Is it okay to rely on automatic pass-by-reference to mutate objects? - language-agnostic

I'm working in Python here (which is actually pass-by-name, I think), but the idea is language-agnostic as long as method parameters behave similarly:
If I have a function like this:
def changefoo(source, destination):
destination["foo"] = source
return destination
and call it like so,
some_dict = {"foo": "bar"}
some_var = "a"
new_dict = changefoo(some_var, some_dict)
new_dict will be a modified version of some_dict, but some_dict will also be modified.
Assuming the mutable structure like the dict in my example will almost always be similarly small, and performance is not an issue (in application, I'm taking abstract objects and changing into SOAP requests for different services, where the SOAP request will take an order of magnitude longer than reformatting the data for each service), is this okay?
The destination in these functions (there are several, it's not just a utility function like in my example) will always be mutable, but I like to be explicit: the return value of a function represents the outcome of a deterministic computation on the parameters you passed in. I don't like using out parameters but there's not really a way around this in Python when passing mutable structures to a function. A couple options I've mulled over:
Copying the parameters that will be mutated, to preserve the original
I'd have to copy the parameters in every function where I mutate them, which seems cumbersome and like I'm just duplicating a lot. Plus I don't think I'll ever actually need the original, it just seems messy to return a reference to the mutated object I already had.
Just use it as an in/out parameter
I don't like this, it's not immediately obvious what the function is doing, and I think it's ugly.
Create a decorator which will automatically copy the parameters
Seems like overkill
So is what I'm doing okay? I feel like I'm hiding something, and a future programmer might think the original object is preserved based on the way I'm calling the functions (grabbing its result rather than relying on the fact that it mutates the original). But I also feel like any of the alternatives will be messy. Is there a more preferred way? Note that it's not really an option to add a mutator-style method to the class representing the abstract data due to the way the software works (I would have to add a method to translate that data structure into the corresponding SOAP structure for every service we send that data off too--currently the translation logic is in a separate package for each service)

If you have a lot of functions like this, I think your best bet is to write a little class that wraps the dict and modifies it in-place:
class DictMunger(object):
def __init__(self, original_dict):
self.original_dict = original_dict
def changefoo(source)
self.original_dict['foo'] = source
some_dict = {"foo": "bar"}
some_var = "a"
munger = DictMunger(some_dict)
munger.changefoo(some_var)
# ...
new_dict = munger.original_dict
Objects modifying themselves is generally expected and reads well.

Related

Overwrite function only for a particular instance in LUA

I basically don't look for an answer on how to do something but I found how to do it, yet want more information. Hope this kind of question is OK here.
Since I just discovered this the code of a game I'm modding I don't have any idea what should I google for.
In Lua, I can have for example:
Account = {balance = 0}
function Account.withdraw (v)
self.balance = self.balance - v
end
I can have (in another lua file)
function Account.withdrawBetter (v)
if self.balance > v then
self.balance = self.balance - v
end
end
....
--somewhere in some function, with an Account instance:
a1.withdraw = a1.withdrawBetter
`
What's the name for this "technique" so I can find some more information about it (possible pitfalls, performance considerations vs. override/overwrite, etc)? note I'm only changing withdraw for the particular instance (a1), not for every Account instance.
Bonus question: Any other oo programming languages with such facility?
Thanks
OO in Lua
First of all, it should be pointed out that Lua does not implement Object Oriented Programming; it has no concept of objects, classes, inheritance, etc.
If you want OOP in Lua, you have to implement it yourself. Usually this is done by creating a table that acts as a "class", storing the "instance methods", which are really just functions that accept the instance as its first argument.
Inheritance is then achieved by having the "constructor" (also just a function) create a new table and set its metatable to one with an __index field pointing to the class table. When indexing the "instance" with a key it doesn't have, it will then search for that key in the class instead.
In other words, an "instance" table may have no functions at all, but indexing it with, for example, "withdraw" will just try indexing the class instead.
Now, if we take a single "instance" table and add a withdraw field to it, Lua will see that it has that field and not bother looking it up in the class. You could say that this value shadows the one in the class table.
What's the name for this "technique"
It doesn't really have one, but you should definitely look into metatables.
In languages that do support this sort of thing, like in Ruby (see below) this is often done with singleton classes, meaning that they only have a single instance.
Performance considerations
Indexing tables, including metatables takes some time. If Lua finds a method in the instance table, then that's a single table lookup; if it doesn't, it then needs to first get the metatable and index that instead, and if that doesn't have it either and has its own metatable, the chain goes on like that.
So, in other words, this is actually faster. It does use up some more space, but not really that much (technically it could be quite a lot, but you really shouldn't worry about that. Nonetheless, here's where you can read up on that, if you want to).
Any other oo programming languages with such facility?
Yes, lots of 'em. Ruby is a good example, where you can do something like
array1 = [1, 2, 3]
array2 = [4, 5, 6]
def array1.foo
puts 'bar'
end
array1.foo # prints 'bar'
array2.foo # raises `NoMethodError`

