Modifying and Saving in IDA - reverse-engineering

Is it possible to add code to a current binary in IDA and then save then to recompile the binary? I've looked over Google, but no suggestions as to whether IDA can do this. If not, whats the best to add some pretty heavy modifications to obsolete firmware?
Would I have to load in additional classes/functions from a file?

You can't recompile your source data file with IDA (the program's 'Create an EXE file' tool found in its main main doesn't do anything - It's basically stubbed with a message box telling the used that the selected output file type is not supported).
Your only option might be to compile your code with the source file's compiler, add a new segment to the source file's image where you dump your custom (compiled)code and patch the appropriate locations in the original code (.text) segment to call into your code. Have no clue if IDA supports the kind of static patching required for steps #2 and #3, but you'll probably find other tools to help you with that (you could start with OllyDbg).
I haven't ever tried to do anything of that sort before, so take my suggestion with a pinch of salt. I have however seen various binaries that have arbitrary segments attached to them.
EDIT: Take a look at this question while you are at it - IDA pro asm instructions change

when i have to do small updates on my binary, i like hexedit, kinda nice & options are easy. (small updates ;) )

Related

how to create applications with Clozure Common Lisp (on Microsoft Windows)

I am a new one to Common Lisp (using Clozure Common Lisp under Microsoft Windows), who is familiar with c and python before. So maybe the questions are stupid here, but be patient to give me some help.
1) What's is the usual way to run a common lisp script?
Now, I wrote a bat file under windows to call ccl exe(wx86cl.exe) and evaluate (progn (load "my_script_full_path") (ccl:quit)) every time when I want to "run" my script. Is this a standard way to "run" a script for common lisp?
Any other suggestion about this?
2) What's the difference between (require 'cxml) and (asdf:operate 'asdf:load-op :cxml)?
They are seems to be the same for my script, which one should I use?
3) ignore it, not a clear question
4) When I want to load some library (such as require 'cxml), it always takes time(3s or even 5s) to load cxml every time when I "run" my script, there is also much log to standard output I show below, it seems like checking something internal. Does it means I have to spent 3-5s to load cxml every time when I want to run a simple test? It seems like a little inefficient and the output is noisy. Any suggestion?
My Script
(require 'cxml) (some-code-using-cxml)
And the output
; Loading system definition from D:/_play_/lispbox-0.7/quicklisp/dists/quicklisp/software/cxml-20101107-git/cxml.asd into #<Package "ASDF0">
;;; Checking for wide character support... yes, using code points.
; Registering #<SYSTEM "cxml-xml">
......
some my script output
---EDIT TO ADD MORE----
5) I must say that I almost forget the way of dumping image to accelerate the loading speed of lisp library. So, what is the normal process for us to develop a (maybe very simple) lisp script?
Base on the answer of what I got now, I guess maybe
a) edit your script
b) test it via a REPL environment, SLIME is a really good choice, and there should be many loop between a <==> b
c) dump the image to distribute it?( I am no sure about this)
6) Furthermore, what is the common way/form for us to release/distribute the final program?
For a lisp library, we just release our source code, and let someone else can "load/require" them.
For a lisp program, we dump a image to distribute it when we confirm that all functions go well.
Am I right?
What form do we use in a real product? Do we always dump all the thing into a image at final to speed up the loading speed?
1) Yes, the normal way to run a whole programme is to use a launcher script. However, windows has much, much better scripting support these days than just the bat interpreter. Windows Scripting Host and PowerShell ship as standard.
1a) During development, it is usual to simply type things in a the REPL (Read-Eval-Print-Loop, i.e. the lisp command line), or to use something like SLIME (for emacs or xemacs) as a development environment. If you don't know what they are, look them up. You may wish to use Cygwin to install xemacs, which will give you access to a range of linux-ish tools.
2) Require is, IIRC, a part of the standard. ASDF is technically not, it is a library that operates to make libraries work more conveniently. ASDF has a bunch of features that you will eventually want if you really get into writing large Lisp programmes.
3) Question unclear, pass.
4) See 1a) - do your tests and modifications in a running instance, thus avoiding the need to load the library more than once (just as you would in Python - you found the python repl, right?). In addition, when your programme is complete, you can probably dump an image which has all of your libraries pre-loaded.
Edit: additional answers:
5) Yes
6) Once you have dumped the image, you will still need to distribute the lisp binary to load the memory image. To make this transparent to the user, you will also have to have a loader script (or binary) to run the lisp binary with the image.
You don't have to start the lisp from scratch and load everything over again each time you want to run a simple test. For more efficient development, interactively evaluate code in the listener (REPL) of a running lisp environment.
For distribution, I use Zachary Beane's Buildapp tool. Very easy to install and use.
Regarding distribution -
I wrote a routine (it's at home and unavailable at the moment) that will write out the current image as a standard executable and quit. It works for both CLISP and SBCL.
I can rummage it up if you like.

Can I write a program in binary directly ? How can I get the computer to execute it?

