How do XQuery function namespaces work? - function

EDIT
I want to group together related functions to show that they are related.
If I have local:f1() and local:f2() then I could just change their names to local:menu-f1() and local:menu-f2() but is there a mechanism in the XQuery language to group related functions?
OP
I am very excited to discover that XQuery functions can be declared in a namespace other than local:. Where can I find info about how this works?
Having always declared functions in this way;
declare function local:foo() {
3+4
};
.. and used them in this way;
local:foo()
.. I discover that they can be declared like this;
declare namespace baz = "fred:bloggs";
declare function baz:foo() {
3+4
};
.. and used like this;
baz:foo()
But I can only find reference-like information about declare namespace and declare function separately, not tutorial-like information about how XQuery function namespaces work in general.
Is there a newbie guide to XQuery function namespaces?
I'm using a Saxon processor - XQuery 1.0.

What you are probably using are normal XQuery namespaces - what you probably are looking for are modules. You can put a bunch of functions in its own module namespace like this:
module namespace foo = "http://www.myurl.com/foo";
declare function foo:bar($args as item()*) as item()* {
() (: do something cool :)
};
Afterwards you can import the module in you main query and call the function:
import module namespace foo = "http://www.myurl.com/foo";
foo:bar(<my-element/>)
The problem is, that it is not standardized, how the processor has to find the query. And I don't know how Saxon implements the module resolving mechanism (you should look into the documentation and/or write to the Saxon mailing list).
But most XQuery processors look at the path given by an "at" clause relative from the location of the query. So to have something that should work on most implementations: For example you could store the module in a file named foo.xq and place it into the same directory than your main query and then for the module import you would write:
import module namespace foo = "http://www.myurl.com/foo" at "foo.xq";
which gives a hint to the XQuery engine where it should look for the module.
You can find some (not a lot at the moment) documentation about this stuff at http://www.xquery.me/ - hope this helps.
EDIT
Ok I see, you only want to group your functions. To do that you already figured out everything you need to know. But I still want to emphasize that splitting your query up into modules would probably be the better solution for your use-case (it's just somehow nicer, since your have more modularity and in the upcoming XQuery 3.0 recommendation you will even have the possibility to put stuff like private functions and variables in there). But if your query does not get big, your solution is of course also ok.
You can think about XML namespaces the same way you would think about namespaces in C++. In XQuery, functions, elements, collections, variables, attributes etc can be in an own namespace (again - like in C++). There are some implicitely defined namespaces like xs (the XML Schema namespace where you can find the data types like boolean, integer etc), local (a namespace where you can put in functions so that you are not forced to define your own namespace in a main query), fn (where all functions from the "XQuery 1.0 and XPath 2.0 functions and operators" recommendation are defined). But the prefix of this function is only an alias - you can use whatever you want.
So let's say you have the following code in the prolog of your query:
declare namespace blubb = "http://www.w3.org/2001/XMLSchema";
blubb:integer would be exactly the same type than xs:integer - the same holds for functions:
declare namespace l = "http://www.w3.org/2005/xquery-local-functions";
With declaring that you can access every function in the local namespace with the "l" prefix (so l:bar() if local:bar() exists).
If you do not type a prefix, XQuery assumes that this function is in the "fn" namespace. This is why bot
fn:concat("Hello ", "World!")
and
concat("Hello ", "World!")
are equivalent. You can change this behavior. You could include this line into the prolog:
declare default function namespace "http://www.w3.org/2005/xquery-local-functions";
which would tell the XQuery processor that you do not want to prefix local functions (so bar() would be equivalent to local:bar()).
I am not sure if I answered your questions or at least was able to bring in some clarity. I do not know about a tutorial for that (since in the beginning it is somehow confusing but in the end you realize that there is not a lot to say about since the mechanisms are much simpler than they look in the first place). The document where I always look up stuff is the recommendation at http://www.w3.org/TR/xquery/
If this does not help you please try to qualify and I can try again with an explanation..

Related

In OOP, is function same things as a method? [duplicate]

Can someone provide a simple explanation of methods vs. functions in OOP context?