What are better ways to create a method that takes many arguments? (10+?)

I was looking at some code of a fellow developer, and almost cried. In the method definition there are 12 arguments. From my experience..this isn't good. If it were me, I would have sent in an object of some sort.
Is there another / more preferred way to do this (in other words, what's the best way to fix this and explain why)?
public long Save (
String today,
String name,
String desc,
int ID,
String otherNm,
DateTime dt,
int status,
String periodID,
String otherDt,
String submittedDt
)
ignore my poor variable names - they are examples
It highly depends on the language.
In a language without compile-time typechecking (e.g. python, javascript, etc.) you should use keyword arguments (common in python: you can access them like a dictionary passed in as an argument) or objects/dictionaries you manually pass in as arguments (common in javascript).
However the "argument hell" you described is sometimes "the right way to do things" for certain languages with compile-time typechecking, because using objects will obfuscate the semantics from the typechecker. The solution then would be to use a better language with compile-time typechecking which allows pattern-matching of objects as arguments.
Yes, use objects. Also, the function is probably doing too much if it needs all of this information, so use smaller functions.
Use objects.
class User { ... }
User user = ...
Save(user);
It decision provides easy way for adding new parameters.
It depends on how complex the function is. If it does something non-trivial with each of those arguments, it should probably be split. If it just passes them through, they should probably be collected in an object. But if it just creates a row in a table, it's not really big deal. It's less of a deal if your language supports keyword arguments.
I imagine the issue you're experiencing is being able to look at the method call and know what argument is receiving what value. This is a pernicious problem in a language like Java, which lacks something like keyword arguments or JSON hashes to pass named arguments.
In this situation, the Builder pattern is a useful solution. It's more objects, three total, but leads to more comprehensible code for the problem you're describing. So the three objects in this case would be as such:
Thing: stateful entity, typically immutable (i.e. getters only)
ThingBuilder: factory class, creates a Thing entity and sets its values.
ThingDAO: not necessary for using the Builder pattern, but addresses your question.
Interaction
/*
ThingBuilder is a static inner class of Thing, where each of its
"set" method calls returns the ThingBuilder instance being worked with
while the final "build()" call returns the instantiated Thing instance.
*/
Thing thing = Thing.createBuilder().
.setToday("2012/04/01")
.setName("Example")
// ...etc...
.build();
// the Thing instance as get methods for each property
thing.getName();
// get your reference to thingDAO however it's done
thingDAO.save(thing);
The result is you get named arguments and an immutable instance.

