Indexes, why don't just index everything and when to use indexes? - mysql

Indexes are used to find rows with specific column values quickly. Without an index, MySQL must begin with the first row and then read through the entire table to find the relevant rows.
Says our beloved MySQL manual.
In that case, why don't just index every column?
And since I have this feeling that it would be a bigger hit to performance, when should we use indexes/best practices for indexes?
Thanks in advance!

Creating an index always comes at a cost: The more indices you have on a table, the more expensive it is to modify that table (i.e. inserts, updates and deletes take longer).
In turn, queries that can use the indices will be faster. It's a classical tradeoff. On most tables a small number of commonly used indices is worth the cost, because queries happen often enough (or their performance is much more important than the modification performance).
On the other hand, if you have some kind of log table that is updated very often, but queried only very rarely (for example in case of a catastrophic failure), then adding an index would add a big cost and provide very little advantage.
Also: whether or not an index is useful depends a lot on the exact query to be executed. It's possible that you have indices spanning each column, but the query can't use it because the indices are in the wrong order, have the wrong information or the wrong format. So not all indices help all queries.

By your logic, you wouldn't index just every column, but every permutation of every column. The overhead involved in storing this information, and in keeping it up to date, would be utterly vast.

Generally index is helpful if it has a good selectivity, i.e. when the query selects a little portion of data based on the value (or range) of indexed attribute.
Also indice are good for merge joins, when sorting rows by a joining attribute in both joined tables allows to match rows and retrieve data in one pass.
As it was already mentioned, indexes slow down updates and take up some memory (which, by itself, slows down performance as well)

Related

What's the minimum number of rows where indexing becomes valuable in MySQL?

I've read that indexing on some databases (SQL Server is the one I read about) doesn't have much effect until you cross a certain threshold of rows because the database will hold the entire table X in memory.
Ordinarily, I'd plan to index on my WHEREs and unique columns/lesser-changed tables. After hearing about the suggested minimum (which was about 10k), I wanted to learn more about that idea. If there are tables that I know will never pass a certain point, this might change the way I index some of them.
For something like MySQL MyISAM/INNODB, is there a point where indexing has little value and what are some ways of determining that?
Note: Very respectfully, I'm not looking for suggestions about structuring my database like "You should index anyway," I'm looking to understand this concept, if it's true or not, how to determine the thresholds, and similar information.
One of the major uses of indexes is to reduce the number of pages being read. The index itself is usually smaller than the table. So, just in terms of page read/writes, you generally need at least three data pages to see a benefit, because using an index requires at least two data pages (one for the index and one for the original data).
(Actually, if the index covers the query, then the breakeven is two.)
The number of data pages needed for a table depends on the size of the records and the number of rows. So, it is really not possible to specify a threshold on the number of rows.
The above very rudimentary explanation leaves out a few things:
The cost of scanning the data pages to do comparisons for each row.
The cost of loading and using index pages.
Other uses of indexing.
But it gives you an idea, and you can see benefits on tables much smaller than 10k rows. That said you can easily do tests on your data to see how queries work on the tables in question.
Also, I strongly, strongly recommend having primary keys on all tables and using those keys for foreign key relationships. The primary key itself is an index.
Indexes serve a lot of purposes. InnoDB tables are always organized as an index, on the cluster key. Indexes can be used to enforce unique constraints, as well as support foreign key constraints. The topic of "indexes" spans way more than query performance.
In terms of query performance, it really depends on what the query is doing. If we are selecting a small subset of rows, out of large set, then effective use of an index can speed that up by eliminating vast swaths of rows from being checked. That's where the biggest bang comes from.
If we are pulling all of the rows, or nearly all the rows, from a set, then an index typically doesn't help narrow down which rows to check; even when an index is available, the optimizer may choose to do a full scan of all of the rows.
But even when pulling large subsets, appropriate indexes can improve performance for join operations, and can significantly improve performance of queries with GROUP BY or ORDER BY clauses, by making use of an index to retrieve rows in order, rather than requiring a "Using filesort" operation.
If we are looking for a simple rule of thumb... for a large set, if we are needing to pull (or look at) less than 10% of the total rows, then an access plan using a suitable index will typically outperform a full scan. If we are looking for a specific row, based on a unique identifier, index is going to be faster than full scan. If we are pulling all columns for every row in the table n no particular order, then a full scan is going to be faster.
Again, it really comes down to what operations are being performed. What queries are being executed, and the performance profile that we need from those queries. That is going to be the key to determining the indexing strategy.
In terms of gaining understanding, use EXPLAIN to see the execution plan. And learn the operations available to MySQl optimizer.
(The topic of indexing strategy in terms of database performance is much too large for a StackOverflow question.)
Each situation is different. If you profile your code, then you'll understand better each anti-pattern. To demonstrate the extreme unexpectedness, consider Oracle:
If this were Oracle, I would say zero because if an empty table's high water mark is very high, then a query that motivates a full table scan that returns zero rows would be much more expensive than the same query that were to induce even a full index scan.
The same process that I went through to understand Oracle you can do with MySQL: profile your code.