A function is a piece of code that is called by name. It can be passed data to operate on (i.e. the parameters) and can optionally return data (the return value). All data that is passed to a function is explicitly passed.
A method is a piece of code that is called by a name that is associated with an object. In most respects it is identical to a function except for two key differences:
A method is implicitly passed the object on which it was called.
A method is able to operate on data that is contained within the class (remembering that an object is an instance of a class - the class is the definition, the object is an instance of that data).
(this is a simplified explanation, ignoring issues of scope etc.)
A method is on an object or is static in class.
A function is independent of any object (and outside of any class).
For Java and C#, there are only methods.
For C, there are only functions.
For C++ and Python it would depend on whether or not you're in a class.
But in basic English:
Function: Standalone feature or functionality.
Method: One way of doing something, which has different approaches or methods, but related to the same aspect (aka class).
'method' is the object-oriented word for 'function'. That's pretty much all there is to it (ie., no real difference).
Unfortunately, I think a lot of the answers here are perpetuating or advancing the idea that there's some complex, meaningful difference.
Really - there isn't all that much to it, just different words for the same thing.
[late addition]
In fact, as Brian Neal pointed out in a comment to this question, the C++ standard never uses the term 'method' when refering to member functions. Some people may take that as an indication that C++ isn't really an object-oriented language; however, I prefer to take it as an indication that a pretty smart group of people didn't think there was a particularly strong reason to use a different term.
In general: methods are functions that belong to a class, functions can be on any other scope of the code so you could state that all methods are functions, but not all functions are methods:
Take the following python example:
class Door:
def open(self):
print 'hello stranger'
def knock_door():
a_door = Door()
Door.open(a_door)
knock_door()
The example given shows you a class called "Door" which has a method or action called "open", it is called a method because it was declared inside a class. There is another portion of code with "def" just below which defines a function, it is a function because it is not declared inside a class, this function calls the method we defined inside our class as you can see and finally the function is being called by itself.
As you can see you can call a function anywhere but if you want to call a method either you have to pass a new object of the same type as the class the method is declared (Class.method(object)) or you have to invoke the method inside the object (object.Method()), at least in python.
Think of methods as things only one entity can do, so if you have a Dog class it would make sense to have a bark function only inside that class and that would be a method, if you have also a Person class it could make sense to write a function "feed" for that doesn't belong to any class since both humans and dogs can be fed and you could call that a function since it does not belong to any class in particular.
Simple way to remember:
Function → Free (Free means it can be anywhere, no need to be in an object or class)
Method → Member (A member of an object or class)
A very general definition of the main difference between a Function and a Method:
Functions are defined outside of classes, while Methods are defined inside of and part of classes.
The idea behind Object Oriented paradigm is to "treat" the software is composed of .. well "objects". Objects in real world have properties, for instance if you have an Employee, the employee has a name, an employee id, a position, he belongs to a department etc. etc.
The object also know how to deal with its attributes and perform some operations on them. Let say if we want to know what an employee is doing right now we would ask him.
employe whatAreYouDoing.
That "whatAreYouDoing" is a "message" sent to the object. The object knows how to answer to that questions, it is said it has a "method" to resolve the question.
So, the way objects have to expose its behavior are called methods. Methods thus are the artifact object have to "do" something.
Other possible methods are
employee whatIsYourName
employee whatIsYourDepartmentsName
etc.
Functions in the other hand are ways a programming language has to compute some data, for instance you might have the function addValues( 8 , 8 ) that returns 16
// pseudo-code
function addValues( int x, int y ) return x + y
// call it
result = addValues( 8,8 )
print result // output is 16...
Since first popular programming languages ( such as fortran, c, pascal ) didn't cover the OO paradigm, they only call to these artifacts "functions".
for instance the previous function in C would be:
int addValues( int x, int y )
{
return x + y;
}
It is not "natural" to say an object has a "function" to perform some action, because functions are more related to mathematical stuff while an Employee has little mathematic on it, but you can have methods that do exactly the same as functions, for instance in Java this would be the equivalent addValues function.
public static int addValues( int x, int y ) {
return x + y;
}
Looks familiar? That´s because Java have its roots on C++ and C++ on C.
