Passing exceptions to executable programs to stop them from execution - exception

I heard this during a discussion that anti-viruses have this feature of stopping a program from executing by passing exceptions to it.
So how do you pass exceptions programmatically?

You can't "pass an exception" to another program. (I have at least never heard of any such terminology.)
Most operating systems allow one process to kill another by for instance sending it a signal, but that's different.

Related

Precise exception

I was going through the book The Design and Implementation of the FreeBSD operating system and I came across this:
This ability to restart an instruction is called a precise exception.
The CPU may implement restarting by saving enough state when an
instruction begins that the state can be restored when a fault is
discovered. Alternatively, instructions could delay any modifications
or side effects until after any faults would be discovered so that the
instruction execution does not need to back up before restarting.
I could not understand what does
modification or side effects
refer to in the passage. Can anyone elaborate?
That description from the FreeBSD book is very OS centric. I even disagree with its definition, This ability to restart an instruction is called a precise exception. You don't restart an instruction after a power failure exception. So rather than try to figure out what McKusick meant, I'm gonna suggest going elsewhere for a better description of exceptions.
BTW, I prefer Smith's definition:
An interrupt is precise if the saved process state corresponds with
the sequential model of program execution where one instruction completes before the next begins.
https://lagunita.stanford.edu/c4x/Engineering/CS316/asset/smith.precise_exceptions.pdf
Almost all modern processors support precise exceptions. So the hard work is already done. What an OS must do is register a trap handler for the exceptions that the hardware takes. For example, there will be a page fault handler, floating point, .... To figure out what is necessary for these handlers you'd have to read the processor theory of operations.
Despite what seems like gritty systems detail, that is fairly high level. It doesn't say anything about what the hardware is doing and so the FreeBSD description is shorthanding a lot.
To really understand precise exceptions, you need to read about that in the context of pipelining, out of order, superscalar, ... in a computer architecture book. I'd recommend Computer Architecture A Quantitative Approach 6th ed. There's a section Dealing With Exceptions p C-38 that presents a taxonomy of the different types of exceptions. The FreeBSD description is only describing some exceptions. It then gets into how each exception type is handled by the pipeline.
Also, The Linux Programming Interface has 3 long chapters on the POSIX signal interface. I know it's not FreeBSD but it covers what an application will see when, for example, a floating point exception is taken and a SIGFPE signal is sent to the process.

How to make Storm halt on exception?

By default, when a Storm spout or bolt encounters an exception, it restarts the spout or bolt and tries again. Is there any configuration option to make it stop the topology, perhaps after N repeated attempts? (For example, Hadoop tries 4 times before giving up.)
I had a Storm topology run for 77 days with one bolt raising an exception on every tuple. In situations like that, I'd rather it fail so that I notice that something's wrong.
There is no option for halting the topology (currently). And honestly, killing the whole topology just because an exception is brute force IMHO.
In your scenario, those exceptions should be handled in the application layer.
Is there any configuration option to make it stop the topology, perhaps after N repeated attempts?
There is no ready solution for that but you can do that and keep track the retried tuples in the Spout. If a threshold is met, then log the tuple or send it to a messaging queue.
I had a Storm topology run for 77 days with one bolt raising an exception on every tuple.
Then maybe there is a bug in your bolt's code?
One strategy is to send failed tuples to a massage queue or an event bus (such as HornetQ, Apache Kafka, Redis) and having a listener so you will be notified immediately about a poisonous tuple.
As far as I have seen, Storm wont retry a tuple (that caused an Exception by itself). It will by default, just continue to process the next tuple. Same tuple wont be re-tried, unless Spout has a fail method implemented.

How do I use multi threading in TCL?

