What design pattern is best for an RTS game in AS3? - actionscript-3

I'm looking to get some good books on design patterns and I'm wondering what particular pattern you'd recommend for a Realtime Strategy Game (like Starcraft), MVC?.
I'd like to make a basic RTS in Flash at some point and I want to start studying the best pattern for this.
Cheers!

The problem with this kind of question is the answer is it completely depends on your design. RTS games are complicated even simple ones. They have many systems that have to work together and each of those systems has to be designed differently with a common goal.
But to talk about it a little here goes.
The AI system in an rts usually has a few different levels to it. There is the unit level AI which can be as simple as a switch based state machine all the way up to a full scale behavior tree (composite/decorators).
You also generally need some type of high level planning system for the strategic level AI. (the commander level and the AI player)
There are usually a few levels in between those also and some side things like resource managers etc.
You can also go with event based systems which tie in nicely with flash's event based model as well.
For the main game engine itself a basic state machine (anything from switch based to function based to class based) can easily be implemented to tie everything together and tie in the menu system with that.
For the individual players a Model-View-Controller is a very natural pattern to aim for because you want your AI players to be exposed to everything the human player has access to. Thus the only change would be the controller (the brain) without the need for a view obviously.
As I said this isn't something that can just be answered like the normal stackoverflow question it is completely dependent on the design and how you decide to implement it. (like most things) There are tons of resources out there about RTS game design and taking it all in is the only advice I can really give. Even simple RTS's are complex systems.
Good luck to you and I hope this post gives you an idea of how to think about it. (remember balance is everything in an RTS)

To support lots of units, you might employ Flyweight and Object Pool. Flyweight object can be stored entirely in a few bytes in a large ByteArray. To get usable object, read corresponding bytes, take empty object and fill it with data from those bytes. Object pool can hold those usable objects to prevent constant allocation/garbage collection. This way, you can hold thousands of units in ByteArray and manage them via dozen of pooled object shells.
It should be noted that this is more suitable to store tile properties that units, however — tile are more-or-less static, while units are created and destroyed on regular basis.

It would be good to be familiar with a number of design patterns and apply them to the architecture of your game where appropriate.
For example, you may employ an MVC architecture for your overall application, factory pattern for creating enemies, decorator pattern for shop items, etc. Point being, design patterns are simply methodologies for structuring your objects. How you define those object and how you decide how they fit together is non prescriptive.