At the end is just a concept, in implementation they might look the same, but in the OO documentation these are called method.
Here´s an example of the previously Employee object in Java.
public class Employee {
Department department;
String name;
public String whatsYourName(){
return this.name;
}
public String whatsYourDeparmentsName(){
return this.department.name();
}
public String whatAreYouDoing(){
return "nothing";
}
// Ignore the following, only set here for completness
public Employee( String name ) {
this.name = name;
}
}
// Usage sample.
Employee employee = new Employee( "John" ); // Creates an employee called John
// If I want to display what is this employee doing I could use its methods.
// to know it.
String name = employee.whatIsYourName():
String doingWhat = employee.whatAreYouDoint();
// Print the info to the console.
System.out.printf("Employee %s is doing: %s", name, doingWhat );
Output:
Employee John is doing nothing.
The difference then, is on the "domain" where it is applied.
AppleScript have the idea of "natural language" matphor , that at some point OO had. For instance Smalltalk. I hope it may be reasonable easier for you to understand methods in objects after reading this.
NOTE: The code is not to be compiled, just to serve as an example. Feel free to modify the post and add Python example.
In OO world, the two are commonly used to mean the same thing.
From a pure Math and CS perspective, a function will always return the same result when called with the same arguments ( f(x,y) = (x + y) ). A method on the other hand, is typically associated with an instance of a class. Again though, most modern OO languages no longer use the term "function" for the most part. Many static methods can be quite like functions, as they typically have no state (not always true).
Let's say a function is a block of code (usually with its own scope, and sometimes with its own closure) that may receive some arguments and may also return a result.
A method is a function that is owned by an object (in some object oriented systems, it is more correct to say it is owned by a class). Being "owned" by a object/class means that you refer to the method through the object/class; for example, in Java if you want to invoke a method "open()" owned by an object "door" you need to write "door.open()".
Usually methods also gain some extra attributes describing their behaviour within the object/class, for example: visibility (related to the object oriented concept of encapsulation) which defines from which objects (or classes) the method can be invoked.
In many object oriented languages, all "functions" belong to some object (or class) and so in these languages there are no functions that are not methods.
Methods are functions of classes. In normal jargon, people interchange method and function all over. Basically you can think of them as the same thing (not sure if global functions are called methods).
http://en.wikipedia.org/wiki/Method_(computer_science)
A function is a mathematical concept. For example:
f(x,y) = sin(x) + cos(y)
says that function f() will return the sin of the first parameter added to the cosine of the second parameter. It's just math. As it happens sin() and cos() are also functions. A function has another property: all calls to a function with the same parameters, should return the same result.
A method, on the other hand, is a function that is related to an object in an object-oriented language. It has one implicit parameter: the object being acted upon (and it's state).
So, if you have an object Z with a method g(x), you might see the following:
Z.g(x) = sin(x) + cos(Z.y)
In this case, the parameter x is passed in, the same as in the function example earlier. However, the parameter to cos() is a value that lives inside the object Z. Z and the data that lives inside it (Z.y) are implicit parameters to Z's g() method.
Historically, there may have been a subtle difference with a "method" being something which does not return a value, and a "function" one which does.Each language has its own lexicon of terms with special meaning.
In "C", the word "function" means a program routine.
In Java, the term "function" does not have any special meaning. Whereas "method" means one of the routines that forms the implementation of a class.
In C# that would translate as:
public void DoSomething() {} // method
public int DoSomethingAndReturnMeANumber(){} // function
But really, I re-iterate that there is really no difference in the 2 concepts.
If you use the term "function" in informal discussions about Java, people will assume you meant "method" and carry on. Don't use it in proper documents or presentations about Java, or you will look silly.
Function or a method is a named callable piece of code which performs some operations and optionally returns a value.
In C language the term function is used. Java & C# people would say it a method (and a function in this case is defined within a class/object).