I'm trying to run two procedures in parallel. As TCL is the interpreter, it will process procedures one by one. Can someone explain with an example how I can use multi-threading in TCL?
These days, the usual way to do multi-threading in Tcl is to use its Thread extension — it's being developed along with the Tcl's core, but on certain platforms (such as various Linux-based OSes) you might need to install a separate package to get this extension available.
The threading model the Thread extension implements is "one thread per interpreter". This means, each thread can "host" just one Tcl interpreter (and an unlimited number of its child interpreters), but no code executed by any thread may access interpreters hosted in other threads. This, in turn, means that when you work with threads in Tcl, you have to master the idea of multiple interpreters.
The classical approach to exchanging data between interpreters running in different threads is message passing: you post scripts to the input queue of the target interpreter running in different thread and then wait for reply. On the other hand, thread-shared variables (implementing sharing memory by locking) is also available. Another available feature is support for thread pools.
Read the "Tcl and threads" wiki page, the Thread's extension manual pages.
The code examples are on the wiki. Here's just one of them.
Please note that if your procedures which, you think, have to be run in parrallel, are mostly I/O bound (that is, they read something from the network and/or send something there) and not CPU-bound (doing heavy computations), you might have better results with the event-based approach to processing: the Tcl has built-in support for the event loop, and you are able to make Tcl execute your code when the next chunk of data can be read from a channel (such as a network socket) or written to a channel.

OS development: How to avoid an infinite loop after an exception routine

For some months I've been working on a "home-made" operating system.
Currently, it boots and goes into 32-bit protected mode.
I've loaded the interrupt table, but haven't set up the pagination (yet).
Now while writing my exception routines I've noticed that when an instruction throws an exception, the exception routine is executed, but then the CPU jumps back to the instruction which threw the exception! This does not apply to every exception (for example, a div by zero exception will jump back to the instruction AFTER the division instruction), but let's consider the following general protection exception:
MOV EAX, 0x8
MOV CS, EAX
My routine is simple: it calls a function that displays a red error message.
The result: MOV CS, EAX fails -> My error message is displayed -> CPU jumps back to MOV CS -> infinite loop spamming the error message.
I've talked about this issue with a teacher in operating systems and unix security.
He told me he knows Linux has a way around it, but he doesn't know which one.
The naive solution would be to parse the throwing instruction from within the routine, in order to get the length of that instruction.
That solution is pretty complex, and I feel a bit uncomfortable adding a call to a relatively heavy function in every affected exception routine...
Therefore, I was wondering if the is another way around the problem. Maybe there's a "magic" register that contains a bit that can change this behaviour?
--
Thank you very much in advance for any suggestion/information.
--
EDIT: It seems many people wonder why I want to skip over the problematic instruction and resume normal execution.
I have two reasons for this:
First of all, killing a process would be a possible solution, but not a clean one. That's not how it's done in Linux, for example, where (AFAIK) the kernel sends a signal (I think SIGSEGV) but does not immediately break execution. It makes sense, since the application can block or ignore the signal and resume its own execution. It's a very elegant way to tell the application it did something wrong IMO.
Another reason: what if the kernel itself performs an illegal operation? Could be due to a bug, but could also be due to a kernel extension. As I've stated in a comment: what should I do in that case? Shall I just kill the kernel and display a nice blue screen with a smiley?
That's why I would like to be able to jump over the instruction. "Guessing" the instruction size is obviously not an option, and parsing the instruction seems fairly complex (not that I mind implementing such a routine, but I need to be sure there is no better way).
Different exceptions have different causes. Some exceptions are normal, and the exception only tells the kernel what it needs to do before allowing the software to continue running. Examples of this include a page fault telling the kernel it needs to load data from swap space, an undefined instruction exception telling the kernel it needs to emulate an instruction that the CPU doesn't support, or a debug/breakpoint exception telling the kernel it needs to notify a debugger. For these it's normal for the kernel to fix things up and silently continue.
Some exceptions indicate abnormal conditions (e.g. that the software crashed). The only sane way of handling these types of exceptions is to stop running the software. You may save information (e.g. core dump) or display information (e.g. "blue screen of death") to help with debugging, but in the end the software stops (either the process is terminated, or the kernel goes into a "do nothing until user resets computer" state).
Ignoring abnormal conditions just makes it harder for people to figure out what went wrong. For example, imagine instructions to go to the toilet:
enter bathroom
remove pants
sit
start generating output
Now imagine that step 2 fails because you're wearing shorts (a "can't find pants" exception). Do you want to stop at that point (with a nice easy to understand error message or something), or ignore that step and attempt to figure out what went wrong later on, after all the useful diagnostic information has gone?
If I understand correctly, you want to skip the instruction that caused the exception (e.g. mov cs, eax) and continue executing the program at the next instruction.
Why would you want to do this? Normally, shouldn't the rest of the program depend on the effects of that instruction being successfully executed?
Generally speaking, there are three approaches to exception handling:
Treat the exception as an unrepairable condition and kill the process. For example, division by zero is usually handled this way.
Repair the environment and then execute the instruction again. For example, page faults are sometimes handled this way.
Emulate the instruction using software and skip over it in the instruction stream. For example, complicated arithmetic instructions are sometimes handled this way.
What you're seeing is the characteristic of the General Protection Exception. The Intel System Programming Guide clearly states that (6.15 Exception and Interrupt Reference / Interrupt 13 - General Protection Exception (#GP)) :
Saved Instruction Pointer
The saved contents of CS and EIP registers point to the instruction that generated the
exception.
Therefore, you need to write an exception handler that will skip over that instruction (which would be kind of weird), or just simply kill the offending process with "General Protection Exception at $SAVED_EIP" or a similar message.
I can imagine a few situations in which one would want to respond to a GPF by parsing the failed instruction, emulating its operation, and then returning to the instruction after. The normal pattern would be to set things up so that the instruction, if retried, would succeed, but one might e.g. have some code that expects to access some hardware at addresses 0x000A0000-0x000AFFFF and wish to run it on a machine that lacks such hardware. In such a situation, one might not want to ever bank in "real" memory in that space, since every single access must be trapped and dealt with separately. I'm not sure whether there's any way to handle that without having to decode whatever instruction was trying to access that memory, although I do know that some virtual-PC programs seem to manage it pretty well.
Otherwise, I would suggest that you should have for each thread a jump vector which should be used when the system encounters a GPF. Normally that vector should point to a thread-exit routine, but code which was about to do something "suspicious" with pointers could set it to an error handler that was suitable for that code (the code should unset the vector when laving the region where the error handler would have been appropriate).
I can imagine situations where one might want to emulate an instruction without executing it, and cases where one might want to transfer control to an error-handler routine, but I can't imagine any where one would want to simply skip over an instruction that would have caused a GPF.