I know that may seem weird and looking for troubles but I think experiencing what the ancient programmers experienced before is something interesting. So how can I execute a program written only in binary? (Suppose that I know what I am doing and not using assembly of course.)
I just want to write a series of bits like 111010111010101010101 and execute that. So how can I do that?
Use a hex editor. You'll need to find out the relevant executable format for your operating system, of course - assuming you want to use an operating system... I suppose you could always write your own bootloader and just run the code directly that way, if you want to get all hardcore.
I don't think you'll really be experiencing what programmers experienced back then though - for one thing, you won't be using punch cards, paper tape etc. For another, your context is completely different - you know what computers are like now, so it'll feel painfully primitive to you... whereas back then, it would have been bleeding edge and exciting just on those grounds.
Use a hex editor, write your bits and save it as an executable file (either just with the file extension .exe in Windows or with chmod a+x filename in Linux).
The problem is: You'd also have to write all the OS-specific stuff in binary format, and you'll have to have a table that translates from assembler code to binary stuff.
Why not, if you want to experience low-level programming, give D.E. Knuth's assembler MMIX a try?
It really depends on the platform you are using. But that's sort of irrelevant based on your proposed purpose. The earliest programmers of modern computers as you think of them did not program in binary -- they programmed in assembly.
You will learn nothing trying to program in binary for a specific Operating System and specific CPU type using a hex editor.
If you want to find out how pre-assembly programmers worked (with plain binary data), look up Punch Cards.
.
Use a hex editor to create your file, be sure to use a format that the loader of your respective OS understands and then double click it.
most assemblers (MMIX assembler for instance see www.mmix.cs.hm.edu) dont care if
you write instructions or data.
So instead of wirting
Main ADD $0,$0,3
SUB $1,$0,4
...
you can write
Main TETRA #21000003
TETRA #25010004
...
So this way you can assemble your program by hand and then have the assembler transform it in a form the loader needs. Then you execute it. Normaly you use hex notatition not binary because keeping track of so many digits is difficult. You can also use decimal, but the charts that tell you which instructions have which codes are typically in hex notation.
Good luck! I had to do things like this when I started programming computers. Everybody was glad to have an assembler or even a compiler then.
Martin
Or he is just writing some malicious code.
I've seen some funny methods that use a AVR as a keyboard emulator, open some simple text editor, write the code that's in the AVR eeprom memory, and pipe it to "debug" (in windows systems), and run it. It's a good way to escape some restrictions too ;)
I imagine that by interacting directly with hardware you could write in binary. To flip the proper binary bits, you could use a magnetized needle on your disk drive. Or butterflies.

Programmatically configure MATLAB

Since MathWorks release a new version of MATLAB every six months, it's a bit of hassle having to set up the latest version each time. What I'd like is an automatic way of configuring MATLAB, to save wasting time on administrative hassle. The sorts of things I usually do when I get a new version are:
Add commonly used directories to the path.
Create some toolbar shortcuts.
Change some GUI preferences.
The first task is easy to accomplish programmatically with addpath and savepath. The next two are not so simple.
Details of shortcuts are stored in the file 'shortcuts.xml' in the folder given by prefdir. My best idea so far is to use one of the XML toolboxes in the MATLAB Central File Exchange to read in this file, add some shortcut details and write them back to file. This seems like quite a lot of effort, and that usually means I've missed an existing utility function. Is there an easier way of (programmatically) adding shortcuts?
Changing the GUI preferences seems even trickier. preferences just opens the GUI preference editor (equivalent to File -> Preferences); setpref doesn't seems to cover GUI options.
The GUI preferences are stored in matlab.prf (again in prefdir); this time in traditional name=value config style. I could try overwriting values in this directly, but it isn't always clear what each line does, or how much the names differ between releases, or how broken MATLAB will be if this file contains dodgy values. I realise that this is a long shot, but are the contents of matlab.prf documented anywhere? Or is there a better way of configuring the GUI?
For extra credit, how do you set up your copy of MATLAB? Are there any other tweaks I've missed, that it is possible to alter via a script?
shortcuts - read here and here
preferences - read http://undocumentedmatlab.com/blog/changing-system-preferences-programmatically/
At the moment, I'm not using scripts, though this sounds like a very interesting idea.
Unless there are new features that you also want to configure, you can simply copy-paste the old preferences into the new prefdir. I guess this should be doable programmatically, though you might have to select the old prefdir via uigetdir. So far, this has not created major problems for me. Note also that in case of a major change in the structure of preferences, any programmatic version would have to be rewritten as well.
I'm adding paths at each startup, so that I don't need to think of manually adding new directories every time I change something in my code base (and I don't want to have to update directory structures for each user). Thus, I also need to copy-paste startup.m for each installation.
If I had to do everything manually, I'd also want to change the autosave options to store the files in an autosave directory. If I recall correctly, Matlab reads the colors and fonts from previous installations, so I don't have to do that.