A C++ programmer might call it a function or sometimes method (depending on if they are writing procedural style c++ code or are doing object oriented way of C++, also a C/C++ only programmer would likely call it a function because term 'method' is less often used in C/C++ literature).
You use a function by just calling it's name like,
result = mySum(num1, num2);
You would call a method by referencing its object first like,
result = MyCalc.mySum(num1,num2);
Function is a set of logic that can be used to manipulate data.
While, Method is function that is used to manipulate the data of the object where it belongs.
So technically, if you have a function that is not completely related to your class but was declared in the class, its not a method; It's called a bad design.
In OO languages such as Object Pascal or C++, a "method" is a function associated with an object. So, for example, a "Dog" object might have a "bark" function and this would be considered a "Method". In contrast, the "StrLen" function stands alone (it provides the length of a string provided as an argument). It is thus just a "function." Javascript is technically Object Oriented as well but faces many limitations compared to a full-blown language like C++, C# or Pascal. Nonetheless, the distinction should still hold.
A couple of additional facts: C# is fully object oriented so you cannot create standalone "functions." In C# every function is bound to an object and is thus, technically, a "method." The kicker is that few people in C# refer to them as "methods" - they just use the term "functions" because there isn't any real distinction to be made.
Finally - just so any Pascal gurus don't jump on me here - Pascal also differentiates between "functions" (which return a value) and "procedures" which do not. C# does not make this distinction explicitly although you can, of course, choose to return a value or not.
Methods on a class act on the instance of the class, called the object.
class Example
{
public int data = 0; // Each instance of Example holds its internal data. This is a "field", or "member variable".
public void UpdateData() // .. and manipulates it (This is a method by the way)
{
data = data + 1;
}
public void PrintData() // This is also a method
{
Console.WriteLine(data);
}
}
class Program
{
public static void Main()
{
Example exampleObject1 = new Example();
Example exampleObject2 = new Example();
exampleObject1.UpdateData();
exampleObject1.UpdateData();
exampleObject2.UpdateData();
exampleObject1.PrintData(); // Prints "2"
exampleObject2.PrintData(); // Prints "1"
}
}
Since you mentioned Python, the following might be a useful illustration of the relationship between methods and objects in most modern object-oriented languages. In a nutshell what they call a "method" is just a function that gets passed an extra argument (as other answers have pointed out), but Python makes that more explicit than most languages.
# perfectly normal function
def hello(greetee):
print "Hello", greetee
# generalise a bit (still a function though)
def greet(greeting, greetee):
print greeting, greetee
# hide the greeting behind a layer of abstraction (still a function!)
def greet_with_greeter(greeter, greetee):
print greeter.greeting, greetee
# very simple class we can pass to greet_with_greeter
class Greeter(object):
def __init__(self, greeting):
self.greeting = greeting
# while we're at it, here's a method that uses self.greeting...
def greet(self, greetee):
print self.greeting, greetee
# save an object of class Greeter for later
hello_greeter = Greeter("Hello")
# now all of the following print the same message
hello("World")
greet("Hello", "World")
greet_with_greeter(hello_greeter, "World")
hello_greeter.greet("World")
Now compare the function greet_with_greeter and the method greet: the only difference is the name of the first parameter (in the function I called it "greeter", in the method I called it "self"). So I can use the greet method in exactly the same way as I use the greet_with_greeter function (using the "dot" syntax to get at it, since I defined it inside a class):
Greeter.greet(hello_greeter, "World")
So I've effectively turned a method into a function. Can I turn a function into a method? Well, as Python lets you mess with classes after they're defined, let's try:
Greeter.greet2 = greet_with_greeter
hello_greeter.greet2("World")
Yes, the function greet_with_greeter is now also known as the method greet2. This shows the only real difference between a method and a function: when you call a method "on" an object by calling object.method(args), the language magically turns it into method(object, args).
