Big O(average) Access time for trees, and hashes - language-agnostic

I'm looking for Big O notation - avereage , for only the access of one element. Here is what I have so far. Once again that is Big O, Average, Access. Actually I only need it for a Searchable Red and Black Tree and a simple Modulus Hash.
Arrays - O(1)
Linked Lists - O(X)
Trees(defined above) - ?
Hashes(defined above) - ?

Tree = O(log n)
Hashtable = O(1)

Related

Store 2 previous array to implement Leapfrog numerical Scheme

In the context of advection numerical solving, I try to implement the following recurrence formula in a time loop:
As you can see, I need the second previous time value for (j-1) and previous (j) value to compute the (j+1) time value.
I don't know how to implement this recurrence formula. Here below my attempt in Python where u represents the array of values T for each iteration:
l = 1
# Time loop
for i in range(1,nt+1):
# Leapfrog scheme
# Store (i-1) value for scheme formula
if (l < 2):
atemp = copy(u)
l = l+1
elif (l == 2):
btemp = copy(atemp)
l = 1
u[1:nx-1] = btemp[1:nx-1] - cfl*(u[2:nx] - u[0:nx-2])
t=t+dt
Coefficient cfl is equal to s.
But the results of simulation don't give fully good results. I think my way to do is not correct.
How can I implement this recurrence? i.e mostly how to store the (j-1) value in time to inject it into formula for computing (j+1) ?
Update
In the formula:
the time index j has to start from j=1since we have the term T_(i,j-1).
So for the first iteration, we have :
T_i,2 = T_i,0 - s (T_(i+1),1 - T_(i-1),1)
Then, if In only use time loop (and not spatial loop such that way, I can't compute dudx[i]=T[i+1]-T[i-1]), how can I compute (T_(i+1),1 - T_(i-1),1), I mean, without precalculating dudx[i] = T_(i+1),1 - T_(i-1),1 ?
That was the trick I try to implement in my original question. The main problem is that I am imposed to use only time loop.
The code would be simpler if I could use 2D array with T[i][j] element, ifor spatial and jfor time but I am not allowed to use 2D array in my examination.
There are few problems I see in your code. First is notation. From the numerical scheme you posted it looks like you are discretizing time with j and space with i using central differences in both. But in your code it looks like the time loop is written in terms of i and this is confusing. I will use j for space and n for time here.
Second, this line
u[1:nx-1] = btemp[1:nx-1] - cfl*(u[2:nx] - u[0:nx-2])
is not correct since for the spatial derivatve du/dx you need to apply the central difference scheme at every spatial point of u. Hence, u[2:nx] - u[0:nx-2] is doing nothing like this, it is just subtracting what seems to be the solution including boundary points on the left from the solution including boundary points on the right. You need to properly calculate this spatial derivative.
Finally, the Leapfrog method which indeed takes into account the n-1 solution is usually implemented by keeping a copy of the previous time step in another variable such as u_prev. So if you use the Leapfrog time scheme plus central difference spatial scheme, in the end you should have something like
u_prev = u_init
u = u_prev
for n in time...:
u_new = u_prev - cfl*(dudx)
u_prev = u
u = u_new
Note that u on the LHS is to compute time n+1, u_prev is at time n-1 and dudx uses u at the current time n. Also, you can compute dudx with
for j in space...:
dudx[j] = u[j+1]-u[j-1]

AS3 function producing combinations of array, no duplicates

This sounds like a duplicate question, as there are several questions similar to this, but they don't specifically ask this (or I just haven't found it! :) )
I have an array, this one has two distinct elements, "a" and "b", and a length of four total elements:
var list:Array = ["a","a","b","b"];
I'm looking for all combinations, using all elements, no duplicates.
This should yield:
aabb
abab
abba
bbaa
baba
baab
Searching for a solution for this has given me results similar to these:
a,b,ab,ba,aab,abb,aba, etc
or
a a b b, a a b b, a a b b, etc
Mind you, the application that would ultimately use this function would have two distinct elements, "a" and "b", and a length of 50 total elements:
var list:Array = ["a","a","a","a","a","a","a","a","a","a",
"a","a","a","a","a","a","a","a","a","a",
"a","a","a","a","a",
"b","b","b","b","b","b","b","b","b","b",
"b","b","b","b","b","b","b","b","b","b",
"b","b","b","b","b"]
...so a brute force solution like I used with aabb wouldn't be feasible.
Any help, especially using AS3 code, would be appreciated, even if it is simply pointing me to the right google search :)
Here is a JavaScript answer that might get you started: Permutations in JavaScript? (they're both EcmaScript implementations so converting to ActionScript should only require minor changes)
It doesn't handle the uniqueness requirement, but it might point you in the right direction.
However, there are a few things you might need to consider first. I don't think it will be feasible to pre-compute all unique permutations upfront.
Based on this answer about unique permutations it looks like there are 50! / 25! * 25! = 126,410,606,437,752 unique permutations for 25 a's and 25 b's.
To give an idea how large that number is: if each combination was 1 byte in memory (in practice it will be more than this) then that would be: 126410606437752 bytes = 126,410.6 gigabytes in memory.
Plus, the algorithm for generating the permutations has complexity O(n!) - so it might take far too long, separate to memory constraints, to generate the list of permutations.