Improve Mysql Select Query Performance [duplicate]

I've been using indexes on my MySQL databases for a while now but never properly learnt about them. Generally I put an index on any fields that I will be searching or selecting using a WHERE clause but sometimes it doesn't seem so black and white.
What are the best practices for MySQL indexes?
Example situations/dilemmas:
If a table has six columns and all of them are searchable, should I index all of them or none of them?
What are the negative performance impacts of indexing?
If I have a VARCHAR 2500 column which is searchable from parts of my site, should I index it?
You should definitely spend some time reading up on indexing, there's a lot written about it, and it's important to understand what's going on.
Broadly speaking, an index imposes an ordering on the rows of a table.
For simplicity's sake, imagine a table is just a big CSV file. Whenever a row is inserted, it's inserted at the end. So the "natural" ordering of the table is just the order in which rows were inserted.
Imagine you've got that CSV file loaded up in a very rudimentary spreadsheet application. All this spreadsheet does is display the data, and numbers the rows in sequential order.
Now imagine that you need to find all the rows that have some value "M" in the third column. Given what you have available, you have only one option. You scan the table checking the value of the third column for each row. If you've got a lot of rows, this method (a "table scan") can take a long time!
Now imagine that in addition to this table, you've got an index. This particular index is the index of values in the third column. The index lists all of the values from the third column, in some meaningful order (say, alphabetically) and for each of them, provides a list of row numbers where that value appears.
Now you have a good strategy for finding all the rows where the value of the third column is "M". For instance, you can perform a binary search! Whereas the table scan requires you to look N rows (where N is the number of rows), the binary search only requires that you look at log-n index entries, in the very worst case. Wow, that's sure a lot easier!
Of course, if you have this index, and you're adding rows to the table (at the end, since that's how our conceptual table works), you need to update the index each and every time. So you do a little more work while you're writing new rows, but you save a ton of time when you're searching for something.
So, in general, indexing creates a tradeoff between read efficiency and write efficiency. With no indexes, inserts can be very fast -- the database engine just adds a row to the table. As you add indexes, the engine must update each index while performing the insert.
On the other hand, reads become a lot faster.
Hopefully that covers your first two questions (as others have answered -- you need to find the right balance).
Your third scenario is a little more complicated. If you're using LIKE, indexing engines will typically help with your read speed up to the first "%". In other words, if you're SELECTing WHERE column LIKE 'foo%bar%', the database will use the index to find all the rows where column starts with "foo", and then need to scan that intermediate rowset to find the subset that contains "bar". SELECT ... WHERE column LIKE '%bar%' can't use the index. I hope you can see why.
Finally, you need to start thinking about indexes on more than one column. The concept is the same, and behaves similarly to the LIKE stuff -- essentially, if you have an index on (a,b,c), the engine will continue using the index from left to right as best it can. So a search on column a might use the (a,b,c) index, as would one on (a,b). However, the engine would need to do a full table scan if you were searching WHERE b=5 AND c=1)
Hopefully this helps shed a little light, but I must reiterate that you're best off spending a few hours digging around for good articles that explain these things in depth. It's also a good idea to read your particular database server's documentation. The way indices are implemented and used by query planners can vary pretty widely.
Check out presentations like More Mastering the Art of Indexing.
Update 12/2012: I have posted a new presentation of mine: How to Design Indexes, Really. I presented this in October 2012 at ZendCon in Santa Clara, and in December 2012 at Percona Live London.
Designing the best indexes is a process that has to match the queries you run in your app.
It's hard to recommend any general-purpose rules about which columns are best to index, or whether you should index all columns, no columns, which indexes should span multiple columns, etc. It depends on the queries you need to run.
Yes, there is some overhead so you shouldn't create indexes needlessly. But you should create the indexes that give benefit to the queries you need to run quickly. The overhead of an index is usually far outweighed by its benefit.