Group functions of similar functionality

Sometimes I come across this problem where you have a set of functions that obviously belong to the same group. Those functions are needed at several places, and often together.
To give a specific example: consider the filemtime, fileatime and filectime functions. They all provide a similar functionality. If you are building something like a filemanager, you'll probably need to call them one after another to get the info you need. This is the moment that you get thinking about a wrapper. PHP already provides stat, but suppose we don't have that function.
I looked at the php sourcecode to find out how they solved this particular problem, but I can't really find out what's going on.
Obviously, if you have a naive implementation of such a grouping function, say filetimes, would like this:
function filetimes($file) {
return array(
'filectime' => filectime($file)
,'fileatime' => fileatime($file)
,'filemtime' => filemtime($file)
);
}
This would work, but incurs overhead since you would have to open a file pointer for each function call. (I don't know if it's necessary to open a file pointer, but let's assume that for the sake of the example).
Another approach would be to duplicate the code of the fileXtime functions and let them share a file pointer, but this obviously introduces code duplication, which is probably worse than the overhead introduced in the first example.
The third, and probably best, solution I came up with is to add an optional second parameter to the fileXtime functions to supply a filepointer.
The filetimes functions would then look like this:
function filetimes($file) {
$fp = fopen($file, 'r');
return array(
'filectime' => filectime($file, $fp)
,'fileatime' => fileatime($file, $fp)
,'filemtime' => filemtime($file, $fp)
);
}
Somehow this still feels 'wrong'. There's this extra parameter that is only used in some very specific conditions.
So basically the question is: what is best practice in situations like these?
Edit:
I'm aware that this is a typical situation where OOP comes into play. But first off: not everything needs to be a class. I always use an object oriented approach, but I also always have some functions in the global space.
Let's say we're talking about a legacy system here (with these 'non-oop' parts) and there are lots of dependencies on the fileXtime functions.
tdammer's answer is good for the specific example I gave, but does it extend to the broader problem set? Can a solution be defined such that it is applicable to most other problems in this domain?
Use classes, Luke.
I'd rewrite the fileXtime functions to accept either a filename or a file handle as their only parameter. Languages that can overload functions (like C++, C# etc) can use this feature; in PHP, you'd have to check for the type of the argument at run time.
Passing both a filename and a file handle would be redundant, and ambiguous calls could be made:
$fp = fopen('foo', 'r');
$times = file_times('bar', $fp);
Of course, if you want to go OOP, you'd just wrap them all in a FileInfo class, and store a (lazy-loaded?) private file handle there.

How do you return two values from a single method?