On-the-fly parser/pre-generation space/time tradeoff considerations

Do the space-related benefits of using an on-the-fly parser outweigh the time-related benefits of a pre-generated lookup table?
Long version:
I am authoring a chemistry reference tool, and am including a feature that will automatically name formulae conforming to a specific pattern; e.g. C[n]H[2n+2] => [n]ane; where [n] is an integer for the LHS; and an index into an array of names on the RHS. (meth, eth, …)
As far as I can see, this can be implemented in one of two ways:
I pre-generate a key/value dual lookup dictionary of formula <=> name pairs; either when the application starts (slower startup), or a static list which is published with the application (slower download).
Formulae are evaluated on the fly by a custom-built parser.
In approach 1. name => formula lookup becomes simpler by an order of magnitude; but the generator will, unless I want to ship dozens of megabytes of data with the application, have to have a preset, and fairly low, value for n.
Compounding this is the fact that formulae can have several terms; such as C[n]H[2n+1]OC[n']H[2n'+1]; and for each of these, the number of possible matches increases geometrically with n. Additionally, using this approach would eat RAM like nobody's business.
Approach 2. lets me support fairly large values of n using a fairly small lookup table, but makes name => formula lookup somewhat more complex. Compared to the pre-generation to file for shipping with the application, it also lets me correct errors in the generation logic without having to ship new data files.
This also requires that each formula be matched against a cursory test for several rules, determining if it could fit; which, if there are a lot of rules, takes time that might lead to noticeable slowdowns in the interface.
The question then, is:
Are there any considerations in the tradeoff I have failed to account for, or approaches that I haven't considered?
Do the benefits of using an on-the-fly parser justify the increased implementation complexity?
You should go with the second approach.
One possible solution is a greedy algorithm. Define your set of transformations as a regular expression (used to test the pattern) and a function which is given the regexp match object and returns the transformed string.
Regular expressions aren't quite powerful enough to handle what you want directly. Instead you'll have to do something like:
m = re.match(r"C\[(\d+)\]H\[(\d+)]\]", formula)
if m:
C_count, H_count = int(m.group(1)), int(m.group(2))
match_size = len(m.group(0))
if C_count*2+2 == H_count:
replacement = alkane_lookup[C_count]
elif C_count*2 == H_count:
replacement = alkene_lookup[C_count]
...
else:
replacement = m.group(0) # no replacement available
(plus a lot more for the other possibilities)
then embed that in a loop which looks like:
formula = "...."
new_formula = ""
while formula:
match_size, replacement = find_replacement(formula)
new_formula += replacement
formula = formula[match_size:]
(You'll need to handle the case where nothing matches. One possible way is to include a list of all possible elements at the end of find_replacement(), which only returns the next element and counts.)
This is a greedy algorithm, which doesn't guarantee the smallest solution. That's more complicated, but since chemists themselves have different ideas of the right form, I wouldn't worry so much about it.

Locating all elements between starting and ending points, given by value (not index)

