;)
My question is : what are the other possibilities to prefetch a data ?
In my app i use perhaps a variation to your potential solution #2. It's somewhat difficult to explain but simply: i chain and defer lazy loading in my model with custom lazy classes so as to abstract away from the LinqToSql-specific Differed Execution that i take advantage of with IQueryable. Benefits:
My Domain Model and Service layer upwards does not necessarily have to depend on the LinqToSql provider (i can swap out my DAL with interfaces if i want to)
My Service methods can and do return complete object graphs with multiple 'anchor points' for lazy loading using classes that abstract away a particular lazy loading implementation - so i can use LinqToSql-specific Differed Execution or something else (eg. anon delegates. again, refer to this answer)
I can maintain IQueryable results throughout my app (even to the UI if i want to) thus allowing infinite LINQ query chaining without having to worry about performance.
I'm not aware of other possibilities, it seems like you've pushed LinqToSql to its limits (I may be wrong, however).
I think your best options at this point are:
Add some "non-generic" methods to your application to handle just the
specific scenarios where you want/need eager loading and don't
use your "normal", "generic" infrastructure for those methods.
Use an ORM that has more sophisticated support for eager and lazy loading.
I found a solution.
My answer is 'Dependency injection'.
It's generally shipped with IOC, and mean you can have your IOC container manage injection of classes at instanciation.
All I need is to inject a CustomDCParameter class when I instanciate a DC.
That class will contains the rules, and the constructor will apply all of them.

Singleton for Application Configuration

In all my projects till now, I use to use singleton pattern to access Application configuration throughout the application. Lately I see lot of articles taking about not to use singleton pattern , because this pattern does not promote of testability also it hides the Component dependency.
My question is what is the best way to store Application configuration, which is easily accessible throughout the application without passing the configuration object all over the application ?.
Thanks in Advance
Madhu
I think an application configuration is an excellent use of the Singleton pattern. I tend to use it myself to prevent having to reread the configuration each time I want to access it and because I like to have the configuration be strongly typed (i.e, not have to convert non-string values each time). I usually build in some backdoor methods to my Singleton to support testability -- i.e., the ability to inject an XML configuration so I can set it in my test and the ability to destroy the Singleton so that it gets recreated when needed. Typically these are private methods that I access via reflection so that they are hidden from the public interface.
EDIT We live and learn. While I think application configuration is one of the few places to use a Singleton, I don't do this any more. Typically, now, I will create an interface and a standard class implementation using static, Lazy<T> backing fields for the configuration properties. This allows me to have the "initialize once" behavior for each property with a better design for testability.
Use dependency injection to inject the single configuration object into any classes that need it. This way you can use a mock configuration for testing or whatever you want... you're not explicitly going out and getting something that needs to be initialized with configuration files. With dependency injection, you are not passing the object around either.
For that specific situation I would create one configuration object and pass it around to those who need it.
Since it is the configuration it should be used only in certain parts of the app and not necessarily should be Omnipresent.
However if you haven't had problems using them, and don't want to test it that hard, you should keep going as you did until today.
Read the discussion about why are they considered harmful. I think most of the problems come when a lot of resources are being held by the singleton.
For the app configuration I think it would be safe to keep it like it is.
The singleton pattern seems to be the way to go. Here's a Setting class that I wrote that works well for me.
If any component relies on configuration that can be changed at runtime (for example theme support for widgets), you need to provide some callback or signaling mechanism to notify about the changed config. That's why it is not enough to pass only the needed parameters to the component at creation time (like color).
You also need to provide access to the config from inside of the component (pass complete config to component), or make a component factory that stores references to the config and all its created components so it can eventually apply the changes.
The former has the big downside that it clutters the constructors or blows up the interface, though it is maybe fastest for prototyping. If you take the "Law of Demeter" into account this is a big no because it violates encapsulation.
The latter has the advantage that components keep their specific interface where components only take what they need, and as a bonus gives you a central place for refactoring (the factory). In the long run code maintenance will likely benefit from the factory pattern.
Also, even if the factory was a singleton, it would likely be used in far fewer places than a configuration singleton would have been.
Here is an example done using Castale.Core >> DictionaryAdapter and StructureMap