When your in a situation where you need to return two things in a single method, what is the best approach?
I understand the philosophy that a method should do one thing only, but say you have a method that runs a database select and you need to pull two columns. I'm assuming you only want to traverse through the database result set once, but you want to return two columns worth of data.
The options I have come up with:
Use global variables to hold returns. I personally try and avoid globals where I can.
Pass in two empty variables as parameters then assign the variables inside the method, which now is a void. I don't like the idea of methods that have a side effects.
Return a collection that contains two variables. This can lead to confusing code.
Build a container class to hold the double return. This is more self-documenting then a collection containing other collections, but it seems like it might be confusing to create a class just for the purpose of a return.
This is not entirely language-agnostic: in Lisp, you can actually return any number of values from a function, including (but not limited to) none, one, two, ...
(defun returns-two-values ()
(values 1 2))
The same thing holds for Scheme and Dylan. In Python, I would actually use a tuple containing 2 values like
def returns_two_values():
return (1, 2)
As others have pointed out, you can return multiple values using the out parameters in C#. In C++, you would use references.
void
returns_two_values(int& v1, int& v2)
{
v1 = 1; v2 = 2;
}
In C, your method would take pointers to locations, where your function should store the result values.
void
returns_two_values(int* v1, int* v2)
{
*v1 = 1; *v2 = 2;
}
For Java, I usually use either a dedicated class, or a pretty generic little helper (currently, there are two in my private "commons" library: Pair<F,S> and Triple<F,S,T>, both nothing more than simple immutable containers for 2 resp. 3 values)
I would create data transfer objects. If it is a group of information (first and last name) I would make a Name class and return that. #4 is the way to go. It seems like more work up front (which it is), but makes it up in clarity later.
If it is a list of records (rows in a database) I would return a Collection of some sort.
I would never use globals unless the app is trivial.
Not my own thoughts (Uncle Bob's):
If there's cohesion between those two variables - I've heard him say, you're missing a class where those two are fields. (He said the same thing about functions with long parameter lists.)
On the other hand, if there is no cohesion, then the function does more than one thing.
I think the most preferred approach is to build a container (may it be a class or a struct - if you don't want to create a separate class for this, struct is the way to go) that will hold all the parameters to be returned.
In the C/C++ world it would actually be quite common to pass two variables by reference (an example, your no. 2).
I think it all depends on the scenario.
Thinking from a C# mentality:
1: I would avoid globals as a solution to this problem, as it is accepted as bad practice.
4: If the two return values are uniquely tied together in some way or form that it could exist as its own object, then you can return a single object that holds the two values. If this object is only being designed and used for this method's return type, then it likely isn't the best solution.
3: A collection is a great option if the returned values are the same type and can be thought of as a collection. However, if the specific example needs 2 items, and each item is it's 'own' thing -> maybe one represents the beginning of something, and the other represents the end, and the returned items are not being used interchangably, then this may not be the best option.
2: I like this option the best, if 4, and 3 do not make sense for your scenario. As stated in 3, if you wanted to get two objects that represent the beginning and end items of something. Then I would use parameters by reference (or out parameters, again, depending on how it's all being used). This way your parameters can explicitly define their purpose: MethodCall(ref object StartObject, ref object EndObject)
Personally I try to use languages that allow functions to return something more than a simple integer value.
First, you should distinguish what you want: an arbitrary-length return or fixed-length return.
If you want your method to return an arbitrary number of arguments, you should stick to collection returns. Because the collections--whatever your language is--are specifically tied to fulfill such a task.
But sometimes you just need to return two values. How does returning two values--when you're sure it's always two values--differ from returning one value? No way it differs, I say! And modern languages, including perl, ruby, C++, python, ocaml etc allow function to return tuples, either built-in or as a third-party syntactic sugar (yes, I'm talking about boost::tuple). It looks like that:
tuple<int, int, double> add_multiply_divide(int a, int b) {
return make_tuple(a+b, a*b, double(a)/double(b));
}
Specifying an "out parameter", in my opinion, is overused due to the limitations of older languages and paradigms learned those days. But there still are many cases when it's usable (if your method needs to modify an object passed as parameter, that object being not the class that contains a method).
The conclusion is that there's no generic answer--each situation has its own solution. But one common thing there is: it's not violation of any paradigm that function returns several items. That's a language limitation later somehow transferred to human mind.
Python (like Lisp) also allows you to return any number of
values from a function, including (but not limited to)
none, one, two
def quadcube (x):
return x**2, x**3
a, b = quadcube(3)
Some languages make doing #3 native and easy. Example: Perl. "return ($a, $b);". Ditto Lisp.
Barring that, check if your language has a collection suited to the task, ala pair/tuple in C++
Barring that, create a pair/tuple class and/or collection and re-use it, especially if your language supports templating.
If your function has return value(s), it's presumably returning it/them for assignment to either a variable or an implied variable (to perform operations on, for instance.) Anything you can usefully express as a variable (or a testable value) should be fair game, and should dictate what you return.
Your example mentions a row or a set of rows from a SQL query. Then you reasonably should be ready to deal with those as objects or arrays, which suggests an appropriate answer to your question.
When your in a situation where you
need to return two things in a single
method, what is the best approach?
It depends on WHY you are returning two things.
Basically, as everyone here seems to agree, #2 and #4 are the two best answers...
I understand the philosophy that a
method should do one thing only, but
say you have a method that runs a
database select and you need to pull
two columns. I'm assuming you only
want to traverse through the database
result set once, but you want to
return two columns worth of data.
If the two pieces of data from the database are related, such as a customer's First Name and Last Name, I would indeed still consider this to be doing "one thing."
On the other hand, suppose you have come up with a strange SELECT statement that returns your company's gross sales total for a given date, and also reads the name of the customer that placed the first sale for today's date. Here you're doing two unrelated things!