Related

Chess Engine - Confusion in engine types - Flash as3

I am not sure this kind of question has been asked before, and been answered, by as far as my search is concerned, I haven't got any answer yet.
First let me tell you my scenario.
I want to develop a chess game in Flash AS3. I have developed the interface. I have coded the movement of the pieces and movement rules of the pieces. (Please note: Only movement rules yet, not capture rules.)
Now the problem is, I need to implement the AI in chess for one player game. I am feeling helpless, because though I know each and every rules of the chess, but applying AI is not simple at all.
And my biggest confusion is: I have been searching, and all of my searches tell me about the chess engines. But I always got confused in two types of engines. One is for front end, and second is real engines. But none specifies (or I might not get it) which one is for which.
I need a API type of some thing, where when I can get searching of right pieces, and move according to the difficulty. Is there anything like that?
Please note: I want an open source and something to be used in Flash.
Thanks.
First of all http://nanochess.110mb.com/archive/toledo_javascript_chess_3.html here is the original project which implements a relatively simple AI (I think it's only 2 steps deep) in JavaScript. Since that was a contest project for minimal code, it is "obfuscated" somewhat by hand-made reduction of the source code. Here's someone was trying to restore the same code to a more or less readable source: https://github.com/bormand/nanochess .
I think that it might be a little bit too difficult to write it, given you have no background in AI... I mean, a good engine needs to calculate more then two steps ahead, but just to give you some numbers: the number of possible moves per step, given all pieces are on the board would be approximately 140 at max, the second step thus would be all the combination of these moves with all possible moves of the opponent and again this much combinations i.e. 140 * 140 * 140. Which means you would need a very good technique to discriminate the bad moves and only try to predict good moves.
As of today, there isn't a deterministic winning strategy for chess (in other words, it wasn't solved by computers, like some other table games), which means, it is a fairly complex game, but an AI which could play at a hobbyist level isn't all that difficult to come up with.
A recommended further reading: http://aima.cs.berkeley.edu/
A Chess Program these days comes in two parts:
The User Interface, which provides the chess board, moves view, clocks, etc.
The Chess Engine, which provides the ability to play the game of chess.
These two programs use a simple text protocol (UCI or XBoard) to communicate with the UI program running the chess engine as a child process and communicating over pipes.
This has several significant advantages:
You only need one UI program which can use any compliant chess engine.
Time to develop the chess engine is reduced as only a simple interface need be provided.
It also means that the developers get to do the stuff they are good at and don't necessarily have to be part of a team in order to get the other bit finished. Note that there are many more chess engines than chess UI's available today.
You are coming to the problem with several disadvantages:
As you are using Flash, you cannot use this two program approach (AFAIK Flash cannot use fork(). exec(), posix_spawn()). You will therefore need to provide all of the solution which you should at least attempt to make multi-threaded so the engine can work while the user is interacting with the UI.
You are using a language which is very slow compared to C++, which is what engines are generally developed in.
You have access to limited system resources, especially memory. You might be able to override this with some setting of the Flash runtime.
If you want your program to actually play chess then you need to solve the following problems:
Move Generator: Generates all legal moves in a position. Some engine implementations don't worry about the "legal" part and prune illegal moves some time later. However you still need to detect check, mate, stalemate conditions at some point.
Position Evaluation: Provide a score for a given position. If you cannot determine if one position is better for one side than another then you have no way of finding winning moves.
Move Tree and pruning: You need to store the move sequences you are evaluating and a way to prune (ignore) branches that don't interest you (normally because you have determined that they are weak). A chess move tree is vast given every possible reply to every possible move and pruning the tree is the way to manage this.
Transpotion table: There are many transpositions in chess (a position reached by moving the pieces in a different order). One method of avoiding the re-evaluation of the position you have already evaluated is to store the position score in a transposition table. In order to do that you need to come up with a hash key for the position, which is normally implemented using Zobrist hash.
The best sites to get more detailed information (I am not a chess engine author) would be:
TalkChess Forum
Chess Programming Wiki
Good luck and please keep us posted of your progress!

