NPP library function argument *pDeviceBuffer - cuda

I notice some of the npp functions has an argument *pDeviceBuffer. I am wondering what this argument is for and how I shall set it while using the functions. Also, the results of functions,such as nppsMax_32f, are written back to a pointer. Is the memory on host or device memory? Thank you.

pDeviceBuffer is used as scratch space inside npp. Scratch space is usually allocated internally (like in CUFFT). But some of these operations (sum, min, max) are so quick that allocating the scratch space itself might become a bottleneck. Querying for the scratch space required and then allocating it once before re-using it multiple times would be a good idea.
Example:
Let's say you have a very large array that you want to get min max and sum from, you will need to do the following.
int n = 1e6, bytes = 0;
nppsReductionGetBufferSize_32f(n, &bytes);
Npp8u *scratch = nppsMalloc_8f(bytes);
nppsMax_32f(in, n, max_val, nppAlgHintNone, scratch);
// Reusing scratch space for input of same size
nppsMin_32f(in, n, min_val, nppAlgHintNone, scratch);
// Reusing scratch space for input of smaller size
nppsSum_32f(in, 1e4, sum_val, nppAlgHintNone, scratch);
// Larger inputs may require more scratch space.
// So you may need to check and allocate appropriate space
int newBytes = 0; nppsReductionGetBufferSize_32f(5e6, &newBytes);
if (bytes != newBytes) {
nppsFree(scratch);
scratch = nppsMalloc_8u(bytes);
}
nppsSum_32f(in, 5e6, sum_val, nppAlgHintNone, scratch);