(OO purists might argue a method is something different from a function, and if you get into advanced Python or Ruby - or Smalltalk! - you will start to see their point. Also some languages give methods special access to bits of an object. But the main conceptual difference is still the hidden extra parameter.)
for me:
the function of a method and a function is the same if I agree that:
a function may return a value
may expect parameters
Just like any piece of code you may have objects you put in and you may have an object that comes as a result. During doing that they might change the state of an object but that would not change their basic functioning for me.
There might be a definition differencing in calling functions of objects or other codes. But isn't that something for a verbal differenciations and that's why people interchange them? The mentions example of computation I would be careful with. because I hire employes to do my calculations:
new Employer().calculateSum( 8, 8 );
By doing it that way I can rely on an employer being responsible for calculations. If he wants more money I free him and let the carbage collector's function of disposing unused employees do the rest and get a new employee.
Even arguing that a method is an objects function and a function is unconnected computation will not help me. The function descriptor itself and ideally the function's documentation will tell me what it needs and what it may return. The rest, like manipulating some object's state is not really transparent to me. I do expect both functions and methods to deliver and manipulate what they claim to without needing to know in detail how they do it.
Even a pure computational function might change the console's state or append to a logfile.
From my understanding a method is any operation which can be performed on a class. It is a general term used in programming.
In many languages methods are represented by functions and subroutines. The main distinction that most languages use for these is that functions may return a value back to the caller and a subroutine may not. However many modern languages only have functions, but these can optionally not return any value.
For example, lets say you want to describe a cat and you would like that to be able to yawn. You would create a Cat class, with a Yawn method, which would most likely be a function without any return value.
To a first order approximation, a method (in C++ style OO) is another word for a member function, that is a function that is part of a class.
In languages like C/C++ you can have functions which are not members of a class; you don't call a function not associated with a class a method.
IMHO people just wanted to invent new word for easier communication between programmers when they wanted to refer to functions inside objects.
If you are saying methods you mean functions inside the class.
If you are saying functions you mean simply functions outside the class.
The truth is that both words are used to describe functions. Even if you used it wrongly nothing wrong happens. Both words describe well what you want to achieve in your code.
Function is a code that has to play a role (a function) of doing something.
Method is a method to resolve the problem.
It does the same thing. It is the same thing. If you want to be super precise and go along with the convention you can call methods as the functions inside objects.
Let's not over complicate what should be a very simple answer. Methods and functions are the same thing. You call a function a function when it is outside of a class, and you call a function a method when it is written inside a class.
Function is the concept mainly belonging to Procedure oriented programming where a function is an an entity which can process data and returns you value
Method is the concept of Object Oriented programming where a method is a member of a class which mostly does processing on the class members.
I am not an expert, but this is what I know:
Function is C language term, it refers to a piece of code and the function name will be the identifier to use this function.
Method is the OO term, typically it has a this pointer in the function parameter. You can not invoke this piece of code like C, you need to use object to invoke it.
The invoke methods are also different. Here invoke meaning to find the address of this piece of code. C/C++, the linking time will use the function symbol to locate.
Objecive-C is different. Invoke meaning a C function to use data structure to find the address. It means everything is known at run time.
TL;DR
A Function is a piece of code to run.
A Method is a Function inside an Object.
Example of a function:
function sum(){
console.log("sum")l
}
Example of a Method:
const obj = {
a:1,
b:2,
sum(){
}
}
So thats why we say that a "this" keyword inside a Function is not very useful unless we use it with call, apply or bind .. because call, apply, bind will call that function as a method inside object ==> basically it converts function to method
I know many others have already answered, but I found following is a simple, yet effective single line answer. Though it doesn't look a lot better than others answers here, but if you read it carefully, it has everything you need to know about the method vs function.
A method is a function that has a defined receiver, in OOP terms, a method is a function on an instance of an object.
A class is the collection of some data and function optionally with a constructor.
While you creating an instance (copy,replication) of that particular class the constructor initialize the class and return an object.
Now the class become object (without constructor)
&
Functions are known as method in the object context.
So basically
Class <==new==>Object
Function <==new==>Method
In java the it is generally told as that the constructor name same as class name but in real that constructor is like instance block and static block but with having a user define return type(i.e. Class type)
While the class can have an static block,instance block,constructor, function
The object generally have only data & method.