Proper object oriented structure for global classes

What are the pros and cons of using a singleton class for sound management?
I am concerned that it's very anti-OOP in structure and don't want to potentially get caught up going down the wrong path, but what is a better alternative?
It's an awkward topic but I'd say that a sound manager style class is a good candidate for a class that should not be initialized.
Similarly, I would find it OK if a keyboard input manager style class was a completely static class.
Some notes for my reasoning:
You would not expect more than one instance that deals with all sounds.
It's easily accessible, which is a good thing in this case because sound seems more like an application-level utility rather than something that should only be accessed by certain objects. Making the Player class for a game static for example would be a very poor design choice, because almost no other classes in a game need reference directly to the Player.
In the context of a game for example, imagine the amount of classes that would need a reference to an instance of a sound manager; enemies, effects, items, the UI, the environment. What a nightmare - having a static sound manager class eliminates this requirement.
There aren't many cases that I can think of where it makes no sense at all to have access to sounds. A sound can be triggered relevantly by almost anything - the move of the mouse, an explosion effect, the loading of a dialogue, etc. Static classes are bad when they have almost no relevance or use to the majority of the other classes in your application - sound does.
Anyways; that's my point of view to offset the likely opposing answers that will appear here.
They are bad because of the same reasons why globals are bad, some useful reading :
http://blogs.msdn.com/b/scottdensmore/archive/2004/05/25/140827.aspx
A better alternative is to have it as a member of your application class and pass references of it to only modules that need to deal with sound.
"Managers" are usually classes that are very complex in nature, and thus likely violate the Single Responsibility Principle. To paraphrase Uncle Bob Martin: Any time you feel yourself tempted to call a class "Manager" of something - that's a code smell.
In your case, you are dealing with at least three different responsibilities:
Loading and storing the sounds.
Playing the sounds when needed.
Controlling output parameters, such as volume and panning.
Of these, two might be implemented as singletons, but you should always be very careful with this pattern, because in itself, it violates the SRP, and if used the wrong way, it causes your code to be tightly coupled (instead, you should use the Dependency Injection pattern, possibly by means of a framework, such as SwiftSuspenders, but not necessarily):
Loading and storing sounds is essentially a strictly data related task, and should thus be handled by the SoundModel, of which you only need one instance per application.
Controlling output parameters is something that you probably want to handle in a central place, to be able to change global volume settings, etc. This may be implemented as a singleton, but more likely is a tree-like structure, where a master SoundController handles global settings, and several child SoundControllers are responsible for more specific contexts, such as UI sound effects, game sounds, music, etc.
Playing the sound is something, which will occur in many places, and in many different ways: There may be loops (to which you need to keep references to be able to stop them later), or effect sounds (which are usually short and play only once), or music (where each song is usually played once, but needs subsequent songs to be started automatically, when the end is reached). For each of those variations (and whichever ones you come up with), you should create a different class, which implements a common SoundPlayer interface, e.g. LoopSoundPlayerImpl, SequentialSoundPlayerImpl, EFXSoundPlayerImpl, etc. The interface should be as simple as play(),pause(), rewind() - you can easily exchange those later, and will not have any problems with tightly coupled libraries.
Each SoundPlayer can hold a reference to both the master SoundController an its content-specific one, as well as - possibly - the SoundModel. These, then can be static references: Since they are all parts of your own sound plugin, they will usually be deployed as a package, and therefore tight coupling won't do much damage here - it is important, though, not to cross the boundary of the plugin: Instantiate everything within your Main partition, and pass on the instances to all classes, which need them; only have the SoundPlayer interface show up within your game logic, etc.

Game Inventory - Design Pattern

I'm still studying OOP designs, so what's the best way to achieve an inventory for a simple flash game ? It seems that more than one design pattern could deliver some kind of an invetory but I would lose the flexibility if I try to adapt it somehow without a good knowledge about the subject.
For money to buy what is available in an inventory I thought of Singleton. If there's enough cash earned while playing the game, then one can buy new skills.
Maybe decorator pattern could list many thumbnails as buttons, and clicking on it applies new features and skills to the character.
I'd like to read standard advices on solving this problem, because I feel I'm on the wrong way. Thanks.
Stay away from singleton if possible
Singleton has its uses, however I believe it's overused in a lot of cases.
The biggest problem with a singleton is that you're using Global State, which is generally regarded as a bad thing as when complexity in your software grows it can cause you to have unintended side effects.
Object composition might be a better way
For games you might want to take a look at using Object Composition rather than traditional OOD Modelling.
A software component is a software element that conforms to a
component model and can be independently deployed and composed without
modification according to a composition standard.
A component model defines specific interaction and composition
standards. A component model implementation is the dedicated set of
executable software elements required to support the execution of
components that conform to the model.
A software component infrastructure is a set of interacting software
components designed to ensure that a software system or subsystem
constructed using those components and interfaces will satisfy clearly
defined performance specifications.
Component based game engine design
http://www.as3dp.com/2009/02/21/design-pattern-principles-for-actionscript-30-favor-object-composition-over-class-inheritance/
Reading over the material in the first link should give you some excellent ideas on how to model your inventory system and have it extendable in a nice way.

A brilliant example of effective encapsulation through information hiding?