For a column that is VARCHAR(2500), you probably want to use a FULLTEXT index or a prefix index:
CREATE INDEX i ON SomeTable(longVarchar(100));
Note that a conventional index can't help if you're searching for words that may be in the middle of that long varchar. For that, use a fulltext index.
I won't repeat some of the good advice in other answers, but will add:
Compound Indices
You can create compound indices - an index that includes multiple columns. MySQL can use these from left to right. So if you have:
Table A
Id
Name
Category
Age
Description
if you have a compound index that includes Name/Category/Age in that order, these WHERE clauses would use the index:
WHERE Name='Eric' and Category='A'
WHERE Name='Eric' and Category='A' and Age > 18
but
WHERE Category='A' and Age > 18
would not use that index because everything has to be used from left to right.
Explain
Use Explain / Explain Extended to understand what indices are available to MySQL and which one it actually selects. MySQL will only use ONE key per query.
EXPLAIN EXTENDED SELECT * from Table WHERE Something='ABC'
Slow Query Log
Turn on the slow query log to see which queries are running slow.
Wide Columns
If you have a wide column where MOST of the distinction happens in the first several characters, you can use only the first N characters in your index. Example: We have a ReferenceNumber column defined as varchar(255) but 97% of the cases, the reference number is 10 characters or less. I changed the index to only look at the first 10 characters and improved performance quite a bit.
If a table has six columns and all of them are searchable, should i index all of them or none of them
Are you searching on a field by field basis or are some searches using multiple fields?
Which fields are most being searched on?
What are the field types? (Index works better on INTs than on VARCHARs for example)
Have you tried using EXPLAIN on the queries that are being run?
What are the negetive performance impacts of indexing
UPDATEs and INSERTs will be slower. There's also the extra storage space requirments, but that's usual unimportant these days.
If i have a VARCHAR 2500 column which is searchable from parts of my site, should i index it
No, unless it's UNIQUE (which means it's already indexed) or you only search for exact matches on that field (not using LIKE or mySQL's fulltext search).
Generally I put an index on any fields that i will be searching or selecting using a WHERE clause
I'd normally index the fields that are the most queried, and then INTs/BOOLEANs/ENUMs rather that fields that are VARCHARS. Don't forget, often you need to create an index on combined fields, rather than an index on an individual field. Use EXPLAIN, and check the slow log.
Load Data Efficiently: Indexes speed up retrievals but slow down inserts and deletes, as well as updates of values in indexed columns. That is, indexes slow down most operations that involve writing. This occurs because writing a row requires writing not only the data row, it requires changes to any indexes as well. The more indexes a table has, the more changes need to be made, and the greater the average performance degradation. Most tables receive many reads and few writes, but for a table with a high percentage of writes, the cost of index updating might be significant.
Avoid Indexes: If you don’t need a particular index to help queries perform better, don’t create it.
Disk Space: An index takes up disk space, and multiple indexes take up correspondingly more space. This might cause you to reach a table size limit more quickly than if there are no indexes. Avoid indexes wherever possible.
Takeaway: Don't over index
In general, indices help speedup database search, having the disadvantage of using extra disk space and slowing INSERT / UPDATE / DELETE queries. Use EXPLAIN and read the results to find out when MySQL uses your indices.
If a table has six columns and all of them are searchable, should i index all of them or none of them?
Indexing all six columns isn't always the best practice.
(a) Are you going to use any of those columns when searching for specific information?
(b) What is the selectivity of those columns (how many distinct values are there stored, in comparison to the total amount of records on the table)?
MySQL uses a cost-based optimizer, which tries to find the "cheapest" path when performing a query. And fields with low selectivity aren't good candidates.
What are the negetive performance impacts of indexing?
Already answered: extra disk space, lower performance during insert - update - delete.
If i have a VARCHAR 2500 column which is searchable from parts of my site, should i index it?
Try the FULLTEXT Index.
1/2) Indexes speed up certain select operations but they slow down other operations like insert, update and deletes. It can be a fine balance.
3) use a full text index or perhaps sphinx

How can I detect if an MySQL index is necessary or required?