Function - A function in an independent piece of code which includes some logic and must be called independently and are defined outside of class.
Method - A method is an independent piece of code which is called in reference to some object and are be defined inside the class.
General answer is:
method has object context (this, or class instance reference),
function has none context (null, or global, or static).
But answer to question is dependent on terminology of language you use.
In JavaScript (ES 6) you are free to customising function context (this) for any you desire, which is normally must be link to the (this) object instance context.
In Java world you always hear that "only OOP classes/objects, no functions", but if you watch in detailes to static methods in Java, they are really in global/null context (or context of classes, whithout instancing), so just functions whithout object. Java teachers could told you, that functions were rudiment of C in C++ and dropped in Java, but they told you it for simplification of history and avoiding unnecessary questions of newbies. If you see at Java after 7 version, you can find many elements of pure function programming (even not from C, but from older 1988 Lisp) for simplifying parallel computing, and it is not OOP classes style.
In C++ and D world things are stronger, and you have separated functions and objects with methods and fields. But in practice, you again see functions without this and methods whith this (with object context).
In FreePascal/Lazarus and Borland Pascal/Delphi things about separation terms of functions and objects (variables and fields) are usually similar to C++.
Objective-C comes from C world, so you must separate C functions and Objective-C objects with methods addon.
C# is very similar to Java, but has many C++ advantages.
In C++, sometimes, method is used to reflect the notion of member function of a class. However, recently I found a statement in the book «The C++ Programming Language 4th Edition», on page 586 "Derived Classes"
A virtual function is sometimes called a method.
This is a little bit confusing, but he said sometimes, so it roughly makes sense, C++ creator tends to see methods as functions can be invoked on objects and can behave polymorphic.

functions in Module (Fortran) [duplicate]

I use the Intel Visual Fortran. According to Chapmann's book, declaration of function type in the routine that calls it, is NECESSARY. But look at this piece of code,
module mod
implicit none
contains
function fcn ( i )
implicit none
integer :: fcn
integer, intent (in) :: i
fcn = i + 1
end function
end module
program prog
use mod
implicit none
print *, fcn ( 3 )
end program
It runs without that declaration in the calling routine (here prog) and actually when I define its type (I mean function type) in the program prog or any other unit, it bears this error,
error #6401: The attributes of this name conflict with those made accessible by a USE statement. [FCN] Source1.f90 15
What is my fault? or if I am right, How can it be justified?
You must be working with a very old copy of Chapman's book, or possibly misinterpreting what it says. Certainly a calling routine must know the type of a called function, and in Fortran-before-90 it was the programmer's responsibility to ensure that the calling function had that information.
However, since the 90 standard and the introduction of modules there are other, and better, ways to provide information about the called function to the calling routine. One of those ways is to put the called functions into a module and to use-associate the module. When your program follows this approach the compiler takes care of matters. This is precisely what your code has done and it is not only correct, it is a good approach, in line with modern Fortran practice.
association is Fortran-standard-speak for the way(s) in which names (such as fcn) become associated with entities, such as the function called fcn. use-association is the way implemented by writing use module in a program unit, thereby making all the names in module available to the unit which uses module. A simple use statement makes all the entities in the module known under their module-defined names. The use statement can be modified by an only clause, which means that only some module entities are made available. Individual module entities can be renamed in a use statement, thereby associating a different name with the module entity.
The error message you get if you include a (re-)declaration of the called function's type in the calling routine arises because the compiler will only permit one declaration of the called function's type.

Why does a function name have to be specified in a use statement?

In perl, sometimes it is necessary to specify the function name in the use statement.
For example:
use Data::DPath ('dpath');
will work but
use Data::DPath;
won't.
Other modules don't need the function names specified, for example:
use WWW::Mechanize;
Why?
Each module chooses what functions it exports by default. Some choose to export no functions by default at all, you have to ask for them. There's a few good reasons to do this, and one bad one.
If you're a class like WWW::Mechanize, then you don't need to export any functions. Everything is a class or object method. my $mech = WWW::Mechanize->new.