Related

how can a __global__ function RETURN a value or BREAK out like C/C++ does

Recently I've been doing string comparing jobs on CUDA, and i wonder how can a __global__ function return a value when it finds the exact string that I'm looking for.
I mean, i need the __global__ function which contains a great amount of threads to find a certain string among a big big string-pool simultaneously, and i hope that once the exact string is caught, the __global__ function can stop all the threads and return back to the main function, and tells me "he did it"!
I'm using CUDA C. How can I possibly achieve this?
There is no way in CUDA (or on NVIDIA GPUs) for one thread to interrupt execution of all running threads. You can't have immediate exit of the kernel as soon as a result is found, it's just not possible today.
But you can have all threads exit as soon as possible after one thread finds a result. Here's a model of how you would do that.
__global___ void kernel(volatile bool *found, ...)
{
while (!(*found) && workLeftToDo()) {
bool iFoundIt = do_some_work(...); // see notes below
if (iFoundIt) *found = true;
}
}
Some notes on this.
Note the use of volatile. This is important.
Make sure you initialize found—which must be a device pointer—to false before launching the kernel!
Threads will not exit instantly when another thread updates found. They will exit only the next time they return to the top of the while loop.
How you implement do_some_work matters. If it is too much work (or too variable), then the delay to exit after a result is found will be long (or variable). If it is too little work, then your threads will be spending most of their time checking found rather than doing useful work.
do_some_work is also responsible for allocating tasks (i.e. computing/incrementing indices), and how you do that is problem specific.
If the number of blocks you launch is much larger than the maximum occupancy of the kernel on the present GPU, and a match is not found in the first running "wave" of thread blocks, then this kernel (and the one below) can deadlock. If a match is found in the first wave, then later blocks will only run after found == true, which means they will launch, then exit immediately. The solution is to launch only as many blocks as can be resident simultaneously (aka "maximal launch"), and update your task allocation accordingly.
If the number of tasks is relatively small, you can replace the while with an if and run just enough threads to cover the number of tasks. Then there is no chance for deadlock (but the first part of the previous point applies).
workLeftToDo() is problem-specific, but it would return false when there is no work left to do, so that we don't deadlock in the case that no match is found.
Now, the above may result in excessive partition camping (all threads banging on the same memory), especially on older architectures without L1 cache. So you might want to write a slightly more complicated version, using a shared status per block.
__global___ void kernel(volatile bool *found, ...)
{
volatile __shared__ bool someoneFoundIt;
// initialize shared status
if (threadIdx.x == 0) someoneFoundIt = *found;
__syncthreads();
while(!someoneFoundIt && workLeftToDo()) {
bool iFoundIt = do_some_work(...);
// if I found it, tell everyone they can exit
if (iFoundIt) { someoneFoundIt = true; *found = true; }
// if someone in another block found it, tell
// everyone in my block they can exit
if (threadIdx.x == 0 && *found) someoneFoundIt = true;
__syncthreads();
}
}
This way, one thread per block polls the global variable, and only threads that find a match ever write to it, so global memory traffic is minimized.
Aside: __global__ functions are void because it's difficult to define how to return values from 1000s of threads into a single CPU thread. It is trivial for the user to contrive a return array in device or zero-copy memory which suits his purpose, but difficult to make a generic mechanism.
Disclaimer: Code written in browser, untested, unverified.
If you feel adventurous, an alternative approach to stopping kernel execution would be to just execute
// (write result to memory here)
__threadfence();
asm("trap;");
if an answer is found.
This doesn't require polling memory, but is inferior to the solution that Mark Harris suggested in that it makes the kernel exit with an error condition. This may mask actual errors (so be sure to write out your results in a way that clearly allows to tell a successful execution from an error), and it may cause other hiccups or decrease overall performance as the driver treats this as an exception.
If you look for a safe and simple solution, go with Mark Harris' suggestion instead.
The global function doesn't really contain a great amount of threads like you think it does. It is simply a kernel, function that runs on device, that is called by passing paramaters that specify the thread model. The model that CUDA employs is a 2D grid model and then a 3D thread model inside of each block on the grid.
With the type of problem you have it is not really necessary to use anything besides a 1D grid with 1D of threads on in each block because the string pool doesn't really make sense to split into 2D like other problems (e.g. matrix multiplication)
I'll walk through a simple example of say 100 strings in the string pool and you want them all to be checked in a parallelized fashion instead of sequentially.
//main
//Should cudamalloc and cudacopy to device up before this code
dim3 dimGrid(10, 1); // 1D grid with 10 blocks
dim3 dimBlocks(10, 1); //1D Blocks with 10 threads
fun<<<dimGrid, dimBlocks>>>(, Height)
//cudaMemCpy answerIdx back to integer on host
//kernel (Not positive on these types as my CUDA is very rusty
__global__ void fun(char *strings[], char *stringToMatch, int *answerIdx)
{
int idx = blockIdx.x * 10 + threadIdx.x;
//Obviously use whatever function you've been using for string comparison
//I'm just using == for example's sake
if(strings[idx] == stringToMatch)
{
*answerIdx = idx
}
}
This is obviously not the most efficient and is most likely not the exact way to pass paramaters and work with memory w/ CUDA, but I hope it gets the point across of splitting the workload and that the 'global' functions get executed on many different cores so you can't really tell them all to stop. There may be a way I'm not familiar with, but the speed up you will get by just dividing the workload onto the device (in a sensible fashion of course) will already give you tremendous performance improvements. To get a sense of the thread model I highly recommend reading up on the documents on Nvidia's site for CUDA. They will help tremendously and teach you the best way to set up the grid and blocks for optimal performance.

How best to transfer a large number of arrays of chars to the GPU?