How can I detect if an MySQL index is necessary or required?
We have the idea that some queries can be improved. And I know that I can dive in slow query logs ... but I ran across the post below for MS SQL and was wondering if there is an easy way of analyzing if an index is required (and will give immediate speed improvements) for the current MySQL database.
Help appreciated
Resource for MS SQL: https://dba.stackexchange.com/questions/56/how-to-determine-if-an-index-is-required-or-necessary
You can't.
There are ways to detect, over a period of time, whether an index is used. But there is no way to be sure that an index is not used. Let's say you have a once-a-month task that does some major maintenance on the table. And you really need a certain index to keep the task from locking the table and bringing down the application. If you checked for index usage for most of the month, but failed to include that usage, you might decide that you don't need the index. Then you would drop the index... and be sorry. (This is a real anecdote.)
Meanwhile, there are some simplistic rules about indexes...
INDEX(a) is unnecessary if you also have INDEX(a,b).
INDEX(id) is unnecessary if you also have PRIMARY KEY(id) or UNIQUE(id).
An index with 5 or more columns may be used, but is unlikely to be "useful". (Shorten it.)
INDEX(a), INDEX(b) is not the same as INDEX(a,b).
INDEX(b,a) is not the same as INDEX(a,b); you may need both.
INDEX(flag), where flag has a small number of distinct values, will probably never be used -- the optimizer will scan the table instead.
In many cases, "prefix" indexing (INDEX(foo(10))) is useless. (But there are many exceptions.)
"I indexed every column" -- a bad design pattern.
Often, but not always, having both a PRIMARY KEY and a UNIQUE key means that something is less than optimal.
InnoDB tables really should have an explicit PRIMARY KEY.
InnoDB implicitly include the PK in any secondary key. So, given PRIMARY KEY(id), INDEX(foo) is really INDEX(foo, id).
Sometimes the Optimizer will ignore the WHERE clause and use an index for the ORDER BY.
Some queries have such skewed properties that the Optimizer will use a different index depending on different constants. (I have literally see as many as 6 different explain plans for one query.)
"Index merge intersect" is almost always not as good as a composite index.
There are exceptions to most of these tips.
So, I prefer to take all the queries (SELECTs, UPDATEs, and DELETEs), decide on the optimal index for each, eliminate redundancies, etc, in order to find the "best" set of indexes. See my cookbook on creating an index, given a SELECT.
You should definitely spend some time reading up on indexing, there's a lot written about it, and it's important to understand what's going on.
Broadly speaking, and index imposes an ordering on the rows of a table.
For simplicity's sake, imagine a table is just a big CSV file. Whenever a row is inserted, it's inserted at the end. So the "natural" ordering of the table is just the order in which rows were inserted.
Imagine you've got that CSV file loaded up in a very rudimentary spreadsheet application. All this spreadsheet does is display the data, and numbers the rows in sequential order.
Now imagine that you need to find all the rows that has some value "M" in the third column. Given what you have available, you have only one option. You scan the table checking the value of the third column for each row. If you've got a lot of rows, this method (a "table scan") can take a long time!
Now imagine that in addition to this table, you've got an index. This particular index is the index of values in the third column. The index lists all of the values from the third column, in some meaningful order (say, alphabetically) and for each of them, provides a list of row numbers where that value appears.
Now you have a good strategy for finding all the rows where the value of the third column is "M". For instance, you can perform a binary search! Whereas the table scan requires you to look N rows (where N is the number of rows), the binary search only requires that you look at log-n index entries, in the very worst case. Wow, that's sure a lot easier!
Of course, if you have this index, and you're adding rows to the table (at the end, since that's how our conceptual table works), you need to update the index each and every time. So you do a little more work while you're writing new rows, but you save a ton of time when you're searching for something.
So, in general, indexing creates a tradeoff between read efficiency and write efficiency. With no indexes, inserts can be very fast -- the database engine just adds a row to the table. As you add indexes, the engine must update each index while performing the insert.
On the other hand, reads become a lot faster.

MySQL indexes - what are the best practices?