If you're a pragma like strict then there are no functions nor methods, it does its work simply by being loaded.
Some modules export waaay too many functions by default. An example is Test::Deep which exports...
all any array array_each arrayelementsonly arraylength arraylengthonly bag blessed bool cmp_bag cmp_deeply cmp_methods cmp_set code eq_deeply hash
hash_each hashkeys hashkeysonly ignore Isa isa listmethods methods noclass
none noneof num obj_isa re reftype regexpmatches regexponly regexpref
regexprefonly scalarrefonly scalref set shallow str subbagof subhashof
subsetof superbagof superhashof supersetof useclass
The problem comes when another module tries to export the same functions, or if you write a function with the same name. Then they clash and you get mysterious warnings.
$ cat ~/tmp/test.plx
use Test::Deep;
use List::Util qw(all);
$ perl -w ~/tmp/test.plx
Subroutine main::all redefined at /Users/schwern/perl5/perlbrew/perls/perl-5.20.2/lib/5.20.2/Exporter.pm line 66.
at /Users/schwern/tmp/test.plx line 2.
Prototype mismatch: sub main::all: none vs (&#) at /Users/schwern/perl5/perlbrew/perls/perl-5.20.2/lib/5.20.2/Exporter.pm line 66.
at /Users/schwern/tmp/test.plx line 2.
For this reason, exporting lots of functions is discouraged. For example, the Exporter documentation advises...
Do not export method names!
Do not export anything else by default without a good reason!
Exports pollute the namespace of the module user. If you must export try to use #EXPORT_OK in preference to #EXPORT and avoid short or common symbol names to reduce the risk of name clashes.
Unfortunately, some modules take this too far. Data::DPath is a good example. It has a really clear main function, dpath(), which it should export by default. Otherwise it's basically useless.
You can always turn off exporting with use Some::Module ();.
The reason is that some modules simply contain functions in them and they may or may not have chosen to export them by default, and that means they may need to be explicitly imported by the script to access directly or use a fully qualified name to access them. For example:
# in some script
use SomeModule;
# ...
SomeModule::some_function(...);
or
use SomeModule ('some_function');
# ...
some_function(...);
This can be the case if the module was not intended to be used in an object-oriented way, i.e. where no classes have been defined and lines such as my $obj = SomeModule->new() wouldn't work.
If the module has defined content in the EXPORT_OK array, it means that the client code will only get access to it if it "asks for it", rather than "automatically" when it's actually present in the EXPORT array.
Some modules automatically export their content by means of the #EXPORT array. This question and the Exporter docs have more detail on this.
Without you actually posting an MCVE, it's difficult to know what you've done in your Funcs.pm module that may be allowing you to import everything without using EXPORT and EXPORT_OK arrays. Perhaps you did not include the package Funcs; line in your module, as #JonathanLeffler suggested in the comments. Perhaps you did something else. Perl is one of those languages where people pride themselves in the TMTOWTDI mantra, often to a detrimental/counter-productive level, IMHO.
The 2nd example you presented is very different and fairly straightforward. When you have something like:
use WWW::Mechanize;
my $mech = new WWW::Mechanize;
$mech->get("http://www.google.com");
you're simply instantiating an object of type WWW::Mechanize and calling an instance method, called get, on it. There's no need to import an object's methods because the methods are part of the object itself. Modules looking to have an OOP approach are not meant to export anything. They're different situations.

dojo require function's parameter

Take simple examples as below:
require(["dojo/_base/ready", "dojo/_base/declare"], function(ready, declare) {
}
How to explain ready and declare to dojo core? Class name?
In another example I often see:
require(["js/somemodule.js"], function(someName) {
});
Many times I see someName not the same as somemodule(ready, declare are the same as the module name at least), nor was it any identifier I could found in somemodule.js or its base. What's the matter? I guess when the argument in require function should be declared in some where and hold a value.
The variable name someName is something you choose yourself. It is in fact the variable referencing to the module. So that means that someName refers to the module js/somemodule.js.