"Abstraction and encapsulation are complementary concepts: abstraction focuses on the observable behavior of an object... encapsulation focuses upon the implementation that gives rise to this behavior... encapsulation is most often achieved through information hiding, which is the process of hiding all of the secrets of object that do not contribute to its essential characteristics." - Grady Booch in Object Oriented Analysis and Design
Can you show me some powerfully convincing examples of the benefits of encapsulation through information hiding?
The example given in my first OO class:
Imagine a media player. It abstracts the concepts of playing, pausing, fast-forwarding, etc. As a user, you can use this to operate the device.
Your VCR implemented this interface and hid or encapsulated the details of the mechanical drives and tapes.
When a new implementation of a media player arrives (say a DVD player, which uses discs rather than tapes) it can replace the implementation encapsulated in the media player and users can continue to use it just as they did with their VCR (same operations such as play, pause, etc...).
This is the concept of information hiding through abstraction. It allows for implementation details to change without the users having to know and promotes low coupling of code.
The *nix abstraction of character streams (disk files, pipes, sockets, ttys, etc.) into a single entity (the "everything is a file") model allows a wide range of tools to be applied to a wide range of data sources / sinks in a way that simply would not be possible without the encapsulation.
Likewise, the concept of streams in various languages, abstracting over lists, arrays, files, etc.
Also, concepts like numbers (abstracting over integers, half a dozen kinds of floats, rationals, etc.) imagine what a nightmare this would be if higher level code was given the mantissa format and so forth and left to fend for itself.
I know there's already an accepted answer, but I wanted to throw one more out there: OpenGL/DirectX
Neither of these API's are full implementations (although DirectX is certainly a bit more top-heavy in that regard), but instead generic methods of communicating render commands to a graphics card.
The card vendors are the ones that provide the implementation (driver) for a specific card, which in many cases is very hardware specific, but you as the user need never care that one user is running a GeForce ABC and the other a Radeon XYZ because the exact implementation is hidden away behind the high-level API. Were it not, you would need to have a code path in your games for every card on the market that you wanted to support, which would be completely unmanageable from day 1. Another big plus to this approach is that Nvidia/ATI can release a newer, more efficient version of their drivers and you automatically benefit with no effort on your part.
The same principle is in effect for sound, network, mouse, keyboard... basically any component of your computer. Whether the encapsulation happens at the hardware level or in a software driver, at some point all of the device specifics are hidden away to allow you to treat any keyboard, for instance, as just a keyboard and not a Microsoft Ergonomic Media Explorer Deluxe Revision 2.
When you look at it that way, it quickly becomes apparent that without some form of encapsulation/abstraction computers as we know them today simply wouldn't work at all. Is that brilliant enough for you?
Nearly every Java, C#, and C++ code base in the world has information hiding: It's as simple as the private: sections of the classes.
The outside world can't see the private members, so a developer can change them without needing to worry about the rest of the code not compiling.
What? You're not convinced yet?
It's easier to show the opposite. We used to write code that had no control over who could access details of its implementation. That made it almost impossible at times to determine what code modified a variable.
Also, you can't really abstract something if every piece of code in the world might possibly have depended on the implementation of specific concrete classes.

Can a Sequence Diagram realistically capture your logic in the same depth as code?