Writing Signal handlers for Shared libraries or DLL?

I have a Application A(by some company X). This application allows me to extend the functionality by allowing me to write my own functions.
I tell the Application A to call my user functions in the Applications A's configuration file (this is how it knows that Appl A must call user written Functions). The appl A uses Function pointers which I must register with Application A prior to calling my user written functions.
If there is a bug or fault in my user written functions in production, the Appl A will stop functioning. For example, if I have a segmentation fault in my User written functions.
So Application A will load my user written function from a shared DLL file. This means that my user written functions will be running in Application A' Process address space.
I wish to handle certain signals like Segmentation fault, divide by zero and stack overflow, but applications A has its own signal handlers written for this,
How can I write my own signal handlers to catch the exceptions in my user written functions, so that I can clean up gracefully w/o affecting much of Application A? Since my user functions will be called in Applications A's process, the OS will call signal handlers written in Application A and not my user functions.
How can I change this? I want OS to call signal handlers written in my functions but only for signal raised by my functions, which is asynchronous in nature.
Note: I do not have the source code of Application A and I cannot make any changes to it, because it's controlled by a different company.
I will be using C , and only C on a Linux, solaris and probably windows platforms.
You do not specify which platform you're working with, so I'll answer for Linux, and it should be valid for Windows as well.
When you set your signal handlers, the system call that you use returns the previous handler. It does it so that you can return it once you are no longer interested in handling that signal.
Linux man page for signal
MSDN entry on signal
Since you are a shared library loaded into the application you should have no problems manipulating the signals handlers. Just make sure to override the minimum you need in order to reduce the chances of disrupting the application itself (some applications use signals for async notifications).
The cleanest way to do this would be run your application code in a separate process that communicates with the embedded shared DLL code via some IPC mechanism. You could handle whatever signals you wanted in your process without affecting the other process. Typically the conditions you mention (seg fault, divide by zero, stack overflow) indicate bugs in the program and will result in termination. There isn't much you can do to "handle" these beyond fixing the root cause of the bug.
in C++, you can catch these by putting your code in a try-catch:
try
{
// here goes your code
}
catch ( ... )
{
// handle segfaults
}