I am new to CUDA and am trying to do some processing of a large number of arrays. Each array is an array of about 1000 chars (not a string, just stored as chars) and there can be up to 1 million of them, so about 1 gb of data to be transfered. This data is already all loaded into memory and I have a pointer to each array, but I don't think I can rely on all the data being sequential in memory, so I can't just transfer it all with one call.
I currently made a first go at it with thrust, and based my solution kind of on this message ... I made a struct with a static call that allocates all the memory, and then each individual constructor copies that array, and I have a transform call which takes in the struct with the pointer to the device array.
My problem is that this is obviously extremely slow, since each array is copied individually. I'm wondering how to transfer this data faster.
In this question (the question is mostly unrelated, but I think the user is trying to do something similar) talonmies suggests that they try and use a zip iterator but I don't see how that would help transfer a large number of arrays.
I also just found out about cudaMemcpy2DToArray and cudaMemcpy2D while writing this question, so maybe those are the answer, but I don't see immediately how these would work, since neither seem to take pointers to pointers as input...
Any suggestions are welcome...
One way to do this is as marina.k suggested, batching your transfers only as you need them. Since you said each array only contains about 1000 chars, you could assign each char to a thread (since on Fermi we can allocate 1024 threads per block) and have each array handled by one block. In this case you may be able to transfer all the arrays for one "round" in one call - can you use a FORTRAN style, where you make one gigantic array and to get the 5th element of the "third" 1000 char array you would go:
third_array[5] = big_array[5 + 2*1000]
so that the first 1000 char array makes up the first 1000 elements of big_array, the second 1000 char array makes up the second 1000 elements of big_array, etc. ? In this case your chars would be continuous in memory and you could move the set you were going to process with one kernel launch in only one memcpy. Then as soon as you launch one kernel, you refill big_array on the CPU side and copy it asynchronously to the GPU.
Within each kernel, you could simply handle each array within 1 block, so that block N handles the (N-1)-thousandth element up to the N-thousandth of d_big_array (where you copied all those chars to).
Did you try pinned memory? This may provide a considerable speed-up on some hardware configurations.
Take try of async, you can assign the same job to different streams, each stream process a small part of date, make tranfer and computation at the same time
here is code:
cudaMemcpyAsync(
inputDevPtr + i * size, hostPtr + i * size, size, cudaMemcpyHostToDevice, stream[i]
);
MyKernel<<<100, 512, 0, stream[i]>>> (outputDevPtr + i * size, inputDevPtr + i * size, size);
cudaMemcpyAsync(
hostPtr + i * size, outputDevPtr + i * size, size, cudaMemcpyDeviceToHost, stream[i]
);

CUDA - device memory,searching a string in a text

I have a string of length maximum 500 characters and a text file of size 200MB. I want to write a program in CUDA to search the string in the text file. My text file is too large and I think I have to put it in a global memory of the device, but what about my string? Which is the best among the shared, constant and texture memory? and why?
Also I have an array of size maximum 2500. Which types of device memory is suitable for storing it?
For a naive implementation on Fermi:
Store the text file in global memory and the search string in constant memory. Set up a result buffer of the same size as the text file. Fill the result buffer with zeroes.
Let the number of threads per block, t, be the same as the length of the search string. To determine grid dimensions, consider the size of your text file and the grid dimension limit of 64K. To cover your whole file, select the dimension for x to be, for instance, 10K. Then find the dimension for y by dividing the size of your text file with x and rounding up the result. So 200M / 10K = 20K (which is within 64K). Launch the kernel with t threads and an (x, y) grid.
In the kernel:
Calculate the offset into the text file as d = x + 1024 * y.
Since the y dimension was rounded up above, some kernels at the end of the run must be aborted. Abort the thread if d + t is higher than the size of the text file.
Else, have the thread load one character at index t from the search string and compare it with one character at index t + d in the text file. If the characters didn't match, store a "1" in the result buffer at index d, else do nothing.
When the kernel completes, scan through the result buffer with Thrust. Each location that is 0 marks the starting point of a match.
Assuming you write the kernel so that all threads in a half-warp are accessing the same element of the search string simultaneously, constant memory is likely to yield good results. It's optimized for that case.
Here's some pseudo-code for a simple baseline implementation
...load blocksize+strlen bytes of the file into shared memory...
__syncthreads();
bool found = true;
for (int i = 0; i < strlen; i++) {
if (file_chunk_in_sharedmem[threadIdx.x + i] !=
search_str_in_constantmem[i])
{
found = false;
break;
}
}
if (found) {
...output the result...
}
If the loop is structured such that each thread is accessing a different element of the search string, 1d texture memory might be faster.
The profiler and/or cuda timing functions are your friends.

Cumulative sum in two dimensions on array in nested loop -- CUDA implementation?