The problem is as follows,
I would be given a set of x and y coordinates(an coordinate array of around 30 to 40 thousand) of a long rope. The rope is lying on the ground and can be in any shape.
Now I would be given a start point(essentially x and y coordinate) and an ending point.
What is the efficient way to determine the set of x and y coordinates from the above mentioned coordinate array lie between the start and end points.
Exhaustive searching ie looping 40k times is not an acceptable solution (mentioned on the question paper)
A little bit margin for error is acceptable
We need to find the start point in the array, then the end point. For each, we can think of the rope as describing a function of distance from that point, and we're looking for the lowest point on that distance graph. If one point is a long way away and another is pretty close, we can do some kind of interpolation guess of where to search next.
distance
| /---\
|-- \ /\ -
| -- ------- -- ------ ---------- -
| \ / \---/ \--/
+-----------------------X--------------------------- array index
In the representation above, we want to find "X"... we look at the distances at a few points, get an impression of the slope of the distance curve, possibly even the rate of change of that slope, to help guide our next bit of probing....
To refine the basic approach of doing binary- or interpolated- searches in areas where we know the distance values are low, we may be able to use the following:
if we happen to be given the rope length and know the coordinate samples are equidistant along the rope, then we can calculate a maximum change in distance from our target point per sample.
if we know the rope has a stiffness ensuring it can't loop in a trivially small diameter, then
there's a known limit to how fast the slope of the curve can change
distance curve converges to vertical on both sides of the 0 point
you could potentially cross-reference/combine distance with, or use instead, the direction of each point from the target: only at the target would the direction instantly change ~180 degrees (how well the data points capture this still depends on the distance between adjacent samples and any stiffness of the rope).
Otherwise, there's always risk the target point may weirdly be encased by two very distance points, frustrating our whole searching algorithm (that must be what they mean about some margin for error - every now and then this search would have to revert to a O(N) brute-force search because any trend analysis fails).
For a one-time search, sometimes linear traversal is the simplest, fastest solution. Maybe that's the case for this problem.
Iterate through the ordered list of points until finding the start or end, and then collect points until hitting the other endpoint.
Now, if we expected to repeat the search, we could build an index to the points.
Edit: This presumes no additional constraints beyond those mentioned by #koool. Constraining the distance between the points would allow the hill-climbing approach described in #Tony's answer.
I don't think you can solve it accurately using anything other than exhaustive search. Say for cases where the rope is folded into half and the resulting double rope forms a spiral with the two ends on the centre.
However if we assume that long portions of the rope are in straight line, then we can eliminate a lot of points based on the slope check:
if (abs(slope(x[i],y[i],x[i+1],y[i+1])
-slope(x[i+1],y[i+1],x[i+2],y[i+2]))<tolerance)
eliminate (x[i+1],y[i+1]);
This will reduce the search time significantly if large portions of the rope are in straight line. But will be linear WRT number of remaining points.
So basically, you've got a sorted list of the points that comprise the entire rope and you're given two arbitrary points from within that list, and tasked with returning the sublist that exists between those two points.
I'm going to make the assumption that the start and end points that are provided are guaranteed to coincide exactly with points within the sorted list (otherwise it introduces a host of issues, particularly if the rope may be arbitrarily thin and passes by the start/end points multiple times).
That means all you're really looking for are the indices of the two provided coordinates. Or the index of one, and the answer to "is the second coordinate to the right or to the left?".
A simple O(n) solution to that would be:
For each index in array
coord = array[index]
if (coord == point1)
startIndex = index
if (coord == point2)
endIndex = index
if (endIndex < startIndex)
swap(startIndex, endIndex)
return array.sublist(startIndex, endIndex)
Or, if you wanted to optimize for repeated queries, I'd suggest a hashing based approach where you map each cooordinate to its index in the array. Something like:
//build the map (do this once, at init)
map = {}
For each index in array
coord = array[index]
map[coord] = index
//find a sublist (do this for each set of start/end points)
startIndex = map[point1]
endIndex = map[point2]
if (endIndex < startIndex)
swap(startIndex, endIndex)
return array.sublist(startIndex, endIndex)
That's O(n) to build the map, but once it's built you can determine the sublist between any two points in O(1). Assuming an efficient hashmap, of course.
Note that if my assumption doesn't hold, then the same solutions are still usable, provided that as a first step you take the provided start and end points and locate the points in the array that best correspond to each one. As noted, unless you are given some constraints regarding the thickness of the rope then interpolating from an arbitrary coordinate to one that's actually part of the rope can only be guesswork at best.

Can coordinates of constructable points be represented exactly?