Proper Logging in OOP context

Here is a problem I've struggled with ever since I first started learning object-oriented programming: how should one implement a logger in "proper" OOP code?
By this, I mean an object that has a method that we want every other object in the code to be able to access; this method would output to console/file/whatever, which we would use for logging--hence, this object would be the logger object.
We don't want to establish the logger object as a global variable, because global variables are bad, right? But we also don't want to have the pass the logger object in the parameters of every single method we call in every single object.
In college, when I brought this up to the professor, he couldn't actually give me an answer. I realize that there are actually packages (for say, Java) that might implement this functionality. What I am ultimately looking for, though, is the knowledge of how to properly and in the OOP way implement this myself.
You do want to establish the logger as a global variable, because global variables are not bad. At least, they aren't inherently bad. A logger is a great example of the proper use of a globally accessible object. Read about the Singleton design pattern if you want more information.
There are some very well thought out solutions. Some involve bypassing OO and using another mechanism (AOP).
Logging doesn't really lend itself too well to OO (which is okay, not everything does). If you have to implement it yourself, I suggest just instantiating "Log" at the top of each class:
private final log=new Log(this);
and all your logging calls are then trivial: log.print("Hey");
Which makes it much easier to use than a singleton.
Have your logger figure out what class you are passing in and use that to annotate the log. Since you then have an instance of log, you can then do things like:
log.addTag("Bill");
And log can add the tag bill to each entry so that you can implement better filtering for your display.
log4j and chainsaw are a perfect out of the box solution though--if you aren't just being academic, use those.
A globally accessible logger is a pain for testing. If you need a "centralized" logging facility create it on program startup and inject it into the classes/methods that need logging.
How do you test methods that use something like this:
public class MyLogger
{
public static void Log(String Message) {}
}
How do you replace it with a mock?
Better:
public interface ILog
{
void Log(String message);
}
public class MyLog : ILog
{
public void Log(String message) {}
}
I've always used the Singleton pattern to implement a logging object.
You could look at the Singleton pattern.
Create the logger as a singleton class and then access it using a static method.
I think you should use AOP (aspect-oriented programming) for this, rather than OOP.
In practice a singleton / global method works fine, in my opinion. Preferably the global thing is just a framework to which you can connect different listeners (observer pattern), e.g. one for console output, one for database output, one for Windows EventLog output, etc.
Beware for overdesign though, I find that in practice a single class with just global methods can work quite nicely.
Or you could use the infrastructure the particular framework you work in offers.
The Enterprise Library Logging Application Block that comes from Microsoft's Pattern & Practices group is a great example of implementing a logging framework in an OOP environment. They have some great documentation on how they have implemented their logging application block and all the source code is available for your own review or modification.
There are other similar implementations: log4net, log4j, log4cxx
They way they have implemented the Enterprise Library Logging Application Block is to have a static Logger class with a number of different methods that actually perform the log operation. If you were looking at patterns this would probably be one of the better uses of the Singleton pattern.
I am all for AOP together with log4*. This really helped us.
Google gave me this article for instance. You can try to search more on that subject.
(IMHO) how 'logging' happens isn't part of your solution design, it's more part of whatever environment you happen to be running in - like System and Calendar in Java.
Your 'good' solution is one that is as loosely coupled to any particular logging implementation as possible so think interfaces. I'd check out the trail here for an example of how Sun tackled it as they probably came up with a pretty good design and laid it all out for you to learn from!
use a static class, it has the least overhead and is accessible from all project types within a simple assembly reference
note that a Singleton is equivalent, but involves unnecessary allocation
if you are using multiple app domains, beware that you may need a proxy object to access the static class from domains other than the main one
also if you have multiple threads you may need to lock around the logging functions to avoid interlacing the output
IMHO logging alone is insufficient, that's why I wrote CALM
good luck!
Maybe inserting Logging in a transparent way would rather belong in the Aspect Oriented Programming idiom. But we're talking OO design here...
The Singleton pattern may be the most useful, in my opinion: you can access the Logging service from any context through a public, static method of a LoggingService class.
Though this may seem a lot like a global variable, it is not: it's properly encapsulated within the singleton class, and not everyone has access to it. This enables you to change the way logging is handled even at runtime, but protects the working of the logging from 'vilain' code.
In the system I work on, we create a number of Logging 'singletons', in order to be able to distinguish messages from different subsystems. These can be switched on/off at runtime, filters can be defined, writing to file is possible... you name it.
I've solved this in the past by adding an instance of a logging class to the base class(es) (or interface, if the language supports that) for the classes that need to access logging. When you log something, the logger looks at the current call stack and determines the invoking code from that, setting the proper metadata about the logging statement (source method, line of code if available, class that logged, etc.) This way a minimal number of classes have loggers, and the loggers don't need to be specifically configured with the metadata that can be determined automatically.
This does add considerable overhead, so it is not necessarily a wise choice for production logging, but aspects of the logger can be disabled conditionally if you design it in such a way.
Realistically, I use commons-logging most of the time (I do a lot of work in java), but there are aspects of the design I described above that I find beneficial. The benefits of having a robust logging system that someone else has already spent significant time debugging has outweighed the need for what could be considered a cleaner design (that's obviously subjective, especially given the lack of detail in this post).
I have had issues with static loggers causing permgen memory issues (at least, I think that's what the problem is), so I'll probably be revisiting loggers soon.
To avoid global variables, I propose to create a global REGISTRY and register your globals there.
For logging, I prefer to provide a singleton class or a class which provides some static methods for logging.
Actually, I'd use one of the existing logging frameworks.
One other possible solution is to have a Log class which encapsulates the logging/stored procedure. That way you can just instantiate a new Log(); whenever you need it without having to use a singleton.
This is my preferred solution, because the only dependency you need to inject is the database if you're logging via database. If you're using files potentially you don't need to inject any dependencies. You can also entirely avoid a global or static logging class/function.