I have been thinking of how to perform this operation on CUDA using reductions, but I'm a bit at a loss as to how to accomplish it. The C code is below. The important part to keep in mind -- the variable precalculatedValue depends on both loop iterators. Also, the variable ngo is not unique to every value of m... e.g. m = 0,1,2 might have ngo = 1, whereas m = 4,5,6,7,8 could have ngo = 2, etc. I have included sizes of loop iterators in case it helps to provide better implementation suggestions.
// macro that translates 2D [i][j] array indices to 1D flattened array indices
#define idx(i,j,lda) ( (j) + ((i)*(lda)) )
int Nobs = 60480;
int NgS = 1859;
int NgO = 900;
// ngo goes from [1,900]
// rInd is an initialized (and filled earlier) as:
// rInd = new long int [Nobs];
for (m=0; m<Nobs; m++) {
ngo=rInd[m]-1;
for (n=0; n<NgS; n++) {
Aggregation[idx(n,ngo,NgO)] += precalculatedValue;
}
}
In a previous case, when precalculatedValue was only a function of the inner loop variable, I saved the values in unique array indices and added them with a parallel reduction (Thrust) after the fact. However, this case has me stumped: the values of m are not uniquely mapped to the values of ngo. Thus, I don't see a way of making this code efficient (or even workable) to use a reduction on. Any ideas are most welcome.
Just a stab...
I suspect that transposing your loops might help.
for (n=0; n<NgS; n++) {
for (m=0; m<Nobs; m++) {
ngo=rInd[m]-1;
Aggregation[idx(n,ngo,NgO)] += precalculatedValue(m,n);
}
}
The reason I did this is because idx varies more rapidly with ngo (function of m) than with n, so making m the inner loop improves coherence. Note I also made precalculatedValue a function of (m, n) because you said that it is -- this makes the pseudocode clearer.
Then, you could start by leaving the outer loop on the host, and making a kernel for the inner loop (64,480-way parallelism is enough to fill most current GPUs).
In the inner loop, just start by using an atomicAdd() to handle collisions. If they are infrequent, on Fermi GPUs performance shouldn't be too bad. In any case, you will be bandwidth bound since arithmetic intensity of this computation is low. So once this is working, measure the bandwidth you are achieving, and compare to the peak for your GPU. If you are way off, then think about optimizing further (perhaps by parallelizing the outer loop -- one iteration per thread block, and do the inner loop using some shared memory and thread cooperation optimizations).
The key: start simple, measure performance, and then decide how to optimize.
Note that this calculation looks very similar to a histogram calculation, which has similar challenges, so you might want to google for GPU histograms to see how they have been implemented.
One idea is to sort (rInd[m], m) pairs using thrust::sort_by_key() and then (since the rInd duplicates will be grouped together), you can iterate over them and do your reductions without collisions. (This is one way to do histograms.) You could even do this with thrust::reduce_by_key().

CUDA memory allocation - is it efficient

This is my code. I have lot of threads so that those threads calling this function many times.
Inside this function I am creating an array. It is an efficient implementation?? If it is not please suggest me the efficient implementation.
__device__ float calculate minimum(float *arr)
{
float vals[9]; //for each call to this function I am creating this arr
// Is it efficient?? Or how can I implement this efficiently?
// Do I need to deallocate the memory after using this array?
for(int i=0;i<9;i++)
vals[i] = //call some function and assign the values
float min = findMin(vals);
return min;
}
There is no "array creation" in that code. There is a statically declared array. Further, the standard CUDA compilation model will inline expand __device__functions, meaning that the vals will be compiled to be in local memory, or if possible even in registers.
All of this happens at compile time, not run time.
Perhaps I am missing something, but from the code you have posted, you don't need the temporary array at all. Your code will be (a little) faster if you do something like this:
#include "float.h" // for FLT_MAX
__device__ float calculate minimum(float *arr)
{
float minVal = FLT_MAX:
for(int i=0;i<9;i++)
thisVal = //call some function and assign the values
minVal = min(thisVal,minVal);
return minVal;
}
Where an array is actually required, there is nothing wrong with declaring it in this way (as many others have said).
Regarding the "float vals[9]", this will be efficient in CUDA. For arrays that have small size, the compiler will almost surely allocate all the elements into registers directly. So "vals[0]" will be a register, "vals[1]" will be a register, etc.
If the compiler starts to run out of registers, or the array size is larger than around 16, then local memory is used. You don't have to worry about allocating/deallocating local memory, the compiler/driver do all that for you.
Devices of compute capability 2.0 and greater do have a call stack to allow things like recursion. For example you can set the stack size to 6KB per thread with:
cudaStatus = cudaThreadSetLimit(cudaLimitStackSize, 1024*6);
Normally you won't need to touch the stack yourself. Even if you put big static arrays in your device functions, the compiler and driver will see what's there and make space for you.