If it's really true that performance of this strange SELECT statement is much better than doing two SELECT statements for the two different pieces of data, and both pieces of data really are needed on a frequent basis (so that the entire application would be slower if you didn't do it that way), then using this strange SELECT might be a good idea - but you better be prepared to demonstrate why your way really makes a difference in perceived response time.
The options I have come up with:
1 Use global variables to hold returns. I personally try and avoid
globals where I can.
There are some situations where creating a global is the right thing to do. But "returning two things from a function" is not one of those situations. Doing it for this purpose is just a Bad Idea.
2 Pass in two empty variables as parameters then assign the variables
inside the method, which now is a
void.
Yes, that's usually the best idea. This is exactly why "by reference" (or "output", depending on which language you're using) parameters exist.
I don't like the idea of methods that have a side effects.
Good theory, but you can take it too far. What would be the point of calling SaveCustomer() if that method didn't have a side-effect of saving the customer's data?
By Reference parameters are understood to be parameters that contain returned data.
3 Return a collection that contains two variables. This can lead to confusing code.
True. It wouldn't make sense, for instance, to return an array where element 0 was the first name and element 1 was the last name. This would be a Bad Idea.
4 Build a container class to hold the double return. This is more self-documenting then a collection containing other collections, but it seems like it might be confusing to create a class just for the purpose of a return.
Yes and no. As you say, I wouldn't want to create an object called FirstAndLastNames just to be used by one method. But if there was already an object which had basically this information, then it would make perfect sense to use it here.
If I was returning two of the exact same thing, a collection might be appropriate, but in general I would usually build a specialized class to hold exactly what I needed.
And if if you are returning two things today from those two columns, tomorrow you might want a third. Maintaining a custom object is going to be a lot easier than any of the other options.
Use var/out parameters or pass variables by reference, not by value. In Delphi:
function ReturnTwoValues(out Param1: Integer):Integer;
begin
Param1 := 10;
Result := 20;
end;
If you use var instead of out, you can pre-initialize the parameter.
With databases, you could have an out parameter per column and the result of the function would be a boolean indicating if the record is retrieved correctly or not. (Although I would use a single record class to hold the column values.)
As much as it pains me to do it, I find the most readable way to return multiple values in PHP (which is what I work with, mostly) is using a (multi-dimensional) array, like this:
function doStuff($someThing)
{
// do stuff
$status = 1;
$message = 'it worked, good job';
return array('status' => $status, 'message' => $message);
}
Not pretty, but it works and it's not terribly difficult to figure out what's going on.
I generally use tuples. I mainly work in C# and its very easy to design generic tuple constructs. I assume it would be very similar for most languages which have generics. As an aside, 1 is a terrible idea, and 3 only works when you are getting two returns that are the same type unless you work in a language where everything derives from the same basic type (i.e. object). 2 and 4 are also good choices. 2 doesn't introduce any side effects a priori, its just unwieldy.
Use std::vector, QList, or some managed library container to hold however many X you want to return:
QList<X> getMultipleItems()
{
QList<X> returnValue;
for (int i = 0; i < countOfItems; ++i)
{
returnValue.push_back(<your data here>);
}
return returnValue;
}
For the situation you described, pulling two fields from a single table, the appropriate answer is #4 given that two properties (fields) of the same entity (table) will exhibit strong cohesion.
Your concern that "it might be confusing to create a class just for the purpose of a return" is probably not that realistic. If your application is non-trivial you are likely going to need to re-use that class/object elsewhere anyway.
You should also consider whether the design of your method is primarily returning a single value, and you are getting another value for reference along with it, or if you really have a single returnable thing like first name - last name.
For instance, you might have an inventory module that queries the number of widgets you have in inventory. The return value you want to give is the actual number of widgets.. However, you may also want to record how often someone is querying inventory and return the number of queries so far. In that case it can be tempting to return both values together. However, remember that you have class vars availabe for storing data, so you can store an internal query count, and not return it every time, then use a second method call to retrieve the related value. Only group the two values together if they are truly related. If they are not, use separate methods to retrieve them separately.
Haskell also allows multiple return values using built in tuples:
sumAndDifference :: Int -> Int -> (Int, Int)
sumAndDifference x y = (x + y, x - y)
> let (s, d) = sumAndDifference 3 5 in s * d
-16
Being a pure language, options 1 and 2 are not allowed.
Even using a state monad, the return value contains (at least conceptually) a bag of all relevant state, including any changes the function just made. It's just a fancy convention for passing that state through a sequence of operations.
I will usually opt for approach #4 as I prefer the clarity of knowing what the function produces or calculate is it's return value (rather than byref parameters). Also, it lends to a rather "functional" style in program flow.
The disadvantage of option #4 with generic tuple classes is it isn't much better than returning a collection (the only gain is type safety).
public IList CalculateStuffCollection(int arg1, int arg2)
public Tuple<int, int> CalculateStuffType(int arg1, int arg2)
var resultCollection = CalculateStuffCollection(1,2);
var resultTuple = CalculateStuffTuple(1,2);
resultCollection[0] // Was it index 0 or 1 I wanted?
resultTuple.A // Was it A or B I wanted?
I would like a language that allowed me to return an immutable tuple of named variables (similar to a dictionary, but immutable, typesafe and statically checked). But, sadly, such an option isn't available to me in the world of VB.NET, it may be elsewhere.
I dislike option #2 because it breaks that "functional" style and forces you back into a procedural world (when often I don't want to do that just to call a simple method like TryParse).
I have sometimes used continuation-passing style to work around this, passing a function value as an argument, and returning that function call passing the multiple values.
Objects in place of function values in languages without first-class functions.
My choice is #4. Define a reference parameter in your function. That pointer references to a Value Object.
In PHP:
class TwoValuesVO {
public $expectedOne;
public $expectedTwo;
}
/* parameter $_vo references to a TwoValuesVO instance */
function twoValues( & $_vo ) {
$vo->expectedOne = 1;
$vo->expectedTwo = 2;
}
In Java:
class TwoValuesVO {
public int expectedOne;
public int expectedTwo;
}
class TwoValuesTest {
void twoValues( TwoValuesVO vo ) {
vo.expectedOne = 1;
vo.expectedTwo = 2;
}
}