Decipher binary format of file

I have a binary file to which I'm trying to write however I dont have the file format specification nor have found it using google, I've been looking at the file using a hex editor but so far has only give me a headache, is there a better way to decipher the format of the file so that I can append data to it?
File carving tools such as scalpel won't really help here. They're made for extracting files with known header and/or footer signatures from a memory dump or some larger, composite file.
For your scenario, I would recommend a hex editor with templating capability, like the 010 Editor. This will allow you to name and annotate "fields" in the binary as you learn more about what each part of the file does. Unfortunately, the process of finding out what each field does is mostly manual. As a methodology, just start playing with it. Change some values in your current binary and see what happens. Expect to spend significant time on it, but also enjoy the process!
you may want to search it with a open source forensic application like foremost or scalpel. They will do most of the grunt work for you, you just likely wont learn anything.

How to analyze binary file?

I have a binary file. I don't know how it's formatted, I only know it comes from a delphi code.
Does it exist any way to analyze a binary file?
Does it exist any "pattern" to analyze and deserialize the binary content of a file with unknown format?
Try these:
Deserialize data: analyze how it's compiled your exe (try File Analyzer). Try to deserialize the binary data with the language discovered. Then serialize it in a xml format (language-indipendent) that every programming language can understand
Analyze the binary data: try to save various versions of the file with little variation and use a diff program to analyze the meaning of every bit with an hex editor. Use it in conjunction with binary hacking techniques (like How to crack a Binary File Format by Frans Faase)
Reverse Engineer the application: try getting code using reverse engineering tools for the programming language used for build the app (found with File Analyzer). Otherwise use disassembler analysis tool like IDA Pro Disassembler
For my hobby project I had to reverse engineer some old game files. My approaches were:
Have a good hex editor.
Look for readable words in the binary file. Note how their distribution is. If the distance between them is constant you know it is a listing.
Look for 2-3 consequent zeros. Might indicate an int32 value.
Some dwords might be pointers into the file.
Try to identify reoccurring patterns in the file.
Seeing lots of C0-CF might indicate RLE compressed data.
I've developed Hexinator (Window & Linux) and Synalyze It! (macOS) exactly for this purpose. These applications allow you to see the binary files like in other hex editors but additionally you can create a "grammar" with the specifics of a binary file format. The grammar contains all the building blocks and is used to parse the file automatically.
Thus you can keep the knowledge you gain in the analysis and apply it to multiple files simultaneously. You can also color-code the bits and pieces of file formats for a quick overview in the hex editor.
The parsing results are displayed in a tree view where you can also modify the files easily (applying endianness et cetera).
Reverse engineering a binary file when you have some idea of what it represents is a very time consuming process. If you have no idea what it is then it will be even harder.
It is possible though, but you have to have a pretty good reason for doing so.
The first step would be to open it up in a hex editor of your choice and see if you can find any English text to point you in the direction of what the file is even supposed to represent. From there, Google "Reverse Engineering binary files", there are much more knowledgeable people than me that have written guides about it.
The "strings" program from GNU binutils is very useful. It will print the strings of printable characters in a file, quite often giving a clue to what a file contains or a program does.
If the data represents serialized Delphi objects, you should start reading about the Delphi serialization process. If that's the case, I think your best bet would be to load it using Delphi and continue your analysis from the IDE. Some informations about Delphi serialization can be found here.
EDIT: if the file does contain serialized delphi objects, then you should write a small delphi program that loads it, and "convert" the data yourself to something neutral, like xml. If you manage to do this, you should check and see if delphi supports serializing to xml. Then, you could access those objects from any language.
The unix "file" command is really useful - I don't know if there is anything like it in windows. You run it like this:
file myfile.ext
And it spits out a text description based on the magic numbers and data contained therein.
Probably it is contained within cygwin.
If you have access to the application that creates the file, you can apply changes to the application, then save the file and see the effects (Keep in mind that numbers are probably stored in little endian):
First create the file repeatedly. If the files are not binary equal, the current date/time is probably stored in the area where hte differences occur.
Maybe you want to repeat that with the software running under different environments, to see if OS version etc are stored, but this is rather unusual.
Next you can try to change single variables and create several files that only differ in the value of this variable. This helps you identify where this variable is stored.
That way you can also exclude variables that are not stored in the file: If you change them, but the files created are identical, they are not stored.
In order to test the hypotheses you worked out with the steps above, edit one of the files and have the application read it.
If you don't have access to the application itself, I suggest that you forget about it and find another way to solve your problem. There is a very high probability that it will be faster...
If file does not give a meaningful answer, you may want to try TRiD by Marco Pontello to determine whether your data is stored in a known format.
Get the Delphi application and open it in IDA Pro freeware version, and find where it writes the file, and decode how it writes the file that way.
Unless it's plan text.
Do you know the program that uses it? If so you can hook that programs write to file function and get an idea of what data its writing, the size of the data and where.
More Info: http://www.codeproject.com/KB/DLL/Win32APIHooking_Trouble.aspx
Unlike traditional hex editors which only display the raw hex bytes of a file, 010 Editor can also parse a file into a hierarchical structure using a Binary Template. The results of running a Binary Template are much easier to understand and edit than using just the raw hex bytes.
http://www.sweetscape.com/010editor/
Try to open it in a hex editor and analyse.