I've been using indexes on my MySQL databases for a while now but never properly learnt about them. Generally I put an index on any fields that I will be searching or selecting using a WHERE clause but sometimes it doesn't seem so black and white.
What are the best practices for MySQL indexes?
Example situations/dilemmas:
If a table has six columns and all of them are searchable, should I index all of them or none of them?
What are the negative performance impacts of indexing?
If I have a VARCHAR 2500 column which is searchable from parts of my site, should I index it?
You should definitely spend some time reading up on indexing, there's a lot written about it, and it's important to understand what's going on.
Broadly speaking, an index imposes an ordering on the rows of a table.
For simplicity's sake, imagine a table is just a big CSV file. Whenever a row is inserted, it's inserted at the end. So the "natural" ordering of the table is just the order in which rows were inserted.
Imagine you've got that CSV file loaded up in a very rudimentary spreadsheet application. All this spreadsheet does is display the data, and numbers the rows in sequential order.
Now imagine that you need to find all the rows that have some value "M" in the third column. Given what you have available, you have only one option. You scan the table checking the value of the third column for each row. If you've got a lot of rows, this method (a "table scan") can take a long time!
Now imagine that in addition to this table, you've got an index. This particular index is the index of values in the third column. The index lists all of the values from the third column, in some meaningful order (say, alphabetically) and for each of them, provides a list of row numbers where that value appears.
Now you have a good strategy for finding all the rows where the value of the third column is "M". For instance, you can perform a binary search! Whereas the table scan requires you to look N rows (where N is the number of rows), the binary search only requires that you look at log-n index entries, in the very worst case. Wow, that's sure a lot easier!
Of course, if you have this index, and you're adding rows to the table (at the end, since that's how our conceptual table works), you need to update the index each and every time. So you do a little more work while you're writing new rows, but you save a ton of time when you're searching for something.
So, in general, indexing creates a tradeoff between read efficiency and write efficiency. With no indexes, inserts can be very fast -- the database engine just adds a row to the table. As you add indexes, the engine must update each index while performing the insert.
On the other hand, reads become a lot faster.
Hopefully that covers your first two questions (as others have answered -- you need to find the right balance).
Your third scenario is a little more complicated. If you're using LIKE, indexing engines will typically help with your read speed up to the first "%". In other words, if you're SELECTing WHERE column LIKE 'foo%bar%', the database will use the index to find all the rows where column starts with "foo", and then need to scan that intermediate rowset to find the subset that contains "bar". SELECT ... WHERE column LIKE '%bar%' can't use the index. I hope you can see why.
Finally, you need to start thinking about indexes on more than one column. The concept is the same, and behaves similarly to the LIKE stuff -- essentially, if you have an index on (a,b,c), the engine will continue using the index from left to right as best it can. So a search on column a might use the (a,b,c) index, as would one on (a,b). However, the engine would need to do a full table scan if you were searching WHERE b=5 AND c=1)
Hopefully this helps shed a little light, but I must reiterate that you're best off spending a few hours digging around for good articles that explain these things in depth. It's also a good idea to read your particular database server's documentation. The way indices are implemented and used by query planners can vary pretty widely.
Check out presentations like More Mastering the Art of Indexing.
Update 12/2012: I have posted a new presentation of mine: How to Design Indexes, Really. I presented this in October 2012 at ZendCon in Santa Clara, and in December 2012 at Percona Live London.
Designing the best indexes is a process that has to match the queries you run in your app.
It's hard to recommend any general-purpose rules about which columns are best to index, or whether you should index all columns, no columns, which indexes should span multiple columns, etc. It depends on the queries you need to run.
Yes, there is some overhead so you shouldn't create indexes needlessly. But you should create the indexes that give benefit to the queries you need to run quickly. The overhead of an index is usually far outweighed by its benefit.
For a column that is VARCHAR(2500), you probably want to use a FULLTEXT index or a prefix index:
CREATE INDEX i ON SomeTable(longVarchar(100));
Note that a conventional index can't help if you're searching for words that may be in the middle of that long varchar. For that, use a fulltext index.
I won't repeat some of the good advice in other answers, but will add:
Compound Indices
You can create compound indices - an index that includes multiple columns. MySQL can use these from left to right. So if you have:
Table A
Id
Name
Category
Age
Description
if you have a compound index that includes Name/Category/Age in that order, these WHERE clauses would use the index:
WHERE Name='Eric' and Category='A'
WHERE Name='Eric' and Category='A' and Age > 18
but
WHERE Category='A' and Age > 18
would not use that index because everything has to be used from left to right.
Explain
Use Explain / Explain Extended to understand what indices are available to MySQL and which one it actually selects. MySQL will only use ONE key per query.
EXPLAIN EXTENDED SELECT * from Table WHERE Something='ABC'
Slow Query Log
Turn on the slow query log to see which queries are running slow.
Wide Columns
If you have a wide column where MOST of the distinction happens in the first several characters, you can use only the first N characters in your index. Example: We have a ReferenceNumber column defined as varchar(255) but 97% of the cases, the reference number is 10 characters or less. I changed the index to only look at the first 10 characters and improved performance quite a bit.
If a table has six columns and all of them are searchable, should i index all of them or none of them
Are you searching on a field by field basis or are some searches using multiple fields?
Which fields are most being searched on?
What are the field types? (Index works better on INTs than on VARCHARs for example)
Have you tried using EXPLAIN on the queries that are being run?
What are the negetive performance impacts of indexing
UPDATEs and INSERTs will be slower. There's also the extra storage space requirments, but that's usual unimportant these days.
If i have a VARCHAR 2500 column which is searchable from parts of my site, should i index it
No, unless it's UNIQUE (which means it's already indexed) or you only search for exact matches on that field (not using LIKE or mySQL's fulltext search).
Generally I put an index on any fields that i will be searching or selecting using a WHERE clause
I'd normally index the fields that are the most queried, and then INTs/BOOLEANs/ENUMs rather that fields that are VARCHARS. Don't forget, often you need to create an index on combined fields, rather than an index on an individual field. Use EXPLAIN, and check the slow log.
Load Data Efficiently: Indexes speed up retrievals but slow down inserts and deletes, as well as updates of values in indexed columns. That is, indexes slow down most operations that involve writing. This occurs because writing a row requires writing not only the data row, it requires changes to any indexes as well. The more indexes a table has, the more changes need to be made, and the greater the average performance degradation. Most tables receive many reads and few writes, but for a table with a high percentage of writes, the cost of index updating might be significant.
Avoid Indexes: If you don’t need a particular index to help queries perform better, don’t create it.
Disk Space: An index takes up disk space, and multiple indexes take up correspondingly more space. This might cause you to reach a table size limit more quickly than if there are no indexes. Avoid indexes wherever possible.
Takeaway: Don't over index
In general, indices help speedup database search, having the disadvantage of using extra disk space and slowing INSERT / UPDATE / DELETE queries. Use EXPLAIN and read the results to find out when MySQL uses your indices.
If a table has six columns and all of them are searchable, should i index all of them or none of them?
Indexing all six columns isn't always the best practice.
(a) Are you going to use any of those columns when searching for specific information?
(b) What is the selectivity of those columns (how many distinct values are there stored, in comparison to the total amount of records on the table)?
MySQL uses a cost-based optimizer, which tries to find the "cheapest" path when performing a query. And fields with low selectivity aren't good candidates.
What are the negetive performance impacts of indexing?
Already answered: extra disk space, lower performance during insert - update - delete.
If i have a VARCHAR 2500 column which is searchable from parts of my site, should i index it?
Try the FULLTEXT Index.
1/2) Indexes speed up certain select operations but they slow down other operations like insert, update and deletes. It can be a fine balance.
3) use a full text index or perhaps sphinx