If you want to call a function of js/somemodule.js, you use:
someName.myFunction();
Usually people give it the same name as the module (or something similar) because it's easier to remember. But it's not always the case, because if there are dashes in the module name, people usually use camel case, for example:
require(["dojo/dom-construct"], function(domContruct) {
domConstruct.create(...);
});
But the following is also correct (and does exactly the same):
require(["dojo/dom-construct"], function(theAwesomeModule) {
theAwesomeModule.create(...);
});
Not only Dojo uses this, but the AMD loader is a general principle in JavaScript. For example, look at the AMD info page of Require.js.

Namespace vars between Classes

Synopsis
How do you declare variables in a namespace while using the use statement? (ie., without declaring the namespace with the variable name)
How do you reference namespace variables with the "use" statement without a container reference. (ie., trace(foo) rather than trace(a.foo) [seems kinda pointless if I have to state this after already switching to the namespace])
Explanation
Having read Grant Skinner's "Complete Guide to Using Namespaces", and other articles, such as Jackson Dustan's "Better OOP Through Namespaces", I'm left with the above unanswered questions. I feel as though I'm missing some basic principle, but I can't seem to get namespaces to work. The following examples are written for use with the Flash IDE, so assume the following...
locus.as
package com.atriace {
public namespace locus = "atriace.com";
}
testA.as
package com.atriace {
public class testA {
import com.atriace.locus;
locus var foo:String = "Apple";
public function testA() {}
}
}
testB.as
package com.atriace {
public class testB {
import com.atriace.locus;
use namespace locus;
public function testB() {
trace(foo);
}
}
}
Document Class:
import com.atriace.testA;
import com.atriace.testB;
var a:testA = new testA();
trace(a.foo); // results in "Apple"
var b:testB = new testB(); // compile error: variable "foo" not defined.
Issue #1
In my mind, a namespace is little more than an object to hold variables that has scope level access. Ergo, global is a namespace visible to all functions (since it's the root scope), local is namespace (specific to the current and child scopes), and so on. If true, then switching to a namespace with use should allow you to simply declare variables that happen to exist in both the local and custom namespaces. For example:
use namespace locus
var bar:String = "test"; // this now *should* exist in both local & locus scope/namespace.
Since I'm unaware of a method to iterate over a namespace like a normal object, I don't know whether this is what happens. Furthermore, I haven't seen any cases where someone has declared a custom namespace variable this way, so I assume namespace variables must always be explicitly defined.
Issue #2
You might ask, "what's the goal here?" Quite simply, we want a dynamic pool of variables and methods that any new classes can add to (within the same package). By switching to this namespace prior to calling methods, we can reduce the wordiness of our code. So, class.method() becomes just method().
In testB.as we'd fully expect an error to occur if we never imported the testA.as class and instantiated it; especially because foo isn't a static member of the class (nor do we want it to be). However, since we've instantiated foo at least once, the namespace locus should now have a variable called foo, which means that when testB.as gets instantiated, and the constructor seeks a value for foo, the namespace already has one.
Obviously, there's a flaw in this thinking since the Flash compiler complains that foo has never been declared, and the only way I can reference foo from the document class is by referencing the container (ie., a.foo rather than just switching to the namespace with use, and tracing foo directly).
For the sake of argument, neither inheritance nor static members are a solution to this dilema. This is both an excercise in learning better code techniques, and an answer to the structure of a large utility class that has complicated dependencies. Given the absence of a variable/method, you could simply code around it.
I know it's not a heavily documented topic, which is why I'm hoping some sage here may see what I'm missing. The help would be much appreciated. :)
"use namespace" is for the consumer side. You always have to include the namespace in any declaration:
MyNamespace var foobar : uint;
If you wish to add namespaced package-global variables (you shouldn't as a general rule), you have to define each one of them in a separate .as file as packages only allow one publicly-visible definition per file at the top-level.
In your example above you are using namespaces incorrectly. A namespace can span multiple classes, but does not achieve the cross-class functionality you are looking for. This is more the domain of aspect-oriented programming.