I use UML Sequence Diagrams all the time, and am familiar with the UML2 notation.
But I only ever use them to capture the essence of what I intend to do. In other words the diagram always exists at a level of abstraction above the actual code. Every time I use them to try and describe exactly what I intend to do I end up using so much horizontal space and so many alt/loop frames that its not worth the effort.
So it may be possible in theory but has anyone every really used the diagram in this level of detail? If so can you provide an example please?
I have the same problem but when I realize that I am going low-level I re-read this:
You should use sequence diagrams
when you want to look at the behavior
of several objects within a single use
case. Sequence diagrams are good at
showing collaborations among the
objects; they are not so good at
precise definition of the behavior.
If you want to look at the behavior of
a single object across many use cases,
use a state diagram. If you want
to look at behavior across many use
cases or many threads, consider an
activity diagram.
If you want to explore multiple
alternative interactions quickly, you
may be better off with CRC cards,
as that avoids a lot of drawing and
erasing. It’s often handy to have a
CRC card session to explore design
alternatives and then use sequence
diagrams to capture any interactions
that you want to refer to later.
[excerpt from Martin Fowler's UML Distilled book]
It's all relative. The law of diminishing returns always applies when making a diagram. I think it's good to show the interaction between objects (objectA initializes objectB and calls method foo on it). But it's not practical to show the internals of a function. In that regard, a sequence diagram is not practical to capture the logic at the same depth as code. I would argue for intricate logic, you'd want to use a flowchart.
I think there are two issues to consider.
Be concrete
Sequence diagrams are at their best when they are used to convey to a single concrete scenario (of a use case for example).
When you use them to depict more than one scenario, usually to show what happens in every possible path through a use case, they get complicated very quickly.
Since source code is just like a use case in this regard (i.e. a general description instead of a specific one), sequence diagrams aren't a good fit. Imagine expanding x levels of the call graph of some method and showing all that information on a single diagram, including all if & loop conditions..
That's why 'capturing the essence' as you put it, is so important.
Ideally a sequence diagram fits on a single A4/Letter page, anything larger makes the diagram unwieldy. Perhaps as a rule of thumb, limit the number of objects to 6-10 and the number of calls to 10-25.
Focus on communication
Sequence diagrams are meant to highlight communication, not internal processing.
They're very expressive when it comes to specifying the communication that happens (involved parties, asynchronous, synchronous, immediate, delayed, signal, call, etc.) but not when it comes to internal processing (only actions really)
Also, although you can use variables it's far from perfect. The objects at the top are, well, objects. You could consider them as variables (i.e. use their names as variables) but it just isn't very convenient.
For example, try depicting the traversal of a linked list where you need to keep tabs on an element and its predecessor with a sequence diagram. You could use two 'variable' objects called 'current' and 'previous' and add the necessary actions to make current=current.next and previous=current but the result is just awkward.
Personally I have used sequence diagrams only as a description of general interaction between different objects, i.e. as a quick "temporal interaction sketch". When I tried to get more in depth, all quickly started to be confused...
I've found that the best compromise is a "simplified" sequence diagram followed by a clear but in depth description of the logic underneath.
The answer is no - it does capture it better then your source code!
At least in some aspects. Let me elaborate.
You - like the majority of the programmers, including me - think in source code lines. But the software end product - let's call it the System - is much more than that. It only exists in the mind of your team members. In better cases it also exists on paper or in other documented forms.
There are plenty of standard 'views' to describe the System. Like UML Class diagrams, UML activity diagrams etc. Each diagram shows the System from another point of view. You have static views, dynamic views, but in an architectural/software document you don't have to stop there. You can present nonstandard views in your own words, e.g. deployment view, performance view, usability view, company-values view, boss's favourite things view etc.
Each view captures and documents certain properties of the System.
It's very important to realize that the source code is just one view. The most important though because it's needed to generate a computer program. But it doesn't contain every piece of information of your System, nor explicitly nor implicitly. (E.g. the shared data between program modules, what are only connected via offline user activity. No trace in the source). It's just a static view which helps very little to understand your processes, the runtime dynamics of your living-breathing program.
A classic example of the Observer pattern. Especially if it used heavily, you'll hardly understand the System mechanis from the source code. That's why you use Sequence diagrams in that case. It captures the 'dynamic logic' of your system a lot better than your source code.
But if you meant some kind of business logic in great detail, you are better off with plain text/source code/pseudocode etc. You don't have to use UML diagrams just because they are the standard. You can use usecase modeling without drawing usecase diagrams. Always choose the view what's the best for you and for your purpose.
U.M.L. diagrams are guidelines, not strictly rules.
You don't have to make them exactly & detailed as the source code, but, you may try it, if you want it.
Sometimes, its possible to do it, sometimes, its not possible, because of the detail or complexity of systems, or don't have the time or details to do it.
Cheers.
P.D.
Any cheese-burguer or tuna-fish-burguer for the cat ?