Transforming an object implicitly

The following code illustrates a pattern I sometimes see, whereby an object is transformed implicitly as it is passed as a parameter across a number of method calls.
var o = new MyReferenceType();
DoSomeWorkAndPossiblyModifyO(o);
DoYetMoreWorkAndPossiblyFurtherModifyO(o);
//now use o...
This feels wrong to me (it hardly feels object oriented). Is it acceptable?
Based on your method names, I would argue that there is nothing implicit in the transformation. This pattern would be acceptable. If, on the other hand your methods had names like printO(o) or compareTo(o), but actually modified the Object o, the design would be bad.
It is acceptable but usually bad style.
The usual "good" approach is:
DoSomeWorkAndModify(&o); // explicit reference means we will be accepting changes
o = DoSomeWorkAndReturnModified(o); // much more elastic because you often want to keep original.
The approach you presented makes sense when o is huge, and making a copy of it in memory is out of question, or if it's a function you (and nobody else = private) use very frequently and don't want to bother with the & syntax. Otherwise it's laziness that results in some really difficult to detect bugs.
It depends entirely on what the methods actually do, besides modifying that object.
For instance, an object primarily related to keeping some state in memory might for instance not have anything related to persisting that state anywhere.
The methods could for instance load data from a database, and update the object with that information.
However! Since I program mostly in C# and thus .NET, which is a wholly object-oriented language, I would actually write your code like this:
var o = new MyReferenceType();
SomeOtherClass.DoSomeWorkAndPossiblyModifyO(o);
SomeOtherClass.DoYetMoreWorkAndPossiblyFurtherModifyO(o);
//now use o...
In which case the actual name of that other class (or those other classes if there's 2 involved) would give me a big clue as to what is actually happening and/or the context.
Example:
Person p = new Person();
DatabaseContext.FetchAllLazilyLoadedProperties(p);
DatabaseContext.Save(p); // updates primary key property with new ID