Are indexes good or bad for a large database?

I read on MySQL Performance Blog that when tables are large, it is better to scan full tables, instead of using indexes.
I have a table with tens of millions of rows. When conducting queries, if I use no indexes, then queries are 24 times slower than with indexes. I know lot of things may cause this (e.g., are rows stored sequentially), but can you please give me some hints what might be happening? Or how I should start examining this issue? I want to understand when use of indexes is preferred and when it's not
Thanks
The article says that when dealing with very large data sets, where the amount of rows you need to work with are approaching the number of rows that is in the table, using an index might hurt performance.
In this case, going through the index will indeed hurt performance, as long as you need more data than is present in the index.
To go through the index, the database engine first has to read large parts of the index table (it is a type of table), then for each row (or set of rows) from this result, go to the real table and start cherrypicking pages to read.
If, on the other hand, you only need to retrieve columns that area already part of the index table, then the database engine only has to read from that, and not continue on to the full table for more data.
If you end up reading most or close to most of the actual table in question, all the work required to deal with the index might be more overhead than just doing a full table-scan to begin with.
Now, this is all the article is saying. For most work dealing with a database, using indexes is the exact right thing to do.
For instance, if you need to extract a small set of rows, going through an index instead of a full table scan will be many order of magnitudes faster.
In any case, if you're in doubt, you should do some performance profiling to find out how your application behaves under different types of loads, and then start tweaking, don't take a single article as a silver bullet for anything.
For instance, one way to speed up the example queries that does a count on the pad column in the article, would be to create a single index that covered both val and pad, in this way, the count would simply be a index-scan, and not a index-scan + table-lookup, and would run faster than the full table-scan.
Your best option is to know your data, and to experiment, and to know how the tools you use work, so indeed, learn more about indexes, but in the end, it is you who decides what is best for your program.
As always, it depends. I've so far never ran into a scenario as described in that blog posts. Using indexes on my queries for large (50+ million rows) has been on the order of 100 to 10000 times faster than doing a full table scan on these big tables.
There's probably no silver bullet here, you have to test for your particular data and your particular queries.
It is good practice to put the index on each column which you used in a WHERE clause.