I'd like to write a program that lets users draw points, lines, and circles as though with a straightedge and compass. Then I want to be able to answer the question, "are these three points collinear?" To answer correctly, I need to avoid rounding error when calculating the points.
Is this possible? How can I represent the points in memory?
(I looked into some unusual numeric libraries, but I didn't find anything that claimed to offer both exact arithmetic and exact comparisons that are guaranteed to terminate.)
Yes.
I highly recommend Introduction to constructions, which is a good basic guide.
Basically you need to be able to compute with constructible numbers - numbers that are either rational, or of the form a + b sqrt(c) where a,b,c were previously created (see page 6 on that PDF). This could be done with algebraic data type (e.g. data C = Rational Integer Integer | Root C C C in Haskell, where Root a b c = a + b sqrt(c)). However, I don't know how to perform tests with that representation.
Two possible approaches are:
Constructible numbers are a subset of algebraic numbers, so you can use algebraic numbers.
All algebraic numbers can be represented using polynomials of whose they are roots. The operations are computable, so if you represent a number a with polynomial p and b with polynomial q (p(a) = q(b) = 0), then it is possible to find a polynomial r such that r(a+b) = 0. This is done in some CASes like Mathematica, example. See also: Computional algebraic number theory - chapter 4
Use Tarski's test and represent numbers. It is slow (doubly exponential or so), but works :) Example: to represent sqrt(2), use the formula x^2 - 2 && x > 0. You can write equations for lines there, check if points are colinear etc. See A suite of logic programs, including Tarski's test
If you turn to computable numbers, then equality, colinearity etc. get undecidable.
I think the only way this would be possible is if you used a symbolic representation,
as opposed to trying to represent coordinate values directly -- so you would have
to avoid trying to coerce values like sqrt(2) into some numerical format. You will
be dealing with irrational numbers that are not finitely representable in binary,
decimal, or any other positional notation.
To expand on Jim Lewis's answer slightly, if you want to operate on points that are constructible from the integers with exact arithmetic, you will need to be able to operate on representations of the form:
a + b sqrt(c)
where a, b, and c are either rational numbers, or representations in the form given above. Wikipedia has a pretty decent article on the subject of what points are constructible.
Answering the question of exact equality (as necessary to establish colinearity) with such representations is a rather tricky problem.
If you try to compare co-ordinates for your points, then you have a problem. Leaving aside co-linearity for a moment, how about just working out whether two points are the same or not?
Supposing that one has given co-ordinates, and the other is a compass-straightedge construction starting from certain other co-ordinates, you want to determine with certainty whether they're the same point or not. Either way is a theorem of Euclidean geometry, it's not something you can just measure. You can prove they aren't the same by spotting some difference in their co-ordinates (for example by computing decimal places of each until you encounter a difference). But in general to prove they are the same cannot be done by approximate methods. Compute as many decimal places as you like of some expansions of 1/sqrt(2) and sqrt(2)/2, and you can prove they're very close together but you won't ever prove they're equal. That takes algebra (or geometry).
Similarly, to show that three points are co-linear you will need theorem-proving software. Represent the points A, B, C by their constructions, and attempt to prove the theorem "A, B and C are colinear". This is very hard - your program will prove some theorems but not others. Much easier is to ask the user for a proof that they are co-linear, and then verify (or refute) that proof, but that's probably not what you want.
In general, constructable points may have an arbitrarily complex symbolic form, so you must use a symbolic representation to work them exactly. As Stephen Canon noted above, you often need numbers of the form a+b*sqrt(c), where a and b are rational and c is an integer. All numbers of this form form a closed set under arithmetic operations. I have written some C++ classes (see rational_radical1.h) to work with these numbers if that is all you need.
It is also possible to construct numbers which are sums of any number of terms of rational multiples of radicals. When dealing with more than a single radicand, the numbers are no longer closed under multiplication and division, so you will need to store them as variable length rational coefficient arrays. The time complexity of operations will then be quadratic in the number of terms.
To go even further, you can construct the square root of any given number, so you could potentially have nested square roots. Here, the representations must be tree-like structures to deal with root hierarchy. While difficult to implement, there is nothing in principle preventing you from working with these representations. I'm not sure just what additional numbers can be constructed, but beyond a certain point, your symbolic representation will be expressive enough to handle very large classes of numbers.
Addendum
Found this Google Books link.
If the grid axes are integer valued then the answer is fairly straight forward, the points are either exactly colinear or they are not.
Typically however, one works with real numbers (well, floating points) and then draws the rounded values on the screen which does exist in integer space. In this case you have no choice but to pick a tolerance and use it to determine colinearity. Keep it small and the users will never know the difference.
You seem to be asking, in effect, "Can the normal mathematics (integer or floating point) used by computers be made to represent real numbers perfectly, with no rounding errors?" And, of course, the answer to that is "No." If you want theoretical correctness, then you will be stuck with the much harder problem of symbolic manipulation and coding up the equivalent of the inferences that are done in geometry. (In short, I'm agreeing with Steve Jessop, above.)
Some thoughts in the hope that they might help.
The sort of constructions you're talking about will require multiplication and division, which means that to preserve exactness you'll have to use rational numbers, which are generally easy to implement on top of a suitable sort of big integer (i.e., of unbounded magnitude). (Common Lisp has these built-in, and there have to be other languages.)
Now, you need to represent square roots of arbitrary numbers, and these have to be mixed in.
Therefore, a number is one of: a rational number, a rational number multiplied by a square root of a rational number (or, alternately, just the square root of a rational), or a sum of numbers. In order to prove anything, you're going to have to get these numbers into some sort of canonical form, which for all I can figure offhand may be annoying and computationally expensive.
This of course means that the users will be restricted to rational points and cannot use arbitrary rotations, but that's probably not important.
I would recommend no to try to make it perfectly exact.
The first reason for this is what you are asking here, the rounding error and all that stuff that comes with floating point calculations.
The second one is that you have to round your input as the mouse and screen work with integers. So, initially all user input would be integers, and your output would be integers.
Beside, from a usability point of view, its easier to click in the neighborhood of another point (in a line for example) and that the interface consider you are clicking in the point itself.